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ABSTRACT: 
 
microRNAs (miRNAs) are small non-coding RNAs that play critical roles in gene 
regulation.  The presence of miRNAs in extracellular biofluids is increasingly 
recognized. However, most previous characterization of extracellular miRNAs focused 
on their overall expression levels. Alternative sequence isoforms and modifications of 
miRNAs were rarely considered in the extracellular space. Here, we developed a highly 
accurate bioinformatic method, called miNTA, to identify 3’ non-templated additions 
(NTAs) of miRNAs using small RNA-sequencing data. Using miNTA, we conducted an 
in-depth analysis of miRNA 3’ NTA profiles in 1047 extracellular RNA-sequencing data 
sets of 4 types of biofluids. This analysis identified abundant 3’ uridylation and 
adenylation of miRNAs, with an estimated false discovery rate of <5%. Strikingly, we 
found that 3’ uridylation levels enabled segregation of different types of biofluids, more 
effectively than overall miRNA expression levels. This observation suggests that 3’ NTA 
levels possess fluid-specific information insensitive to batch effects. In addition, we 
observed that extracellular miRNAs with 3’ uridylations are enriched in processes 
related to angiogenesis, apoptosis and inflammatory response, and this type of 
modification may stabilize base-pairing between miRNAs and their target genes. 
Together, our study provides a comprehensive landscape of miRNA NTAs in human 
biofluids, which paves way for further biomarker discoveries. The insights generated in 
our work built a foundation for future functional, mechanistic and translational 
discoveries.  
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INTRODUCTION 
 

 Recent studies revealed the existence of extracellular RNAs (exRNAs) in many 
types of biofluids1–3. exRNAs are mostly packaged in small extracellular vesicles, 
microvesicles or in complex with lipoproteins or ribonucleoproteins4, which protect them 
from degradation by ribonucleases. exRNA expression could be highly cell type- or 
disease-specific5–7, thus affording potential values as disease biomarkers8. Importantly, 
the functional roles of exRNAs are also starting to unfold9–12. For example, several studies 
reported the involvement of exRNAs in cell-to-cell communication in the local tumor 
microenvironment13–15. Furthermore, exRNAs in extracellular vesicles secreted from 
glioblastoma stem cells were shown to induce angiogenesis by reprogramming brain 
endothelial cells9.  

The most-often studied exRNAs are microRNAs (miRNAs), small 18-22nt 
noncoding RNAs that are potent regulators of mRNA and protein expression levels16. 
Most previous studies on extracellular miRNAs focused on interrogating their overall 
expression levels. Nonetheless, many miRNAs assume multiple sequence forms resulted 
from alternative miRNA processing or post-transcriptional modification17. Specifically, a 
well-known class of post-transcriptional modification of miRNAs is non-templated addition 
(NTA)18. Two types of 3’ miRNA NTAs have been reported19,20, 3’ adenylation catalyzed 
by GLD2 and 3’ uridylation by the terminal uridyltransferase-4 and 7 (TUT4/TUT7). Both 
types of 3’ NTAs may affect miRNA targeting, stability, or turnover21–25. 

 
Thus far, only a small number of studies examined miRNA NTAs in the 

extracellular space. For example, a study using cultured human B cells examined 3’ NTAs 
of intracellular and extracellular exosomal miRNAs26. The authors observed that 3’ NTAs 
of miRNAs showed distinct patterns in the two compartments, with 3’ adenylation more 
enriched intracellularly and 3’ uridylation overrepresented in exosomes. Another study 
examined global miRNA expression in blood cells, serum and exosomes27. They showed 
that 3’ NTA patterns clustered in a blood-lineage specific manner and extracellular 3’ 
NTAs were distinct from the intracellular profiles. These findings suggest that 3’ NTA 
patterns of miRNAs may carry specific information that segregates extra- and intracellular 
miRNA profiles.  The mechanisms underlying this specificity remain unclear. 

 
In this study, we developed a new analysis pipeline, called miNTA, to identify NTAs 

of miRNAs in any small RNA-sequencing (RNA-seq) data set and applied it to 1047 
extracellular samples derived from 4 types of biofluids. To our best knowledge, this is the 
largest study of extracellular miRNA NTA profiles in biofluids. Although many studies have 
examined NTAs of intracellular miRNAs, the bioinformatic pipelines employed in most 
studies could be improved to enhance accuracy. Incorporating a number of stringency 
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measures, our method achieves a low false discovery rate < 5%. Applied to the large 
number of biofluid samples, we observed 3’ uridylation and adenylation as the two most 
prominent types of 3’ NTAs in extracellular miRNAs, with the former being more prevalent 
than the latter. Our analysis showed that 5’ NTAs are unlikely present in miRNAs, or 
extremely rare if exist at all. The levels of 3’ NTAs varied widely across miRNAs. 
Importantly, 3’ NTA levels can be used to segregate different types of biofluids, more 
effectively than miRNA expression levels. We also observed that extracellular miRNAs 
with 3’ uridylations are enriched in processes related to angiogenesis, apoptosis and 
inflammatory response, and this type of modification may stabilize base-pairing between 
miRNAs and their target genes. Overall, our study provides global insights regarding 3’ 
end modifications of miRNAs in extracellular fluids.  
 
RESULTS 
 
miNTA: A bioinformatic pipeline to identify miRNA NTAs  

 
To explore the diversity of NTAs in the extracellular space, we first developed a 

rigorous pipeline, called miNTA, to accurately identify NTAs of miRNAs in small RNA-seq 
data (Fig. 1A). While other methods to identify miRNA sequence variations exist28–36, our 
method aims to improve the mapping strategies and reduce false positive modifications 
(Methods). Briefly, in the mapping steps, we sequentially trim the ends of unmapped 
reads (separately for 3’ and 5’ ends) and check for one or more consecutive NTAs. To 
remove likely sequencing errors, we only consider candidate NTA sites with relatively 
high sequencing quality scores (PHRED ≥ 30). In addition, since miRNA ends can be 
heterogeneous and noisy37,38, we defined canonical isoforms of each miRNA in each 
sample and identified NTAs relative to the canonical 3’ or 5’ ends (Methods). These 
quality control steps ensure the accuracy of NTA predictions.  

 
miRNA 3’ adenylation and uridylation are known to be mediated by specific 

enzymes such as, but not limited to, GLD-2 and TUT4/TUT7, respectively16. To evaluate 
if our pipeline detects biologically relevant NTAs, we performed double knockdown (KD) 
of the TUT4 and TUT7 enzymes in HEK293 cells, followed by small RNA-seq 
(Supplementary Fig. S1A).  As expected, we observed reduced global 3’ uridylation levels 
of miRNAs upon TUT4/7 KD relative to the controls (Fig. 1B). In addition, a concomitant 
increase of 3’ adenylation levels was observed, consistent with previous literature20,24. 
These results confirm the validity of our pipeline in identifying biologically relevant NTAs.  
 
Comprehensive catalog of miRNAs in the extracellular space  
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To investigate the landscape of extracellular miRNA 3’ NTAs, we obtained small 
RNA-seq data sets (50 nt, strand-specific) of four bodily fluids of healthy subjects obtained 
from previous studies39–43 (Fig. 2A). In total, we analyzed 1047 data sets, including 399 
plasma samples, 163 samples of small extracellular vesicles isolated from plasma, 167 
serum, 69 cerebral spinal fluid (CSF), and 249 urine samples. As a comparison, we also 
analyzed 297 intracellular data sets of seven types of human peripheral blood cells (NK 
cells, B lymphocytes, cytotoxic T lymphocytes, T-helper cells, monocytes, neutrophils and 
erythrocytes) sorted from whole blood27. Following read mapping, we removed samples 
with <50,000 total reads mapped to miRNAs to ensure at least a modest sequencing 
coverage. 

 
Although intracellular miRNAs have been studied extensively, the repertoire of 

extracellular miRNAs is still being explored. To create a comprehensive list of human 
miRNAs, as the first step of the pipeline, we ran miRDeep244 on all extracellular and 
intracellular data sets to identify novel miRNAs. This procedure identified a total of 404 
novel miRNAs, present in more than one sample (Fig. 2B). Interestingly, 85.3% of these 
novel miRNAs were detected in more than 10 samples, a slightly higher percentage than 
that (81.7%) of known miRNAs. Nonetheless, novel miRNAs had relatively lower 
expression levels than known miRNAs (Fig. 2C), likely explaining their absence in the 
miRBase annotation. Notably, certain novel miRNAs may have higher expression levels 
in the extracellular space, such as the example shown in Fig. 2D (derived from paired 
intra- and extracellular data sets45, also see Supplementary Fig. S2). Henceforth, we 
include both annotated and novel miRNAs in the analysis. 
 
miRNA NTAs in the extracellular fluids and evaluation of the NTA pipeline 
 

Next, we examined NTA profiles identified in individual miRNA reads, without 
grouping reads per miRNA. On average across fluids, 5.2% or 0.3% of all miRNA reads 
had 3’ or 5’ end NTAs, respectively (Fig. 3A). For intracellular samples, 11.2% or 0.2% of 
total miRNA reads had 3’ or 5’ end NTAs, respectively (Supplementary Fig. S3A).  

 
 We next examined the nucleotide composition of the 3’ NTAs across miRNA reads 
for each fluid. This analysis also allows us to evaluate the quality of our pipeline as 
miRNAs are expected to have predominantly two types of 3’ NTAs (adenylation and 
uridylation), based on previous reports19,22,26,46. On average, >94% of all mono 3’ end 
modifications in reads of extracellular samples were identified as either adenylation or 
uridylation, whereas 3’ end cytosine or guanosine additions were each less than 3.4% 
(Fig. 3B). Similar results were also observed for intracellular groups (Supplementary Fig. 
S3B). If the observed 3’ G or 3’ C modifications were assumed to be false positives, then 
the false discovery rate (FDR) of our predicted mono 3’ NTA-containing reads would be 
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estimated to be <5% for exRNAs, and <2% for intracellular miRNAs. Note that these 
FDRs may be over-estimated since 3’ G or C NTAs may exist, although no known 
enzymes have been reported for these modifications in mammals.  
 
 Our bioinformatic pipeline also allowed an investigation of 5’ NTAs of miRNAs. In 
general, the prevalence of 5’ NTAs were much lower than that of 3’ NTAs (Fig. 3A). 
Despite this low level, a strong enrichment of cytosine among the 5’ NTAs was observed 
(Supplementary Fig. S4A). A low range of 5’ Cs were observed for 78 miRNAs in Plasma 
from Lab 5 (Supplementary Fig. S4B). However, the average level of 5’ C in miRNAs with 
this modification was very low (<0.028%). Since no known mechanisms exist to account 
for 5’ C modification of miRNAs in mammals, the observed 5’ C NTA may reflect technical 
rather than biological mechanisms. For example, the 5’ adaptor used in small RNA library 
generation ended with a C nucleotide, which may have been read as the first base of the 
read as a type of sequencing error. Another report also observed a high proportion of 5’ 
addition of C34. Although the 5’ C may be an experimental artifact, the fact that this strong 
nucleotide bias was observed despite the overall low prevalence of 5’ NTAs strongly 
supports the effectiveness of our pipeline.   
 
miRNA 3’ uridylation is relatively more prevalent than 3’ adenylation in biofluids 
 

Next, we examined the landscape of 3’ NTAs of miRNAs by grouping reads for 
each miRNA. In this analysis (and all others henceforth), we required ≥2 reads in each 
sample carrying the NTA nucleotide, with ≥5 samples satisfying this requirement in the 
same data set. When summarizing results for each fluid data set, we further required that 
≥10 total reads mapped to the corresponding miRNA in each sample.  

 
Using the above criteria, we observed that 32% (496/1541) or 26% (405/1541) of 

all detected miRNA species had 3’ uridylation or 3’ adenylation, respectively, considering 
all the biofluid data sets. Although the total numbers of modified miRNA species were 
similar, 3’ uridylation in reads mapped to miRNAs was significantly more frequent than 3’ 
adenylation, 58% and 27% among all types of 3’ NTAs, respectively (Fig. 3C). In contrast, 
the opposite trend was observed in intracellular samples, where a larger fraction of 
miRNAs had 3’ adenylations than uridylations (61% and 31%, respectively) (Fig. 3C). 
Overall, miRNA 3’ uridylation was more frequent in extracellular data sets (58%) 
compared to intracellular data sets (31%) (Wilcoxon rank sums test, p value = 0.003). 
 
miRNAs exhibit a wide range of NTA levels in biofluids 
 

The 3’ uridylation levels varied greatly across miRNAs in each type of fluid (Fig. 
4A). While many miRNAs had relatively low 3’ U levels, a number of them had modest to 
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high levels.  For example, 39% (122/312) of 3’ U-harboring miRNAs in plasma (Lab 1 
data set) had ≥20% 3’ U levels. In particular, the miRNA hsa-let-7f-2-3p demonstrated a 
high level of 3’ U (ranging 14-93%) across all extracellular data sets. A few top miRNAs 
with high 3’ U levels in different fluids are listed in Table 1 and Supplementary Table S1A.  
Note that the 3’ U levels of the same miRNA between different data sets may not be 
comparable due to the distinct experimental protocols used to generate each data set. 
Among the three studies where at least 10 novel miRNAs were detected with 3’ 
uridylation, two showed higher 3’ U levels in novel miRNAs than known ones (Wilcoxon 
rank-based test, Supplementary Fig. S5).  

 
Similarly, the 3’ adenylation levels also varied across miRNAs (Fig. 4B). Consistent 

with the previous observation of lower 3’ A levels compared to those of 3’ U, only 14.7% 
(27/189) of 3’ A-harboring miRNAs had a 3’ A level ≥20% in the plasma (Lab 1) data set. 
Nonetheless, a small number of miRNAs had considerable levels of 3’ adenylation (Table 
2 and Supplementary Table S1B). An example is hsa-miR-6513-3p that demonstrated a 
high level of 3’ A (ranging 8-48%) across 3 extracellular data sets. No studies were 
detected with at least 10 novel 3’ adenylated miRNAs.  
 
NTAs often occur in miRNAs relevant to angiogenesis or signaling 
 

To gain insights on the functional relevance of 3’ uridylation of miRNAs, for each 
fluid in each data set, we performed Gene Ontology (GO) enrichment analysis on miRNAs 
that have an average 3’ uridylation level ≥ 5% in at least 50% of samples. As background 
controls, miRNAs without 3’ modifications in our data were chosen randomly by matching 
their expression levels with those that harbored 3’ Us (Methods). Interestingly, the GO 
term “extracellular space” was significantly enriched (FDR < 0.05) for all data sets (Fig. 
4C). Since this analysis controlled for expression, this observation supports the 
enrichment of 3’ uridylation of miRNAs in the extracellular space. In addition, we observed 
terms related to angiogenesis, apoptosis, gene regulation and inflammatory response, 
indicating the involvement of 3’ U-containing miRNAs in these processes. Since miRNAs 
in the let-7 miRNA family are known to be enriched with 3’ uridylation47, we repeated this 
analysis by excluding let-7 miRNAs. Similar enriched GO terms were observed, 
supporting the generality of the results for diverse miRNA species (Supplementary Fig. 
S6). For 3’ adenylated miRNAs, an enrichment for angiogenesis-related terms was 
observed, but mostly from the urine data set (Lab 1) (Fig. 4D).  
   
3’ uridylation levels of miRNAs segregate biofluids robust to batch effects 
 

Given the wide range of 3’ uridylation levels in miRNAs, we asked whether this 
modification can help to segregate different types of fluids. tSNE clustering on 3’ 
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uridylation levels of all expressed miRNAs showed that samples derived from similar fluid 
types tend to cluster together (Fig. 5A). Specifically, serum, urine and plasma samples 
each contained data sets generated by two different labs. For these fluids (especially 
serum and urine), we observed that samples of the same fluid type generated by different 
labs largely clustered together. This observation strongly suggests that 3’ uridylation 
levels are informative in segregating fluid types. In addition, we observed that intracellular 
blood cell types descending from the lymphoid lineage, such as T lymphocytes (CD4+, 
CD8+), B lymphocytes (CD19+) and natural killer cells (CD56+), clustered separately 
from cell types of the myeloid lineage. Myeloid cell types such as erythrocytes (CD235a), 
neutrophils (CD15+), and monocytes (CD14+) also clustered separately from each other. 
Cell types clustering by blood lineage based on their 3’-end composition was previously 
reported27. Exosomal plasma samples did not cluster with plasma/serum samples, likely 
due to batch effects or the biological difference between exosomal and total extracellular 
miRNA contents. Segregation of samples based on 3’ adenylation levels was not as 
effective as using 3’ uridylation levels (Supplementary Fig. S7A), although serum and 
plasma samples from different labs did cluster together.  

 
As a comparison, we also performed tSNE on normalized miRNA expression 

values (Methods). This analysis showed exacerbated batch effects where data generated 
from the same lab largely clustered together, instead of clustering by fluid types 
(Supplementary Fig. S7B). PCA analysis of these samples showed improved fluid 
segregation, but still confounded by batch effects to some degree (Supplementary Fig. 
S7C). These results are consistent with observations made in previous studies where 
batch effects confounded the clustering of miRNA expression across samples4.  

 
Comparison of 3’ uridylation of miRNAs between biofluids 

 
The above results suggest that different types of biofluids have distinct levels of 3’ 

uridylation. Thus, 3’ NTAs add another layer of information to distinguish fluid types. 
Nonetheless, since batch effects may not be completely absent, we avoided carrying out 
direct comparisons of the quantitative levels of NTAs across different studies. Instead, we 
performed differential modification analysis between fluids of the same study (Methods48).  

 
For this analysis, we included miRNAs expressed in at least 20 samples in both 

fluids of a study. Overall, we identified 62 miRNAs with differential 3’ uridylation levels 
(≥5% difference in modification levels, FDR<0.05) (Supplementary Table S2). 
Specifically, 25 miRNAs had differential 3’ uridylation between urine and plasma (Lab 1), 
11 between CSF and serum (Lab 3), 12 between urine and exosomes from plasma (Lab 
4), and 29 between plasma and serum (Lab 5). Fig. 5B-D show three example miRNAs 
whose 3’ uridylation levels were high in one fluid, but almost zero in another.  
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3’ uridylation may increase miRNA base-pairing to its targets  
 
 Given the relatively high levels of 3’ uridylation in extracellular miRNAs, we 
hypothesized that this modification may affect the base-pairing between miRNAs and 
their targets. We focused on the top 20 unique miRNAs with highest average 3’ uridylation 
levels (per fluid) across all samples (Methods). Using RNAhybrid49, we observed that 3’ 
uridylation tends to stabilize the interaction between miRNAs and their targets, to an 
extent much greater than 3’ NTAs of G, C or A nucleotides (Fig. 6A, Chi-squared test p < 
0.05). All miRNAs were significant against at least one of the background nucleotides. 
Target genes that paired with the 3’ U of these miRNAs were enriched in a variety of 
processes including extracellular exosome, integral protein of plasma membrane and 
negative regulation of apoptosis (Fig. 6B). Thus, it is possible that 3’ uridylation of 
extracellular miRNAs may affect miRNA targeting once taken up by recipient cells.   
 
DISCUSSION 
 
 We developed miNTA, a new bioinformatic pipeline, to identify 3’ NTAs of miRNAs.  
With different types of data sets, we demonstrated that the pipeline yields accurate and 
sensitive predictions. Using miNTA, we analyzed the global landscape of 3’ NTAs of 
extracellular miRNAs in >1000 biofluid samples, the largest study so far for extracellular 
miRNA modifications (to the best of our knowledge). We made a number of notable 
observations: (1) 3’ uridylation levels of miRNAs are higher in the extracellular space than 
3’ adenylation levels, whereas the opposite was observed for intracellular miRNAs. (2) 
The level of 3’ NTAs varied widely across miRNAs, with some miRNAs demonstrating 
nearly 100% 3’ uridylation in certain biofluids. (3) 3’ uridylation levels of miRNAs can 
inform segregation of different types of biofluids. In addition, such segregation was more 
effective than that achieved by miRNA expression levels and largely robust to batch 
effects. (4) Extracellular miRNAs with 3’ uridylations are enriched in functional categories 
related to angiogenesis, apoptosis and inflammatory response, and 3’ uridylation may 
stabilize base-pairing between miRNAs and their target genes.  

 
The effective segregation of biofluids by 3’ uridylation levels of miRNAs indicates 

that this type of miRNA modification possesses fluid-specific signatures. Thus, miRNA 
modification levels could serve as biomarkers that are less susceptible to batch effects.  
This property is likely due to the fact that modification levels are normalized metrics 
relative to the total miRNA expression. Differences in uridylation levels across fluids may 
be due to different cell types contributing distinct miRNA species into the extracellular 
space. Together, these results show that 3’ modification levels of miRNAs add an 
important layer of information to characterize extracellular RNA content. 
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The enrichment of 3’ uridylated extracellular miRNAs in angiogenesis, apoptosis 

and inflammatory responses suggests that this modification may have important 
functional relevance. For example, angiogenesis is a tightly regulated process that 
requires endothelial cells to be in close communication with their environment50. 
Extracellular vesicles were previously shown to play a role in regulating angiogenesis9,50. 
Thus, 3’ uridylation of miRNAs may be an important aspect contributing to this process. 
It should be noted that the functional enrichment analysis controlled for extracellular 
expression levels of 3’ uridylated miRNAs. Thus, the enriched categories reflect functions 
that are particularly relevant to 3’ uridylated miRNAs instead of extracellular miRNAs in 
general.  We showed that 3’ uridylation may strengthen miRNA targeting. Interestingly, a 
previous study reported that 3' uridylation of miR-27a induced target repression of ‘non-
canonical’ sites with only partial seed-match and extensive 3’ end pairing45. Future studies 
are needed to understand the functional relevance of 3’ uridylation in extracellular 
miRNAs. 

 
In summary, we presented an accurate pipeline to identify 3’ NTA patterns in 

extracellular miRNAs. Our large-scale analysis of data from different human biofluids 
supports that fluid-specific signatures exist in 3’ modifications of miRNAs. Our work 
extends the basis for future studies on the functional relevance of extracellular miRNA 
modifications and their values in biomarker discoveries.  
 
METHODS 
 
miNTA: read mapping 

For each small RNA-seq data set, adapters and low-quality nucleotides were 
removed from raw fastq sequences using cutadapt (v.1.11). To enable comprehensive 
read mapping, miNTA includes a multi-step mapping strategy. First, all reads were 
aligned to the human genome (hg19) using Bowtie (version 1.1.2)51, allowing up to one 
mismatch and retaining uniquely mapped reads only. This stringency aims to minimize 
ambiguous mapping results.  Next, the unmapped reads were trimmed by 1 nucleotide at 
their 3’ ends and realigned to the human genome according to the same requirements as 
described above. Unaligned reads from this step were trimmed again and aligned for 
another round. The above procedures were repeated using all original reads to carry out 
5’ trimming and identify 5’ end NTAs. Following the above analysis, all remaining 
unmapped reads were restored to their original sequences and realigned after trimming 
1 nucleotide each from the 3’ and 5’ end, respectively.  Finally, the mapped reads 
(trimmed or untrimmed) were examined relative to the human genome reference to 
identify 3’ and 5’ NTAs.  
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miNTA: quality control (QC) procedures 
QC of mapped reads  

Incorrect mapping can lead to false positive predictions of NTAs. To ensure 
accurate read mapping, we realigned reads that mapped to miRNAs using BLAT52 against 
the human genome. Those reads that did not yield consistent alignment results by BLAT 
and Bowtie were removed from further analysis.  
 
Canonical end positions of miRNAs 

It is known that miRNAs may express alternative isoforms (isomiRs). The 
existence of isomiRs, especially the low abundant ones, may complicate the identification 
of NTAs. Thus, we incorporated a procedure to identify canonical end positions of 
miRNAs. For each miRNA in each sample, the canonical 3’ end was defined as the 
position of the last nucleotide in the miRNA read sequence that matches the reference 
genome and supported by at least 50% of reads aligned to this miRNA. The canonical 5’ 
end of each miRNA was defined similarly for each sample. Subsequently, NTAs were 
identified relative to the canonical end positions for each miRNA.  
 
QC of modifications 
 The predicted NTAs were further examined to eliminate those that may reflect 
genetic variants or technical artifacts. First, predicted NTAs that overlapped known SNPs 
or genetic mutations were removed53–57. Second, NTAs with a 100% modification level 
were removed as they may be due to mapping errors (similarly as in other studies of 
single-nucleotide variants58,59).  Third, to minimize false positives due to likely sequencing 
errors, we removed reads with a PHRED score < 30 at the position corresponding to the 
NTA. Lastly, for NTAs of each miRNA, we required at least 2 reads with the modification 
and the NTAs observed in at least 5 samples within the same fluid and data set group. 
 
Novel miRNA prediction 

Novel miRNAs were predicted using miRDeep244 by combining reads from all 
samples of the same fluid (or cell type) in the same study. To obtain high confidence 
predictions, we imposed the following criteria, similar to previous studies60: (1) a 
miRDeep2 score > 0; (2) ≥ 5 reads mapped to the passenger strand and ≥10 reads to the 
primary strand. For overlapping predictions, the one with the highest miRDeep2 score 
was chosen. The final set of putative novel miRNAs were combined with known miRNA 
annotations (miRBase V22)61 for subsequent analyses.  
 
miRNA read count normalization across data sets  
 To obtain miRNA expression levels, DESeq262 (version 1.14.1) was used to 
normalize miRNA read counts across data sets. miRNAs associated with at least 10 reads 
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in at least 50% of all samples were used to generate the DESeq2 scale factor for 
normalization.  
 
Gene ontology enrichment analysis  

Gene ontology (GO) terms for miRNAs were downloaded from 
http://geneontology.org/gene-associations/goa_human_rna.gaf.gz63. For each data set, 
miRNAs expressed in ≥ 50% of samples and with an average 3’ uridylation level of ≥5% 
were included for the GO analysis. For each query miRNA, a control miRNA without 3’ 
modifications was chosen randomly that matches the expression level of the query (± 
20% relative to the query). GO terms present in the sets of query miRNAs and matched 
controls were collected, respectively. The process was repeated 10,000 times to 
construct 10,000 sets of control miRNAs, where each set has the same number of 
miRNAs as the query set.  Query miRNAs that had less than 3 candidate controls were 
not included in this analysis. For each GO term associated with at least 2 query miRNAs, 
a Gaussian distribution was fit to the number of control miRNAs also associated with this 
term to calculate a p value. Significant GO terms were defined as those with FDR < 0.05. 
 
tSNE and PCA clustering  
 miRNAs expressed with a minimum read count of 10 were included for clustering 
analysis. tSNE and PCA clustering were performed using the package Rtsne and prcomp, 
respectively. The expression was set to 0 in samples where a miRNA has no reads. 
Levels of NTAs or Log2 of the DEseq2 normalized expression was used in these 
analyses. 
 
Differentially modified miRNA between fluids 

Differential modification of miRNAs between two fluids was performed using the 
REDITs method48. miRNAs with an effect size ≥ 5% between fluids in expressed samples 
were included. Significant miRNAs were required to be expressed (read count ≥ 10) in at 
least 20 samples in both tested fluids with a FDR < 0.05.  
 
miRNA target analysis  

RNAhybrid (version 2.1.2)49 with default settings was used to estimate the 
minimum free energy between miRNAs and putative target 3’ UTR sequences. 
RNAhybrid p value was required to be <0.05 to call a significant minimum free energy 
binding site. Putative sites that base-paired with different types of 3’ NTAs (A, U, C, G) 
were then examined. GO enrichment of target genes pairing with the 3’ U NTAs was 
performed similarly as described above. For each miRNA, control genes were chosen 
from those putative target genes without 3’ U-pairing and with matched gene length as 
the query genes (±10%). Each query gene was required to have at least 10 controls to 
be included in the analysis.  
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Cell Culture 

Human embryonic kidney cell line (HEK293T) was obtained from the ATCC. Cells 
were maintained in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine 
serum (FBS) with antibiotics at 37C in 5% CO2.  
 
shTUT4 and shTUT7 knockdown  

We used lentivirus-packaged short hairpin RNA (shRNA) to knock down TUT4 and 
TUT7. The shRNA sequences (purchased from IDT) were obtained from a previous 
study20. Co-transfection of pCMV-d8.91, pVSV-G and pLKO1 into HEK293T cells was 
performed using Lipofectamine 3000 (Thermo Fisher Scientific, Cat# L3000-008). 
Lentiviruses were collected from conditioned media 48hrs after transfection. Lentivirus-
containing media was filtered using 0.45 µM PES syringe filter (VWR) and mixed with 
polybrene (8 μg/ml). Following 24hrs of infection, cells were incubated with puromycin (1 
μg/ml) for 3-4 days. To make double knock down cell lines, second round of infected cells 
were incubated with hygromycin (200 μg/ml) for 3-4 days. Knockdown efficiency was 
evaluated by Western blot using TUT4 (Proteintech Inc, Cat# 18980-1-AP), TUT7 (Bethyl 
Laboratories cat# A305-089A) and beta-actin antibodies (Santa Cruz Biotech, Cat# sc-
47778 HRP).  
 
Extracellular and intracellular RNA isolation 

Lentivirus-infected HEK293 cells were washed three times with PBS and the 
medium was switched to serum-free medium containing antibiotic-antimycotic (Thermo 
Fisher Scientific, Cat# 15240112). Following 24hrs incubation, the cell culture medium 
was collected and centrifuged at 2,000 g for 15 min at room temperature. To thoroughly 
remove cellular debris, the supernatant was centrifuged again at 12,000 g for 35 min at 
room temperature. Then the conditioned medium was used for RNA extraction with Trizol 
(Thermo Fisher Scientific, Cat# 10296028). Intracellular RNA was isolated using Direct-
zol RNA mini prep kit (Zymo Research) from the same culture dish for extracellular RNA. 

Small RNA library preparation 
Small RNA sequencing libraries were generated using the NEBNext Small RNA 

library Prep kit and NEBNext multiplex oligos for Illumina according to the manufacturer's 
instructions (New England Biolabs, E7300). The final small RNA libraries were purified 
from 6% PAGE gel, and their concentrations were measured by Qubit fluorometric assay 
(Life Technologies). Libraries were sequenced on an Illumina HiSeq-3000 (50-bp single-
end).  
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Table 1. Top 5 3’ uridylated miRNA across biofluids.  
miRNAs were required to be modified and expressed (read count ≥ 10) in at least 5 
samples from the original data set. Other data sets harboring the modified miRNA with 
an average 3’ uridylation level ≥ 50% are displayed. See Supplementary Table S1A for 
all miRNA 3’ uridylation levels.  
 
 
 
 
 
 
 
 

miRNA Fluid-Dataset
N samples 
(modified/expressed) Average 3’ U (%) RPM

hsa-let-7f-2-3p PlasmaExo-Lab 2 50/50 92.7% 51.9
hsa-let-7f-2-3p CSF-Lab 3 19/22 71.3% 11.9
hsa-let-7f-2-3p PlasmaExo-Lab 4 24/34 62.5% 14.6
hsa-let-7f-2-3p Serum-Lab 3 10/13 59.7% 14.4
hsa-miR-143-3p PlasmaExo-Lab 2 50/50 89.9% 4118.3
hsa-miR-143-3p Serum-Lab 5 65/67 54.4% 3806.8
hsa-miR-143-3p Plasma-Lab 5 164/165 50.1% 1802.9
hsa-miR-125b-1-3p PlasmaExo-Lab 2 50/50 86.2% 850.9
hsa-miR-125b-1-3p Urine-Lab 4 9/10 69.3% 15.3
hsa-miR-125b-1-3p CSF-Lab 3 63/63 58.9% 80.4
hsa-miR-125b-1-3p Serum-Lab 3 33/35 51.4% 50.8
hsa-miR-448 CSF-Lab 3 59/60 84.8% 119.5
hsa-miR-760 PlasmaExo-Lab 2 50/50 81.9% 4788.7
hsa-miR-760 PlasmaExo-Lab 4 72/72 68.8% 54.9
hsa-miR-760 Urine-Lab 4 5/6 67.4% 11.6
hsa-miR-760 Plasma-Lab 1 98/109 66.7% 21.8
hsa-miR-760 CSF-Lab 3 40/40 62.3% 17.8
hsa-miR-760 Serum-Lab 3 13/13 51.3% 13.6

Table 1. Top 5 3’ uridylated miRNA across biofluids.
miRNAs were required to be modified and expressed (read count ≥ 10) in at least 5 samples from the 
original dataset. Other datasets harboring the modified miRNA with an average of 3’ uridylation level ≥ 50% 
were displayed. See Supplementary Table S1 for all miRNA 3’ uridylation levels. 
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Table 2. Top 5 3’ adenylated miRNA across biofluids.  
miRNAs were required to be modified and expressed (read count ≥ 10) in at least 5 
samples from the original data set. Other data sets harboring the modified miRNA with 
an average of 3’ adenylation level ≥ 50% were displayed. See Supplementary Table 
S1B for all miRNA 3’ adenylation levels.  
 

miRNA Fluid-Dataset
N samples 
(modified/expressed) Average 3’ A (%) RPM

hsa-miR-944 CSF-Lab 3 7/7 69.2% 9.5
hsa-miR-1237-3p Plasma-Lab 5 5/6 56.4% 3.3
hsa-miR-1237-3p Plasma-Lab 1 6/6 44.3% 4.8
hsa-miR-6775-3p Plasma-Lab 1 18/20 54.7% 7.8
chr2_27505 PlasmaExo-Lab 4 6/7 52.4% 5.0
hsa-miR-205-5p Urine-Lab 4 22/22 49.4% 295.8
hsa-miR-205-5p PlasmaExo-Lab 4 6/9 21.0% 34.5

Table 2. Top 5 3’ adenylated miRNA across biofluids.
miRNAs were required to be modified and expressed (read count ≥ 10) in at least 5 samples from the 
original dataset. Other datasets harboring the modified miRNA with an average of 3’ adenylation level 
≥ 50% were displayed. See Supplementary Table S1 for all miRNA 3’ adenylation levels. 
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Fig. 1. Identification of non-templated additions (NTAs) of miRNAs. 
(A) miNTA, a bioinformatic pipeline to identify miRNA NTAs. (B) Percentage of miRNAs 
with 3’ end non-templated mono-uridylation (U), adenylation (A), guanidylation (G) and 
cytidylation (C) identified by miNTA using small RNA-seq data derived from control 
(shControl) and TUT4/7 double KD HEK293 cells.
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Fig. 2. Generation of a comprehensive catalog of extracellular miRNAs. 
(A) Extracellular and intracellular small RNA-seq datasets used in this study. (B) Number of 
known and novel miRNAs observed in greater than N samples (x axis) across all data sets in 
(A). (C) Empirical cumulative distribution function (eCDF) of the abundance of known or novel 
miRNAs in all data sets in (A). Normalized read counts were calculated using DESeq2 (Meth-
ods).  P value was calculated via a two-sided Kolmogorov–Smirnov (KS) test. (D) Expression of 
a novel miRNA (chr7_40460) in whole-cell lysates (Cell), non-vesicle extracellular (NV) and 
small extracellular vesicle (Small EV) fractions isolated from Gli36 cells. 
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Fig. 3. NTA profiles of extracellular miRNAs across biofluids 
(A) Percentage of miRNA reads with 3’ (left) and 5’ (right) NTAs in each data set. (B)  Nucleotide 
compositions of 3’ NTAs in miRNAs of each data set. (C) Average percentage of reads with 3’ 
uridylation or adenylation among all miRNA reads with 3’ NTAs. Each dot represents this average 
value for an extracellular fluid type or intracellular cell type in each study. P values were calculated 
via Wilcoxon rank-sum test.  
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were collected (Methods). Enriched terms observed in at least 2 data sets are shown (FDR < 
0.05). The size of the dots represents the number (N) of base-paired target genes.
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