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Abstract

The developmental transition of juvenile salmon from a freshwater resident morph (parr) to a
seawater (SW) migratory morph (smolt) requires a range of physiological adaptations, including
the capacity to hypo-osmoregulate. This process, known as smolting, involves both
photoperiod-dependent preparative changes before SW is encountered, and activational
changes stimulated by exposure to SW. To explore the relationship between these two aspects
we undertook experiments in which physiological and transcriptomic responses to SW-challenge
were assessed in fish that had experienced different histories of photoperiodic exposure.
Compared to fish held on constant light (LL), exposure to short photoperiod (SP) dramatically
impaired hypo-osmoregulation in SW, and was associated with extensive glucocorticoid-related
changes in gill gene expression. Additionally, a major effect of photoperiodic history was
observed in the transcriptional response of LL-acclimated fish to SW, with the response profiles
of fish held on LL throughout life being quite distinctive from those of fish which had
experienced an 8 week period of exposure to SP prior to return to LL (SPLL). These differences in
profile likely reflect a diminishing role for NFAT-mediated responses in SPLL fish, as pathways
linked to acute changes in cellular tonicity or intracellular calcium levels decline in importance

with preparation for SW.
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1. Introduction

The gill is the primary site of osmo-sensing and osmoregulatory control in fish (D. H. Evans,
Piermarini, & Choe, 2005; T. G. Evans, 2010). In both freshwater (FW) and seawater (SW),
osmoregulatory systems work to counter the passive diffusion of ions and water across the gill
membranes, and balance plasma osmolality. Euryhaline fish species are defined by their ability
to tolerate salinity changes through modulation of osmoregulatory function. In most cases this
depends on responses to altered salinity (acclimation), while in a few species groups including
salmonids and eels (g. Anguilla), sustained migrations between sea and freshwater are
facilitated by preparative changes in osmoregulatory function, forming part of a key
developmental life history transition (Folmar & Dickhoff, 1980; Kalujnaia et al., 2007; S. O.
Stefansson, Bjornsson, Ebbesson, & McCormick, 2008; Jonathan Mark Wilson, Antunes, Bouga,

& Coimbra, 2004).

In Atlantic salmon (Salmo salar) this preparatory process is commonly known as ‘smoltification’
or, hereafter, ‘smolting’. Smolting is photoperiodically controlled so that migration to sea occurs
in a spring ‘smolt window’, when conditions favour juvenile growth (Gross, Coleman, &
McDowall, 1988). Smolting requires fish to have previously exceeded a certain size threshold
and is presumed to relate to the capacity of juvenile fish to meet the necessary metabolic
demands (Higgins, 1985; Kristinsson, Saunders, & Wiggs, 1985; Metcalfe, Huntingford, &
Thorpe, 1988; Skilbrei, 1991). During smolting the juvenile salmon develop traits that will enable
them to survive in and exploit the marine environment. The increase of photoperiod in spring
induces a hormonal cascade influencing behavior, metabolism, growth, pigmentation and gill

physiology (Duston & Saunders, 1990; Stephen D. McCormick, 1994; Stephen D. McCormick,
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Hansen, Quinn, & Saunders, 1998; Stephen D. McCormick, Shrimpton, Moriyama, & Bjornsson,
2007). In particular, gill physiology changes in order to accommodate the expected shift in
environmental salinity and osmotic drive (D. H. Evans et al., 2005; Kiilerich, Kristiansen, &
Madsen, 2007; Nilsen et al., 2007; Pisam, Prunet, Boeuf, & Jrambourg, 1988; Tipsmark et al.,
2009). The mitochondria rich cell (MRC), situated on the gill lamella, is a significant component
of osmoregulation (Jonathan M. Wilson & Laurent, 2002). The MRC is rich in ion transporters,
and change in both morphology and composition in response to salinity (Hiroi & McCormick,
2012; Hwang & Lee, 2007; Hwang, Lee, & Lin, 2011; Madsen, Kiilerich, & Tipsmark, 2009; Pisam
et al., 1988). Completion of the smolting process requires entry to sea, where SW exposure
triggers the final shifts in physiology and behavior (Lubin, Rourke, & Bradley, 1989; Stephen D.
McCormick, Regish, Christensen, & Bjornsson, 2013; Nilsen et al., 2007; Pisam et al., 1988).
Hence, smolting can be considered a two-step process: a FW preparative phase followed by a

SW activational phase.

While the role of photoperiod in timing of preparative changes is well described, less is known
about the final changes triggered in smolts during the first few days in SW (Handeland, Berge,
Bjornsson, Lie, & Stefansson, 2000; Handeland, Jarvi, Ferno, & Stefansson, 1996; Prunet &
Boeuf, 1985; S. O. Stefansson et al., 2008), which we will refer to as the SW activational phase.
SW responses are also triggered in juveniles entering SW prematurely, which have not initiated
or finished the preparative phase of smolt development (Saunders, Henderson, & Harmon,
1985; Stagg, Talbot, Eddy, & Williams, 1989). Triggers may in all cases include osmotic stress due
to the hyper-osmotic SW environment as well as direct responses to changes in the

concentrations of specific ions (T. G. Evans, 2010; Tyler G. Evans & Somero, 2008; Kiiltz, 2012).
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81 However, the specific response is expected to differ drastically between SW-ready smolts and
82  unprepared juveniles (Houde et al., 2018; Stagg et al., 1989). The importance of SW-exposure
83 for completion of the smolting process and establishment of a SW phenotype is clearly
84  demonstrated by the process of ‘de-smoltification’, which occurs if migration to SW is
85  prevented and involves a loss of tolerance to SW (Arnesen et al., 2003; Sigurd Olav Stefansson,

86  Berge, & Gunnarsson, 1998).

87  Gill tissue may perceive exposure to SW in at least three possible ways: i) increased cellular
88  tonicity and altered intracellular ion concentrations ii) via cell surface receptors for SW
89  constituents (e.g. Ca® perceived via the calcium-sensing receptor, CaSR ) (Kiltz, 2012; Loretz,
90 2008) and iii) indirectly via hormonal signals (e.g. cortisol, or angiotensin Il) which change in
91 response to SW-exposure (Kiltz, 2012; Stephen D. McCormick, 2001). In this context, the
92  ‘nuclear factor of activated T-cells’ (NFAT) family of transcription factors have been the focus of
93  recent interest because of their implication in osmo-sensing and in Ca®*-dependent
94  transcriptional control (Cheung & Ko, 2013; Hogan, Chen, Nardone, & Rao, 2003; Lorgen,
95 Jorgensen, Jordan, Martin, & Hazlerigg, 2017; Putney, 2012). The NFAT family comprises four
96  subgroups, where groups 1-4 (NFATs cl, c2, c3, c4) are Ca**-stimulated, and the fifth, NFATS5, is
97 regulated in response to extracellular tonicity (Cheung & Ko, 2013; Macian, 2005; Rao, Luo, &
98  Hogan, 1997). All members share a Rel-like homology domain, and bind to similar binding sites

99 inthe regulatory region of numerous genes (Macian, 2005).

100  NFATS5 (also known as osmotic response element binding protein, OREBP, or tonicity-responsive
101  enhancer binding protein, TonEBP), is considered the primordial NFAT, as it is the only one

102  found outside the vertebrate group (Hogan et al., 2003). NFATS5 regulates the transcription of
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103  tonicity-responsive genes such as ion transporters and osmo-protective proteins (Cheung & Ko,
104  2013; Woo, Lee, & Kwon, 2002; Zhou, Ferraris, & Burg, 2006). Hypertonic stress increases
105 nuclear import and retention of NFAT5 through changes in phosphorylation state, while
106  hypotonic stress leads to nuclear export (Cheung & Ko, 2013; Ferraris et al., 2002; Irarrazabal et

107 al., 2010; Macian, 2005).

108 Two recent studies in salmon focus attention on the role of NFAT signaling during smolting.
109 Lorgen et al. (2015) showed that the salmonid thyroid hormone deiodinase dio2a was SW-
110  inducible in gill tissue, and its promoter region was enriched for osmotic response elements
111  (OREs / NFATS5 response elements). A subsequent survey of NFAT5 expression in Atlantic
112  salmon (Lorgen et al., 2017) revealed four NFAT5 paralogues, NFAT5 al and a2, and NFATS5 bl
113 and b2. Of these, NFAT5b1/2 gill expression was highly induced by SW exposure. Together these

114  studies suggest that NFAT5b1/2 could coordinate SW stimulated changes in transcription.

115  In the present study we sought to extend the previous work on smolting and NFATSs to consider
116  the breadth of transcriptional response to SW-exposure in the salmon gill, and to evaluate the
117  extent to which this response relies on NFAT mediated transcriptional control. Our data
118 demonstrate that while NFAT involvement can clearly be seen in the transcriptional response,
119 the importance of this depends to a large degree on the photoperiod to which fish have been

120  acclimated, and the history of prior photoperiodic exposure.

121

122
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123 2. Materials & Methods

124 2.1 Fish rearing and animal welfare

125  Atlantic salmon (Salmo salar, Linnaeus, 1758) of the Aquagene commercial strain (Trondheim,
126 Norway), hatched and raised (continuous light, LL, >200 lux, 10°C) as part of the ongoing smolt
127  production at Tromsg Aquaculture Research Station (TARS) were used in this experiment. Fish

128  were fed continuously and in excess with pelleted salmon feed (Skretting, Stavanger, Norway).

129 TARS is approved by the Norwegian Animal Research Authority (NARA) for hold of, and
130 experiments on salmonids, fresh- and salt-water fish and marine invertebrates. When
131  experimental conditions are limited to practices which are undertaken routinely as part of the
132 recognized animal husbandry, with no compromise to welfare, additional formal approval of the
133  experimental protocol by NARA is not required. This is in accordance with Norwegian and

134  European legislation on animal research.

135 2.2 Experimental set-up

136  The experimental design is presented in fig. 1A.

137  Juvenile salmon, kept in a 500 I circular tank since start of feeding, and at approximately 7
138  months of age were used for this experiment. A baseline sampling was performed on day 1 of
139  the experiment (mean weight 49.5 g, s.d. * 7.0 g, n=6); this is referred to as pre-SP. On day 3,
140 225 juvenile salmon were taken from the original tank and randomly split into two groups of 75
141 and 150 fish, which were placed in two 100 | circular tanks in separate rooms (FW, 8.5°C). The
142  group of 75 fish were kept on LL for the rest of the experiment. For the group of 150 fish,

143  photoperiod was incrementally reduced from LL to SP (8-h light/16-h dark). Both groups were
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144  sampled on day 32 and 53 (n=6 for each treatment). On day 60, half of the remaining fish under
145  SP were moved to a new 100 | circular tank and returned to LL (SPLL). All three groups were
146  then sampled on days 68, 89 and 110 (n=6 for each treatment). During the experiment the fish
147  were fed continuously and in excess over the eight hours corresponding to day in the SP

148  treatment group.

149 At each sampling point a subsample of fish from each of the treatments were put through a 24-
150  h salt-water challenge (SWC, 100 | tanks, 34 %o, salinity, 7°C, n=6 for each treatment), starting

151  on the day prior to sampling. The fish were not fed during SWC.

152 2.3 Sampling procedure

153  Fish were netted out from their respective treatments (including SWC fish) in groups of six.
154  Following anesthesia body mass (0.5 g) and fork length (+0.1 cm) was measured. Blood was
155  drained from the caudal vein into 2mL lithium-heparinized vacutainers (BD vacutainers®, Puls
156  Norge, Moss, Norway), and placed on ice until further processing. This was followed by
157  decapitation. The operculum was removed from the right side of the head (caudal view), and a
158  gill arch dissected out. The primary gill filaments were cut from the arch and placed in
159  RNAlater® (Sigma-Aldrich, St. Louis, Missouri, USA) for later processing. Samples were stored at

160 4 °Cfor 24 h, and then kept frozen at -80°C until further processing.

161  Blood samples were centrifuged at 6000 x g for 10 minutes, and the plasma fraction collected.
162  The plasma was stored at -20°C until later analysis of osmolality could take place. Thawed
163  plasma samples were analysed for osmolyte content using a Fiske One-Ten Osmometer (Fiske

164  Associates, Massachusetts, USA, £ 4 mOsm kg'l).
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165 2.4 RNA extractions and sequencing

166  Total RNA was extracted applying a TRIzol-based method following the recommended protocol
167  from the manufacturer (Invitrogen, Thermo Fisher, Waltham, Massachusetts, USA). A NanoDrop
168  spectrophotometer (NanoDrop Technologies, Wilmington, Delaware, USA) was used to check
169  RNA concentration and quality. RNA integrity was confirmed using the Agilent 2100 Bioanalyzer

170  (Agilent Technologies, Santa Clara, CA, USA). RNA was frozen at -80°C until further analysis.

171  Sequencing libraries (n=167) were prepared with the TruSeq Stranded mRNA HS kit (Illumina,
172 San Diego, California, USA). The 2100 Bioanalyzer using the DNA 1000 kit (Agilent Technologies,
173  Santa Clara, California, USA) was used to determine mean library length, while the Qbit BR kit
174  (Thermo Scientific, Waltham, Massachusetts, USA) was used to determine library
175  concentrations. Samples were barcoded using lllumina unique indexes. Single-end 100 bp
176  sequencing of samples was carried out at the Norwegian Sequencing Centre (University of Oslo,

177  Oslo, Norway), using an Illumina HiSeq 2500.

178 Removal of sequencing adapters and short sequencing reads (parameters —q 20 -O 8 —
179  minimum-length 40), and trimming of low-quality bases were done using Cutadapt (ver. 1.8.1)
180  (Martin, 2011). Quality control was performed with FastQC software (Andrews, 2010; Andrews,
181  Lindenbaum, Howard, & Ewels, 2011-2014). Mapping of reads onto the reference genome was
182  performed with STAR software (ver. 2.4.2a) (Dobin et al., 2013). Read counts for annotated
183  genes was generated with HTSEQ-count software (ver. 0.6.1p1) (Anders, Pyl, & Huber, 2015). All

184  sequences have been deposited in Array Express, EBI under accession number E-MTAB-8276.
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185 2.5 Transcriptome analysis

186  All transcriptome analysis were performed in R (ver. 3.4.2), using RStudio (ver. 1.0.153).

187  In order to identify genes that were differentially expressed between the FW and SW sampled
188  fish in the three different treatment groups over the three later time points the R-package Edge
189 R (ver. 3.14.0) was applied. Raw counts were filtered (expression threshold CPM>1 in five or
190 more libraries), and scaled applying trimmed means of M-values (TMM) scaling. A quasi-
191  likelihood negative binomial generalized log-linear model was used to fit the data, and nine
192  empirical Bayes F-tests were run contrasting between the FW and SW sampled fish for each
193  condition for days 68, 89 and 110 (T4.LL.SW-T4.LL.FW, T4.SP.SW-T4.SP.FW, T4.SPLL.SW-
194  TA.SPLL.FW, etc.). Outputs were filtered requiring a false discovery rate (FDR) of 0.01, and a

195 log,-fold change of |1].

196  Principal component analysis (PCA) was performed on the full transcriptome using The R Stats
197  Package (stats, ver. 3.4.2) (Love, Huber, & Anders, 2014). Only the three latter sampling points
198  (days 68, 89 and 110) were included in the PCA. For simplicity and interpretability of the plot,
199 TMM normalized counts for each gene in each sample group (n=6, except for T4 SPLL FW where

200 n=5) were averaged before generating the PCA plot.

201 Lists of differentially expressed genes (DEGs) from each of the sampling groups were compared
202  across time within treatments, and between treatments at the same time point. The numbers of
203  unique and shared DEGs are summarized in the ‘Upset’-plots (UpSetR ver. 1.4.0) (Conway, Lex,

204 & Gehlenborg, 2017) in fig. 2.
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205 A gene ontology analysis was performed on the same DEG-lists, using topGO (ver. 2.24.0) and
206  the annotation package for the salmon genome Ssa.RefSeq.db (ver. 1.2), with a gill specific gene
207  universe. Fisher statistics and the ‘elim’-algorithm (Alexa, Rahnenfihrer, & Lengauer, 2006) was
208  applied, with a significance threshold of p<0.05 for enrichment. Only the top 150 GO terms
209 were included in the output. Vizualisation of the GO enrichment using GOplot (ver. 1.0.2)
210  (Walter, Sanchez-Cabo, & Ricote, 2015) and ggplot2 (ver. 3.0.0). GOplot was used to generate
211 the plotting object and z-scores for each GO term (eq.1) that indicate if the trend is towards up-
212 or downregulation of the specific term. The sign of the log2-fold score defines the direction of
213 regulation for each gene. Before plotting unique GO IDs were filtered for a count>5. R-package
214  ggplot2 (ver. 3.0.0) was used for plotting the GO plots, setting a threshold where adjusted p-
215  value <0.0001, or the number of genes annotated to that term >150 for labelling terms in the

216  plot.

217 Equation 1

( #upregulated genes — #downregulated genes)

Z — Score =

\/Total number of genes
218

219  From the set of expressed genes (CPM > 1 in five or more libraries), 18 genes could be identified
220  as NFAT (5), NFAT-like (12) or NFAT-interacting genes (1) based on their SalmoBase annotation
221 (ICSASG_v2) (Lien et al., 2016; Samy et al., 2017). Raw count data was used to calculate mean
222  gene expression at each sampling point for all three treatments. The gene expression of the SP

223 treatment group was then hierarchically clustered using the R-package pheatmap (ver. 1.0.10)
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(row scaled by z-scores, applying Euclidian distance measures and complete linkage clustering).

The resulting order and clustering of genes was then forced onto heatmap of the LL and SPLL

groups in order to produce figure 3.

2.6 Motif analysis

Motif enrichment analysis was performed using SalMotifDB-shiny tool (https://cigene.no/tools/)

(Mulugeta et al.,, 2019). This tool accesses a database containing over 19,000 predicted
transcription factor binding sites (TFBSs) found in the proximal promoter regions (-
1,000/+200bp from TSS) of salmonid genes. We used the motif enrichment analysis utility of this
tool to screen for enrichment of NFAT and glucocorticoid response element (GRE) motifs in lists

of DEGs at the T6 sampling point.

2.7 Datasharing

All relevant data can be found within the MS and its supporting information, further the
full transcriptomics dataset is accessible in the ArrayExpress depository, with

accession number E-MTAB-8276.
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239 3. Results

240 3.1 Hypoosmoregulatory capacity

241  Throughout the study (fig. 1A), fish held on LL upheld the capacity to maintain undisturbed
242  plasma osmolality levels during a 24-h SW challenge (no significant effect of time, P > 0.05, 1-
243  way ANOVA) (fig. 1B). In fish maintained on SP, hypo-osmoregulatory capacity was initially
244  reduced compared to day 1 in LL (P<0.0001 by t-test). As SP exposure extended beyond 8 weeks
245  these fish underwent a partial recovery of hypo-osmoregulatory capacity. Fish that were
246 returned to LL after 8 weeks of SP exposure (SPLL) regained their osmoregulatory capacity
247  within the first four weeks (fig. 1B). Plasma osmolality values of the SPLL group after one week
248  back on LL (T4) were similar to values in SP control fish at the same time point, after which a
249  dramatic improvement in hypo-osmoregulatory capacity was observed (fig. 1B). Eight weeks
250  after return to LL (T6), plasma osmolality values of the SPLL group were 4.2 % lower than in

251  corresponding LL control fish and 9.1 % lower than day 1 values.

252 3.2 RNA profile of the gill response to SW-challenge

253  To explore treatment effects on the overall RNA expression profile of the gills we performed a
254  PCA analysis (fig. 2A). The first component separated samples by photoperiodic history and
255  sampling time (40% variation explained, PC1) while the second component separated the FW
256  from the SW-challenged fish (30% variation explained, PC2). On the PC1l axis the largest
257  separation of data points was between early (T4, one week after re-entry to LL) and late (T5 and
258 T6, 4 and 8 weeks after re-entering LL) sampling points for SPLL fish. This contrasted with low
259  PC1 resolution for samples from fish in either the LL or SP control groups. The PC2 separation

260  was most pronounced in SP control fish and less so in LL control fish. For the SP and LL groups
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261  divergence along PC2 appear independent of time. Contrastingly, in SPLL fish, PC2 resolution
262  was dependent on time of sampling with major segregation between FW and SW samples at T4,
263  one week after re-entering LL, while at both later time points resolution between FW and SW
264  samples was greatly reduced. Overall the PCA analysis indicates that return to LL after SP
265  exposure triggers changes in the gill transcriptome which mirror the improved hypo-

266  osmoregulatory efficiency.

267  To further investigate the effect of photoperiodic history on SW-responsiveness, we compared
268 lists of SW-DEGs (FDR < 0.01, fold-change > |1], supplemental material S1) for the 3 photoperiod
269  groups (Fig. 2B, C, ). At the end of the study (T6) we found some 10-fold more SW-DEGs in SP
270  fish than in either the LL or SPLL groups. Separate gene ontology enrichment tests were
271  performed for genes responding to SW exposure at T6 in the three photoperiod treatments
272 (supplemental material S3 through S6). Enriched ontologies for SP fish included up-regulated
273  transcripts associated with chromatin silencing and suppression of transcription (e.g. histone
274  deactylase 5, transcriptional repressor p66, NFAT5; GO0:0000122 ‘negative regulation of
275  transcription by RNA polymerase 2’), and also with formation of stress granules, indicative of
276  translational arrest due to cellular stress (Anderson & Kedersha, 2008) (e.g. ddx6, ddx3x, roquin

277 1, GO:0010494, ‘stress granule’).

278  Only 51 SW-DEGs (i.e. about 5% of the SP set) were shared across all three photoperiod
279  treatments, and this shared group included genes involved in mitochondrial respiration (e.g.
280  cytochrome P450 subunits, hexokinase-1), presumably reflecting the energy demand imposed

281 by SW challenge. Correspondingly, the only significantly over-represented BP GO-term shared
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282  across the photoperiod treatments was GO:0000302, ‘response to reactive oxygen species’,

283  encompassing six of the shared genes (fig. 2D).

284  While there is a similar number of SW-DEGs at T6 in the LL and SPLL treatments (150 and 125
285  genes, respectively), the overlap between these two groups was almost entirely limited to the
286  universally responsive energy-related genes described above. LL-specific SW-DEGs at T6 were
287  mainly associated with metabolism and cell signaling (f. ex. GO: 0009749 ‘response to glucose’,
288  (G0:0051591 ‘response to cAMP’). In contrast to the SP and LL groups, the SPLL group had a
289  dramatic reduction in DEGs in response to SW between T4 and T6 (Figure 2C). Within the group
290  of SW-induced genes unique to SPLL at the T6 time-point, the inward rectifying K+ channels
291  KCNJ1 and KCNJ5 and ‘junctional cadherin 5 associated’ (JCAD, also know as KIAA1462) were the

292  most strongly induced transcripts (supplemental material S2).

293 3.3 Effects of SW on the expression of NFAT family members

294  The highly divergent transcriptional responses to SW, including the presence of NFAT5 only in
295 the list of SP-specific DEGs led us to explore further the regulation of expression among all
296  members of the NFAT family of transcription factors (fig. 3, supplemental material S7 and S8).
297  Clustering of response patterns across this gene family gave four distinctive patterns of
298  regulation, represented by the four profile plots in fig 3. The NFAT5b cluster (fig. 3, second
299  cluster from the top) showed strong, SP-specific SW-induction, while weaker SP-specific SW-
300 induction of expression was also seen in the cluster typified by NFAT4c (LOC106600383) (fig. 3,
301 first cluster from the top), but only evident at earlier sampling points (T4, T5). Contrastingly,

302 genes typified by NFAT3c (LOC106561519) showed reduced expression in SW (fig. 3, third
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303 cluster from the top). The last cluster of genes were largely SW-unresponsive across the study

304 asawhole (fig. 3, fourth cluster from the top).

305 3.4 Enrichment for NFAT- and GRE-response motifs in SW-DEGs

306 We used MotifDb ((Mulugeta et al., 2019) (https://salmobase.org/apps/SalMotifDB/) to
307 determine how NFAT response elements are associated with SW-induced changes in gene
308 expression (fig. 4A), focusing on changes occurring at the last sampling point (T6, day 110) of the
309 experiment. This revealed enrichment of seven non-redundant motifs, of which four are
310  associated with SW-induced gene expression changes, in the LL control fish (p<=0.001). Three
311  response elements were enriched in the SP control fish. No enrichment of NFAT elements was
312  seen in SPLL fish at this sampling point. We also looked at presence of glucocorticoid receptor
313  response elements (GREs, fig. 4B) due to the stress response indicated by GO-terms in the SP
314  group, and confirmed that these were only enriched among the SW-response genes in the SP-

315  group (fig. 4B).

316 4. Discussion

317 The present study characterizes the effect of photoperiod (SP vs LL) and photoperiodic history
318  (SPLL vs LL) on the gill response to SW exposure in juvenile Atlantic salmon. SP exposure
319  dramatically impairs the ability of juvenile salmon to hypo-osmoregulate in SW and is associated
320 with extensive changes in gill gene expression (fig. 2), including genes predicted to be regulated
321 by the glucocorticoid pathway (fig. 4B), indicative of cellular stress. Contrastingly, exposure of LL
322  acclimated fish to SW does not result in osmoregulatory failure over 24-h, and is associated with
323 less extensive changes in gill gene expression (fig. 2). Nevertheless, a major effect of

324  photoperiodic history was observed in the transcriptional response of LL acclimated fish to SW,


https://doi.org/10.1101/2020.03.24.006510
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.24.006510; this version posted March 26, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

325  with the response profiles of fish held on LL throughout life being quite distinctive from those
326  fish which had experienced an 8 week period of exposure to SP prior to return to LL. The
327 diminished role of NFAT transcriptional regulation in the SW response of SPLL fish observed
328  through reduced motif enrichment analysis (fig. 4A) suggests that preparative effects of SP
329 exposure reduce the involvement of pathways linked to changes in cellular tonicity or

330 intracellular calcium levels in the response to SW.

331  Previous work by Lorgen et al. (2015; 2017) showed that in the gill the SW-induced gene dio2a is
332  enriched for NFAT5 response-elements, and that expression of both dio2a and NFATSb is SW-
333  induced in SP-acclimated Atlantic salmon juveniles. Our RNAseq analysis confirms these
334  findings, showing that strongest SW-induction of NFATS5b is indeed seen in SP acclimated fish, as
335 well as implicating NFAT4 and NFATc3 in the response. Given that this is the case, it is
336 somewhat surprising that statistical enrichment for NFAT motifs is less pronounced within the
337  SW-induced transcriptome of SP fish than in LL fish. We believe this may reflect a swamping of
338 signal by large numbers of genes induced through stress-activated pathways, including but
339 probably not limited to the adrenal corticoid axis revealed by GRE enrichment in SW-induced
340 genes in SP fish. In support of this interpretation the subset of SW-induced genes shared
341  between fish in the LL and SP T6 groups, which constitutes less than 10% of the overall SP SW-
342  induced group (but about half of the LL SW-induced group) is highly enriched for NFAT5

343  elements (p<0.01).

344  Despite the superficial similarity observed between the LL and SPLL fish in ability to hypo-
345 osmoregulate (fig. 1B) as well as the magnitude of transcriptional responses to SW exposure

346 (fig. 2), it is clear from the GO analysis that the SW-responses of fish in these two groups are
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347  quite distinctive. We suggest that the marked enrichment of NFAT-response elements, and in
348  particular NFATS5, in the LL group reflects a transient activation of NFAT5-responsive genes in
349  response to SW. By contrast, in the SPLL group there is no motif enrichment for NFAT5 nor the
350 Ca”**-regulated NFATs. We interpret this lack of NFATS responses in SPLL as evidence for NFATS-
351  signaling playing a role in the activation of hypo-osmoregulation in salmon which have not
352 developed a SW migratory phenotype. Accordingly, exposure to SP for 8 weeks prior to re-
353  exposure to LL stimulates pre-adaptation and obviates the need for NFAT-mediated responses
354  to SW exposure — presumably because even in the initial phase of SW exposure, pre-adapted gill

355 cells do not experience significant changes in tonicity or intracellular Ca** levels.

356  The transcriptional response of the NFAT family was not limited to NFAT5b since we also
357  observed SW-induction of NFATc1 and c4 in the SP group, and photoperiodic history-dependent
358  SW-suppression of NFATc3 and NFATcl paralogous pairs in the SP and SPLL groups. In
359 mammals, these calcium-regulated NFAT’s play important roles in immune function, but also in
360 the development, differentiation and function of various other cell types such as osteoclast and
361 cardiac tissue (Ames, Valdor, Abe, & Macian, 2016; Hogan et al., 2003; Macian, 2005). Changes
362 in intracellular calcium leading to NFAT activation may conceivably arise as a result of Ca*
363 production as a second messenger within the cell, or as a result of Ca** entry from the

364  environment — and both these pathways are likely to be involved in osmosensing (Kiltz, 2012).

365 In addition, extracellular Ca** may affect gill function through the G-protein coupled calcium
366  sensing receptor (CaSR), expressed in the MRCs and proposed to function as a salinity sensor in
367 fish (Loretz, 2008; Loretz, Pollina, Hyodo, & Takei, 2009; Nearing et al., 2002). While CaSR signal

368  transduction has primarily been linked to cAMP-dependent signal transduction, the possibility
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369  of cross-talk with NFAT pathways is suggested by work on TNF secretion in the mammalian

370  kidney tubule (Abdullah et al., 2006; Gong & Hou, 2014).

371  Our results clearly show that NFATs are playing a minor role in SW regulated transcriptional
372  responses in SPLL fish compared to LL and SP. This is consistent with a model where the
373  photoperiodic treatment received (SPLL) is known to stimulate a range of smolt characteristics
374  including improved long-term performance in SW (Berge et al., 1995; S. D. McCormick et al.,
375  1995; Stephen D. McCormick et al., 2007; Saunders et al., 1985; S. O. Stefansson et al., 1991; S.
376 0. Stefansson et al., 2008). With the exception of day 68 (i.e. the first week after return to LL
377 from SP, when these fish are in a transitional state), there is no SW-induction of NFAT5b-
378  expression or any other NFATs, nor is there any enrichment of NFAT-motifs in the SW-
379  responsive transcriptome. Nevertheless, a small number of genes were uniquely stimulated by
380 SW in the SPLL group. These included the inward rectifying potassium channel genes KCNJ1 and
381 KCNJ5, the former being ATP-regulated and the latter being G-protein regulated (Clapham,
382 1994; Ho et al., 1993; Krapivinsky et al., 1995). Also, we find the cardiac regulatory gene
383  junctional protein associated with coronary artery disease, known as JCAD. The potassium
384  channels have been identified as key markers for SW adaptation in eels, where they have been
385 found to be expressed in MRCs (Suzuki et al., 1999; Tse, Au, & Wong, 2006). JCAD is predicted to
386 play a role in endothelial cell junctions (Akashi, Higashi, Masuda, Komori, & Furuse, 2011) and
387 has been linked to the Hippo signaling pathway (Jones et al.,, 2018), which regulates cell
388  proliferation and apoptosis (Halder & Johnson, 2011). Both KCNJ1 and JCAD show high SW-
389 inducibility after being exposed to the photoperiod-induced smolting (S2), and they therefore

390 represent the final activational response to SW occurring specifically in fish that have completed
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391 a FW preparative phase in response to photoperiod. Further studies to understand the impact

392  of these genes on gill function in SW are now warranted.
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974  Figure legends

975  Figure 1 Experimental design and the changing effect of SW challenge on hypo-osmoregulatory

976 capacity. A) Experimental set-up showing the three photoperiod treatments. Samplings are indicated by
977 black dots. B) Plasma osmolality following 24-h SW challenge, data are mean + S.EMofn=6

978  observations; *** / ¥**** = significantly higher osmolality than at T1, p<0.001 / 0.0001, respectively.

979 Figure 2 Effect of photoperiodic history on the gill transcriptomic response to SW-challenge. A) PCA
980 plot based on gene expression of the sampled fish. Blue indicates fish sampled from FW and red

981 indicates fish sampled after a 24-h SW challenge. B) Venn diagram showing the number of DEGs (p<0.01,
982 log,-FC>|1]|) found for each treatment condition at day 110 (T6), and the degree of overlap between the
983 treatments. C) ‘Upset’-plots, indicating how the number of DEGs changed across the three latter

984  timepoints of the experiment for each of the treatments. The bar graph shows number of unique or

985 shared genes for the treatment group(s) indicated by the table below. D) GO-term analysis of SW-

986 sensitive gene expression at T6 for the 3 photoperiod treatments; data are shown as Bubble-plots of
987  enriched biological process (BP) GO-terms and the number of genes linked to each term. Terms enriched
988 across groups are indicated by color. Strongly represented GO-terms are labeled. See supplemental

989  figure S1 for other timepoints and GO categories, and supplemental table S2 for a table of GO-terms and
990 names.

991 Figure 3 Photoperiodic history-dependent responses of NFAT family members to SW-challenge. The
992 heatmap shows the expression of NFAT-genes (CPM) across the three latter timepoints of the SP-
993 treatment, and graphs on the right show representative profiles of selected NFAT-genes in the 3

994 photoperiod treatments.

995 Figure 4 Photoperiodic history-dependent promoter motif enrichment for NFAT and glucocorticoid
996 response elements in SW-induced transcript profiles. Panels A and B show the enrichment of NFAT- and
997 GRE-transcription motifs, respectively, in up- and down-regulated genes at T6, for the three different
998 photoperiod-treatments.

999
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1000 Supplemental material
1001 S1 Overview of DEGs for each condition and timepoint, after filtering for FDR<0.01 and a log,-fold change
1002  of |1].

1003 S$2 Boxplots of the genes KCNJ1, KCNJ5 and JCAD, raw counts.
1004  S3 Additional GO plots showing how GO-enrichment varies over time and between treatments.

1005  S4, S5 and S6 Results from the GO analysis and overview of the GO-terms that are included in the plots
1006 after filtering for number of connected genes and log of the adjusted p-value for enrichment.

1007 S$7 Overview of NFAT-genes, including raw count data. Genes are ordered as in the heatmap.

1008 S8 Boxplots of the NFAT genes, raw counts.
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