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Abstract  20 

The developmental transition of juvenile salmon from a freshwater resident morph (parr) to a 21 

seawater (SW) migratory morph (smolt) requires a range of physiological adaptations, including 22 

the capacity to hypo-osmoregulate. This process, known as smolting, involves both 23 

photoperiod-dependent preparative changes before SW is encountered, and activational 24 

changes stimulated by exposure to SW. To explore the relationship between these two aspects 25 

we undertook experiments in which physiological and transcriptomic responses to SW-challenge 26 

were assessed in fish that had experienced different histories of photoperiodic exposure. 27 

Compared to fish held on constant light (LL), exposure to short photoperiod (SP) dramatically 28 

impaired hypo-osmoregulation in SW, and was associated with extensive glucocorticoid-related 29 

changes in gill gene expression. Additionally, a major effect of photoperiodic history was 30 

observed in the transcriptional response of LL-acclimated fish to SW, with the response profiles 31 

of fish held on LL throughout life being quite distinctive from those of fish which had 32 

experienced an 8 week period of exposure to SP prior to return to LL (SPLL). These differences in 33 

profile likely reflect a diminishing role for NFAT-mediated responses in SPLL fish, as pathways 34 

linked to acute changes in cellular tonicity or intracellular calcium levels decline in importance 35 

with preparation for SW.   36 
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1. Introduction 37 

The gill is the primary site of osmo-sensing and osmoregulatory control in fish (D. H. Evans, 38 

Piermarini, & Choe, 2005; T. G. Evans, 2010). In both freshwater (FW) and seawater (SW), 39 

osmoregulatory systems work to counter the passive diffusion of ions and water across the gill 40 

membranes, and balance plasma osmolality. Euryhaline fish species are defined by their ability 41 

to tolerate salinity changes through modulation of osmoregulatory function. In most cases this 42 

depends on responses to altered salinity (acclimation), while in a few species groups including 43 

salmonids and eels (g. Anguilla), sustained migrations between sea and freshwater are 44 

facilitated by preparative changes in osmoregulatory function, forming part of a key 45 

developmental life history transition (Folmar & Dickhoff, 1980; Kalujnaia et al., 2007; S. O. 46 

Stefansson, Björnsson, Ebbesson, & McCormick, 2008; Jonathan Mark Wilson, Antunes, Bouça, 47 

& Coimbra, 2004).  48 

In Atlantic salmon (Salmo salar) this preparatory process is commonly known as ‘smoltification’ 49 

or, hereafter, ‘smolting’. Smolting is photoperiodically controlled so that migration to sea occurs 50 

in a spring ‘smolt window’, when conditions favour juvenile growth (Gross, Coleman, & 51 

McDowall, 1988). Smolting requires fish to have previously exceeded a certain size threshold 52 

and is presumed to relate to the capacity of juvenile fish to meet the necessary metabolic 53 

demands (Higgins, 1985; Kristinsson, Saunders, & Wiggs, 1985; Metcalfe, Huntingford, & 54 

Thorpe, 1988; Skilbrei, 1991). During smolting the juvenile salmon develop traits that will enable 55 

them to survive in and exploit the marine environment. The increase of photoperiod in spring 56 

induces a hormonal cascade influencing behavior, metabolism, growth, pigmentation and gill 57 

physiology (Duston & Saunders, 1990; Stephen D. McCormick, 1994; Stephen D. McCormick, 58 
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Hansen, Quinn, & Saunders, 1998; Stephen D. McCormick, Shrimpton, Moriyama, & Björnsson, 59 

2007). In particular, gill physiology changes in order to accommodate the expected shift in 60 

environmental salinity and osmotic drive (D. H. Evans et al., 2005; Kiilerich, Kristiansen, & 61 

Madsen, 2007; Nilsen et al., 2007; Pisam, Prunet, Boeuf, & Jrambourg, 1988; Tipsmark et al., 62 

2009). The mitochondria rich cell (MRC), situated on the gill lamella, is a significant component 63 

of osmoregulation (Jonathan M. Wilson & Laurent, 2002). The MRC is rich in ion transporters, 64 

and change in both morphology and composition in response to salinity (Hiroi & McCormick, 65 

2012; Hwang & Lee, 2007; Hwang, Lee, & Lin, 2011; Madsen, Kiilerich, & Tipsmark, 2009; Pisam 66 

et al., 1988). Completion of the smolting process requires entry to sea, where SW exposure 67 

triggers the final shifts in physiology and behavior (Lubin, Rourke, & Bradley, 1989; Stephen D. 68 

McCormick, Regish, Christensen, & Björnsson, 2013; Nilsen et al., 2007; Pisam et al., 1988). 69 

Hence, smolting can be considered a two-step process: a FW preparative phase followed by a 70 

SW activational phase. 71 

While the role of photoperiod in timing of preparative changes is well described, less is known 72 

about the final changes triggered in smolts during the first few days in SW (Handeland, Berge, 73 

Björnsson, Lie, & Stefansson, 2000; Handeland, Jarvi, Ferno, & Stefansson, 1996; Prunet & 74 

Boeuf, 1985; S. O. Stefansson et al., 2008), which we will refer to as the SW activational phase. 75 

SW responses are also triggered in juveniles entering SW prematurely, which have not initiated 76 

or finished the preparative phase of smolt development (Saunders, Henderson, & Harmon, 77 

1985; Stagg, Talbot, Eddy, & Williams, 1989). Triggers may in all cases include osmotic stress due 78 

to the hyper-osmotic SW environment as well as direct responses to changes in the 79 

concentrations of specific ions (T. G. Evans, 2010; Tyler G. Evans & Somero, 2008; Kültz, 2012). 80 
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However, the specific response is expected to differ drastically between SW-ready smolts and 81 

unprepared juveniles (Houde et al., 2018; Stagg et al., 1989). The importance of SW-exposure 82 

for completion of the smolting process and establishment of a SW phenotype is clearly 83 

demonstrated by the process of ‘de-smoltification’, which occurs if migration to SW is 84 

prevented and involves a loss of tolerance to SW (Arnesen et al., 2003; Sigurd Olav Stefansson, 85 

Berge, & Gunnarsson, 1998).   86 

Gill tissue may perceive exposure to SW in at least three possible ways: i) increased cellular 87 

tonicity and altered intracellular ion concentrations ii) via cell surface receptors for SW 88 

constituents (e.g. Ca2+ perceived via the calcium-sensing receptor, CaSR ) (Kültz, 2012; Loretz, 89 

2008) and iii) indirectly via hormonal signals (e.g. cortisol, or angiotensin II) which change in 90 

response to SW-exposure (Kültz, 2012; Stephen D. McCormick, 2001). In this context, the 91 

‘nuclear factor of activated T-cells’ (NFAT) family of transcription factors have been the focus of 92 

recent interest because of their implication in osmo-sensing and in Ca2+-dependent 93 

transcriptional control (Cheung & Ko, 2013; Hogan, Chen, Nardone, & Rao, 2003; Lorgen, 94 

Jorgensen, Jordan, Martin, & Hazlerigg, 2017; Putney, 2012). The NFAT family comprises four 95 

subgroups, where groups 1-4 (NFATs c1, c2, c3, c4) are Ca2+-stimulated, and the fifth, NFAT5, is 96 

regulated in response to extracellular tonicity (Cheung & Ko, 2013; Macian, 2005; Rao, Luo, & 97 

Hogan, 1997). All members share a Rel-like homology domain, and bind to similar binding sites 98 

in the regulatory region of numerous genes (Macian, 2005).  99 

NFAT5 (also known as osmotic response element binding protein, OREBP, or tonicity-responsive 100 

enhancer binding protein, TonEBP), is considered the primordial NFAT, as it is the only one 101 

found outside the vertebrate group (Hogan et al., 2003). NFAT5 regulates the transcription of 102 
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tonicity-responsive genes such as ion transporters and osmo-protective proteins (Cheung & Ko, 103 

2013; Woo, Lee, & Kwon, 2002; Zhou, Ferraris, & Burg, 2006). Hypertonic stress increases 104 

nuclear import and retention of NFAT5 through changes in phosphorylation state, while 105 

hypotonic stress leads to nuclear export (Cheung & Ko, 2013; Ferraris et al., 2002; Irarrazabal et 106 

al., 2010; Macian, 2005).  107 

Two recent studies in salmon focus attention on the role of NFAT signaling during smolting. 108 

Lorgen et al. (2015) showed that the salmonid thyroid hormone deiodinase dio2a was SW-109 

inducible in gill tissue, and its promoter region was enriched for osmotic response elements 110 

(OREs / NFAT5 response elements).  A subsequent survey of NFAT5 expression in Atlantic 111 

salmon (Lorgen et al., 2017) revealed four NFAT5 paralogues, NFAT5 a1 and a2, and NFAT5 b1 112 

and b2. Of these, NFAT5b1/2 gill expression was highly induced by SW exposure. Together these 113 

studies suggest that NFAT5b1/2 could coordinate SW stimulated changes in transcription.  114 

In the present study we sought to extend the previous work on smolting and NFATs to consider 115 

the breadth of transcriptional response to SW-exposure in the salmon gill, and to evaluate the 116 

extent to which this response relies on NFAT mediated transcriptional control. Our data 117 

demonstrate that while NFAT involvement can clearly be seen in the transcriptional response, 118 

the importance of this depends to a large degree on the photoperiod to which fish have been 119 

acclimated, and the history of prior photoperiodic exposure.  120 

 121 

  122 
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2. Materials & Methods 123 

2.1 Fish rearing and animal welfare 124 

Atlantic salmon (Salmo salar, Linnaeus, 1758) of the Aquagene commercial strain (Trondheim, 125 

Norway), hatched and raised (continuous light, LL, >200 lux, 10°C) as part of the ongoing smolt 126 

production at Tromsø Aquaculture Research Station (TARS) were used in this experiment. Fish 127 

were fed continuously and in excess with pelleted salmon feed (Skretting, Stavanger, Norway). 128 

TARS is approved by the Norwegian Animal Research Authority (NARA) for hold of, and 129 

experiments on salmonids, fresh- and salt-water fish and marine invertebrates. When 130 

experimental conditions are limited to practices which are undertaken routinely as part of the 131 

recognized animal husbandry, with no compromise to welfare, additional formal approval of the 132 

experimental protocol by NARA is not required. This is in accordance with Norwegian and 133 

European legislation on animal research. 134 

2.2 Experimental set-up 135 

The experimental design is presented in fig. 1A.  136 

Juvenile salmon, kept in a 500 l circular tank since start of feeding, and at approximately 7 137 

months of age were used for this experiment. A baseline sampling was performed on day 1 of 138 

the experiment (mean weight 49.5 g, s.d. ± 7.0 g, n=6); this is referred to as pre-SP. On day 3, 139 

225 juvenile salmon were taken from the original tank and randomly split into two groups of 75 140 

and 150 fish, which were placed in two 100 l circular tanks in separate rooms (FW, 8.5°C). The 141 

group of 75 fish were kept on LL for the rest of the experiment. For the group of 150 fish, 142 

photoperiod was incrementally reduced from LL to SP (8-h light/16-h dark). Both groups were 143 
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sampled on day 32 and 53 (n=6 for each treatment). On day 60, half of the remaining fish under 144 

SP were moved to a new 100 l circular tank and returned to LL (SPLL). All three groups were 145 

then sampled on days 68, 89 and 110 (n=6 for each treatment). During the experiment the fish 146 

were fed continuously and in excess over the eight hours corresponding to day in the SP 147 

treatment group. 148 

At each sampling point a subsample of fish from each of the treatments were put through a 24-149 

h salt-water challenge (SWC, 100 l tanks, 34 ‰, salinity, 7°C, n=6 for each treatment), starting 150 

on the day prior to sampling. The fish were not fed during SWC. 151 

2.3 Sampling procedure 152 

Fish were netted out from their respective treatments (including SWC fish) in groups of six. 153 

Following anesthesia body mass (±0.5 g) and fork length (±0.1 cm) was measured. Blood was 154 

drained from the caudal vein into 2mL lithium-heparinized vacutainers (BD vacutainers®, Puls 155 

Norge, Moss, Norway), and placed on ice until further processing. This was followed by 156 

decapitation. The operculum was removed from the right side of the head (caudal view), and a 157 

gill arch dissected out. The primary gill filaments were cut from the arch and placed in 158 

RNAlater® (Sigma-Aldrich, St. Louis, Missouri, USA) for later processing. Samples were stored at 159 

4 °C for 24 h, and then kept frozen at -80°C until further processing. 160 

Blood samples were centrifuged at 6000 x g for 10 minutes, and the plasma fraction collected. 161 

The plasma was stored at -20°C until later analysis of osmolality could take place. Thawed 162 

plasma samples were analysed for osmolyte content using a Fiske One-Ten Osmometer (Fiske 163 

Associates, Massachusetts, USA, ± 4 mOsm kg-1). 164 
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2.4 RNA extractions and sequencing 165 

Total RNA was extracted applying a TRIzol-based method following the recommended protocol 166 

from the manufacturer (Invitrogen, Thermo Fisher, Waltham, Massachusetts, USA). A NanoDrop 167 

spectrophotometer (NanoDrop Technologies, Wilmington, Delaware, USA) was used to check 168 

RNA concentration and quality. RNA integrity was confirmed using the Agilent 2100 Bioanalyzer 169 

(Agilent Technologies, Santa Clara, CA, USA). RNA was frozen at -80°C until further analysis. 170 

Sequencing libraries (n=167) were prepared with the TruSeq Stranded mRNA HS kit (Illumina, 171 

San Diego, California, USA). The 2100 Bioanalyzer using the DNA 1000 kit (Agilent Technologies, 172 

Santa Clara, California, USA) was used to determine mean library length, while the Qbit BR kit 173 

(Thermo Scientific, Waltham, Massachusetts, USA) was used to determine library 174 

concentrations. Samples were barcoded using Illumina unique indexes. Single-end 100 bp 175 

sequencing of samples was carried out at the Norwegian Sequencing Centre (University of Oslo, 176 

Oslo, Norway), using an Illumina HiSeq 2500. 177 

Removal of sequencing adapters and short sequencing reads (parameters –q 20 –O 8 –178 

minimum-length 40), and trimming of low-quality bases were done using Cutadapt (ver. 1.8.1) 179 

(Martin, 2011). Quality control was performed with FastQC software (Andrews, 2010; Andrews, 180 

Lindenbaum, Howard, & Ewels, 2011-2014). Mapping of reads onto the reference genome was 181 

performed with STAR software (ver. 2.4.2a) (Dobin et al., 2013). Read counts for annotated 182 

genes was generated with HTSEQ-count software (ver. 0.6.1p1) (Anders, Pyl, & Huber, 2015). All 183 

sequences have been deposited in Array Express, EBI under accession number E-MTAB-8276. 184 
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2.5 Transcriptome analysis 185 

All transcriptome analysis were performed in R (ver. 3.4.2), using RStudio (ver. 1.0.153). 186 

In order to identify genes that were differentially expressed between the FW and SW sampled 187 

fish in the three different treatment groups over the three later time points the R-package Edge 188 

R (ver. 3.14.0) was applied. Raw counts were filtered (expression threshold CPM>1 in five or 189 

more libraries), and scaled applying trimmed means of M-values (TMM) scaling. A quasi-190 

likelihood negative binomial generalized log-linear model was used to fit the data, and nine 191 

empirical Bayes F-tests were run contrasting between the FW and SW sampled fish for each 192 

condition for days 68, 89 and 110 (T4.LL.SW-T4.LL.FW, T4.SP.SW-T4.SP.FW, T4.SPLL.SW-193 

T4.SPLL.FW, etc.). Outputs were filtered requiring a false discovery rate (FDR) of 0.01, and a 194 

log2-fold change of |1|. 195 

Principal component analysis (PCA) was performed on the full transcriptome using The R Stats 196 

Package (stats, ver. 3.4.2) (Love, Huber, & Anders, 2014). Only the three latter sampling points 197 

(days 68, 89 and 110) were included in the PCA. For simplicity and interpretability of the plot, 198 

TMM normalized counts for each gene in each sample group (n=6, except for T4 SPLL FW where 199 

n=5) were averaged before generating the PCA plot. 200 

Lists of differentially expressed genes (DEGs) from each of the sampling groups were compared 201 

across time within treatments, and between treatments at the same time point. The numbers of 202 

unique and shared DEGs are summarized in the ‘Upset’-plots (UpSetR ver. 1.4.0) (Conway, Lex, 203 

& Gehlenborg, 2017) in fig. 2. 204 
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A gene ontology analysis was performed on the same DEG-lists, using topGO (ver. 2.24.0) and 205 

the annotation package for the salmon genome Ssa.RefSeq.db (ver. 1.2), with a gill specific gene 206 

universe. Fisher statistics and the ‘elim’-algorithm (Alexa, Rahnenführer, & Lengauer, 2006) was 207 

applied, with a significance threshold of p<0.05 for enrichment. Only the top 150 GO terms 208 

were included in the output. Vizualisation of the GO enrichment using GOplot (ver. 1.0.2) 209 

(Walter, Sánchez-Cabo, & Ricote, 2015) and ggplot2 (ver. 3.0.0). GOplot was used to generate 210 

the plotting object and z-scores for each GO term (eq.1) that indicate if the trend is towards up- 211 

or downregulation of the specific term. The sign of the log2-fold score defines the direction of 212 

regulation for each gene. Before plotting unique GO IDs were filtered for a count>5. R-package 213 

ggplot2 (ver. 3.0.0) was used for plotting the GO plots, setting a threshold where adjusted p-214 

value <0.0001, or the number of genes annotated to that term >150 for labelling terms in the 215 

plot. 216 

Equation 1 217 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
( #𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠 −   #𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠) 

√𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑠 
 

 218 

From the set of expressed genes (CPM > 1 in five or more libraries), 18 genes could be identified 219 

as NFAT (5), NFAT-like (12) or NFAT-interacting genes (1) based on their SalmoBase annotation 220 

(ICSASG_v2) (Lien et al., 2016; Samy et al., 2017). Raw count data was used to calculate mean 221 

gene expression at each sampling point for all three treatments. The gene expression of the SP 222 

treatment group was then hierarchically clustered using the R-package pheatmap (ver. 1.0.10) 223 
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(row scaled by z-scores, applying Euclidian distance measures and complete linkage clustering). 224 

The resulting order and clustering of genes was then forced onto heatmap of the LL and SPLL 225 

groups in order to produce figure 3. 226 

2.6 Motif analysis 227 

Motif enrichment analysis was performed using SalMotifDB-shiny tool (https://cigene.no/tools/) 228 

(Mulugeta et al., 2019). This tool accesses a database containing over 19,000 predicted 229 

transcription factor binding sites (TFBSs) found in the proximal promoter regions (-230 

1,000/+200bp from TSS) of salmonid genes. We used the motif enrichment analysis utility of this 231 

tool to screen for enrichment of NFAT and glucocorticoid response element (GRE) motifs in lists 232 

of DEGs at the T6 sampling point. 233 

2.7 Datasharing 234 

All relevant data can be found within the MS and its supporting information, further the 235 

full transcriptomics dataset is accessible in the ArrayExpress depository, with 236 

accession number E-MTAB-8276. 237 

  238 
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3. Results 239 

3.1 Hypoosmoregulatory capacity 240 

Throughout the study (fig. 1A), fish held on LL upheld the capacity to maintain undisturbed 241 

plasma osmolality levels during a 24-h SW challenge (no significant effect of time, P > 0.05, 1-242 

way ANOVA) (fig. 1B). In fish maintained on SP, hypo-osmoregulatory capacity was initially 243 

reduced compared to day 1 in LL (P<0.0001 by t-test). As SP exposure extended beyond 8 weeks 244 

these fish underwent a partial recovery of hypo-osmoregulatory capacity. Fish that were 245 

returned to LL after 8 weeks of SP exposure (SPLL) regained their osmoregulatory capacity 246 

within the first four weeks (fig. 1B).  Plasma osmolality values of the SPLL group after one week 247 

back on LL (T4) were similar to values in SP control fish at the same time point, after which a 248 

dramatic improvement in hypo-osmoregulatory capacity was observed (fig. 1B). Eight weeks 249 

after return to LL (T6), plasma osmolality values of the SPLL group were 4.2 % lower than in 250 

corresponding LL control fish and 9.1 % lower than day 1 values.  251 

3.2 RNA profile of the gill response to SW-challenge 252 

To explore treatment effects on the overall RNA expression profile of the gills we performed a 253 

PCA analysis (fig. 2A). The first component separated samples by photoperiodic history and 254 

sampling time (40% variation explained, PC1) while the second component separated the FW 255 

from the SW-challenged fish (30% variation explained, PC2). On the PC1 axis the largest 256 

separation of data points was between early (T4, one week after re-entry to LL) and late (T5 and 257 

T6, 4 and 8 weeks after re-entering LL) sampling points for SPLL fish. This contrasted with low 258 

PC1 resolution for samples from fish in either the LL or SP control groups. The PC2 separation 259 

was most pronounced in SP control fish and less so in LL control fish. For the SP and LL groups 260 
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divergence along PC2 appear independent of time. Contrastingly, in SPLL fish, PC2 resolution 261 

was dependent on time of sampling with major segregation between FW and SW samples at T4, 262 

one week after re-entering LL, while at both later time points resolution between FW and SW 263 

samples was greatly reduced. Overall the PCA analysis indicates that return to LL after SP 264 

exposure triggers changes in the gill transcriptome which mirror the improved hypo-265 

osmoregulatory efficiency. 266 

To further investigate the effect of photoperiodic history on SW-responsiveness, we compared 267 

lists of SW-DEGs (FDR < 0.01, fold-change > ǀ1|, supplemental material S1) for the 3 photoperiod 268 

groups (Fig. 2B, C, ). At the end of the study (T6) we found some 10-fold more SW-DEGs in SP 269 

fish than in either the LL or SPLL groups. Separate gene ontology enrichment tests were 270 

performed for genes responding to SW exposure at T6 in the three photoperiod treatments 271 

(supplemental material S3 through S6). Enriched ontologies for SP fish included up-regulated 272 

transcripts associated with chromatin silencing and suppression of transcription (e.g. histone 273 

deactylase 5, transcriptional repressor p66, NFAT5; GO:0000122 ‘negative regulation of 274 

transcription by RNA polymerase 2’), and also with formation of stress granules, indicative of 275 

translational arrest due to cellular stress (Anderson & Kedersha, 2008)  (e.g. ddx6, ddx3x, roquin 276 

1; GO:0010494, ‘stress granule’).    277 

Only 51 SW-DEGs (i.e. about 5% of the SP set) were shared across all three photoperiod 278 

treatments, and this shared group included genes involved in mitochondrial respiration (e.g. 279 

cytochrome P450 subunits, hexokinase-1), presumably reflecting the energy demand imposed 280 

by SW challenge. Correspondingly, the only significantly over-represented BP GO-term shared 281 
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across the photoperiod treatments was GO:0000302, ‘response to reactive oxygen species’, 282 

encompassing six of the shared genes (fig. 2D).  283 

While there is a similar number of SW-DEGs at T6 in the LL and SPLL treatments (150 and 125 284 

genes, respectively), the overlap between these two groups was almost entirely limited to the 285 

universally responsive energy-related genes described above. LL-specific SW-DEGs at T6 were 286 

mainly associated with metabolism and cell signaling (f. ex. GO: 0009749 ‘response to glucose’, 287 

GO:0051591 ‘response to cAMP’). In contrast to the SP and LL groups, the SPLL group had a 288 

dramatic reduction in DEGs in response to SW between T4 and T6 (Figure 2C). Within the group 289 

of SW-induced genes unique to SPLL at the T6 time-point, the inward rectifying K+ channels 290 

KCNJ1 and KCNJ5 and ‘junctional cadherin 5 associated’ (JCAD, also know as KIAA1462) were the 291 

most strongly induced transcripts (supplemental material S2).  292 

3.3 Effects of SW on the expression of NFAT family members  293 

The highly divergent transcriptional responses to SW, including the presence of NFAT5 only in 294 

the list of SP-specific DEGs led us to explore further the regulation of expression among all 295 

members of the NFAT family of transcription factors (fig. 3, supplemental material S7 and S8). 296 

Clustering of response patterns across this gene family gave four distinctive patterns of 297 

regulation, represented by the four profile plots in fig 3. The NFAT5b cluster (fig. 3, second 298 

cluster from the top) showed strong, SP-specific SW-induction, while weaker SP-specific SW-299 

induction of expression was also seen in the cluster typified by NFAT4c (LOC106600383) (fig. 3, 300 

first cluster from the top), but only evident at earlier sampling points (T4, T5). Contrastingly, 301 

genes typified by NFAT3c (LOC106561519) showed reduced expression in SW (fig. 3, third 302 
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cluster from the top). The last cluster of genes were largely SW-unresponsive across the study 303 

as a whole (fig. 3, fourth cluster from the top).  304 

3.4 Enrichment for NFAT- and GRE-response motifs in SW-DEGs  305 

We used MotifDb ((Mulugeta et al., 2019) (https://salmobase.org/apps/SalMotifDB/) to 306 

determine how NFAT response elements are associated with SW-induced changes in gene 307 

expression (fig. 4A), focusing on changes occurring at the last sampling point (T6, day 110) of the 308 

experiment. This revealed enrichment of seven non-redundant motifs, of which four are 309 

associated with SW-induced gene expression changes, in the LL control fish (p<=0.001). Three 310 

response elements were enriched in the SP control fish. No enrichment of NFAT elements was 311 

seen in SPLL fish at this sampling point. We also looked at presence of glucocorticoid receptor 312 

response elements (GREs, fig. 4B) due to the stress response indicated by GO-terms in the SP 313 

group, and confirmed that these were only enriched among the SW-response genes in the SP-314 

group (fig. 4B). 315 

4. Discussion 316 

The present study characterizes the effect of photoperiod (SP vs LL) and photoperiodic history 317 

(SPLL vs LL) on the gill response to SW exposure in juvenile Atlantic salmon. SP exposure 318 

dramatically impairs the ability of juvenile salmon to hypo-osmoregulate in SW and is associated 319 

with extensive changes in gill gene expression (fig. 2), including genes predicted to be regulated 320 

by the glucocorticoid pathway (fig. 4B), indicative of cellular stress. Contrastingly, exposure of LL 321 

acclimated fish to SW does not result in osmoregulatory failure over 24-h, and is associated with 322 

less extensive changes in gill gene expression (fig. 2).  Nevertheless, a major effect of 323 

photoperiodic history was observed in the transcriptional response of LL acclimated fish to SW, 324 
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with the response profiles of fish held on LL throughout life being quite distinctive from those 325 

fish which had experienced an 8 week period of exposure to SP prior to return to LL. The 326 

diminished role of NFAT transcriptional regulation in the SW response of SPLL fish observed 327 

through reduced motif enrichment analysis (fig. 4A) suggests that preparative effects of SP 328 

exposure reduce the involvement of pathways linked to changes in cellular tonicity or 329 

intracellular calcium levels in the response to SW.   330 

Previous work by Lorgen et al. (2015; 2017) showed that in the gill the SW-induced gene dio2a is 331 

enriched for NFAT5 response-elements, and that expression of both dio2a and NFAT5b is SW-332 

induced in SP-acclimated Atlantic salmon juveniles. Our RNAseq analysis confirms these 333 

findings, showing that strongest SW-induction of NFAT5b is indeed seen in SP acclimated fish, as 334 

well as implicating NFAT4 and NFATc3 in the response.  Given that this is the case, it is 335 

somewhat surprising that statistical enrichment for NFAT motifs is less pronounced within the 336 

SW-induced transcriptome of SP fish than in LL fish. We believe this may reflect a swamping of 337 

signal by large numbers of genes induced through stress-activated pathways, including but 338 

probably not limited to the adrenal corticoid axis revealed by GRE enrichment in SW-induced 339 

genes in SP fish. In support of this interpretation the subset of SW-induced genes shared 340 

between fish in the LL and SP T6 groups, which constitutes less than 10% of the overall SP SW-341 

induced group (but about half of the LL SW-induced group) is highly enriched for NFAT5 342 

elements (p<0.01).   343 

Despite the superficial similarity observed between the LL and SPLL fish in ability to hypo-344 

osmoregulate (fig. 1B) as well as the magnitude of transcriptional responses to SW exposure 345 

(fig. 2), it is clear from the GO analysis that the SW-responses of fish in these two groups are 346 
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quite distinctive. We suggest that the marked enrichment of NFAT-response elements, and in 347 

particular NFAT5, in the LL group reflects a transient activation of NFAT5-responsive genes in 348 

response to SW. By contrast, in the SPLL group there is no motif enrichment for NFAT5 nor the 349 

Ca2+-regulated NFATs. We interpret this lack of NFAT5 responses in SPLL as evidence for NFAT5-350 

signaling playing a role in the activation of hypo-osmoregulation in salmon which have not 351 

developed a SW migratory phenotype. Accordingly, exposure to SP for 8 weeks prior to re-352 

exposure to LL stimulates pre-adaptation and obviates the need for NFAT-mediated responses 353 

to SW exposure – presumably because even in the initial phase of SW exposure, pre-adapted gill 354 

cells do not experience significant changes in tonicity or intracellular Ca2+ levels. 355 

The transcriptional response of the NFAT family was not limited to NFAT5b since we also 356 

observed SW-induction of NFATc1 and c4 in the SP group, and photoperiodic history-dependent 357 

SW-suppression of NFATc3 and NFATc1 paralogous pairs in the SP and SPLL groups. In 358 

mammals, these calcium-regulated NFAT’s play important roles in immune function, but also in 359 

the development, differentiation and function of various other cell types such as osteoclast and 360 

cardiac tissue (Ames, Valdor, Abe, & Macian, 2016; Hogan et al., 2003; Macian, 2005). Changes 361 

in intracellular calcium leading to NFAT activation may conceivably arise as a result of Ca2+ 362 

production as a second messenger within the cell, or as a result of Ca2+ entry from the 363 

environment – and both these pathways are likely to be involved in osmosensing (Kültz, 2012).  364 

In addition, extracellular Ca2+ may affect gill function through the G-protein coupled calcium 365 

sensing receptor (CaSR), expressed in the MRCs and proposed to function as a salinity sensor in 366 

fish (Loretz, 2008; Loretz, Pollina, Hyodo, & Takei, 2009; Nearing et al., 2002). While CaSR signal 367 

transduction has primarily been linked to cAMP-dependent signal transduction, the possibility 368 
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of cross-talk with NFAT pathways is suggested by work on TNF secretion in the mammalian 369 

kidney tubule (Abdullah et al., 2006; Gong & Hou, 2014).  370 

Our results clearly show that NFATs are playing a minor role in SW regulated transcriptional 371 

responses in SPLL fish compared to LL and SP. This is consistent with a model where the 372 

photoperiodic treatment received (SPLL) is known to stimulate a range of smolt characteristics 373 

including improved long-term performance in SW (Berge et al., 1995; S. D. McCormick et al., 374 

1995; Stephen D. McCormick et al., 2007; Saunders et al., 1985; S. O. Stefansson et al., 1991; S. 375 

O. Stefansson et al., 2008). With the exception of day 68 (i.e. the first week after return to LL 376 

from SP, when these fish are in a transitional state), there is no SW-induction of NFAT5b-377 

expression or any other NFATs, nor is there any enrichment of NFAT-motifs in the SW-378 

responsive transcriptome. Nevertheless, a small number of genes were uniquely stimulated by 379 

SW in the SPLL group. These included the inward rectifying potassium channel genes KCNJ1 and 380 

KCNJ5, the former being ATP-regulated and the latter being G-protein regulated (Clapham, 381 

1994; Ho et al., 1993; Krapivinsky et al., 1995). Also, we find the cardiac regulatory gene 382 

junctional protein associated with coronary artery disease, known as JCAD. The potassium 383 

channels have been identified as key markers for SW adaptation in eels, where they have been 384 

found to be expressed in MRCs (Suzuki et al., 1999; Tse, Au, & Wong, 2006). JCAD is predicted to 385 

play a role in endothelial cell junctions (Akashi, Higashi, Masuda, Komori, & Furuse, 2011) and 386 

has been linked to the Hippo signaling pathway (Jones et al., 2018), which regulates cell 387 

proliferation and apoptosis (Halder & Johnson, 2011). Both KCNJ1 and JCAD show high SW-388 

inducibility after being exposed to the photoperiod-induced smolting (S2), and they therefore 389 

represent the final activational response to SW occurring specifically in fish that have completed 390 
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a FW preparative phase in response to photoperiod. Further studies to understand the impact 391 

of these genes on gill function in SW are now warranted.  392 
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Figure legends 974 

Figure 1 Experimental design and the changing effect of SW challenge on hypo-osmoregulatory 975 

capacity. A) Experimental set-up showing the three photoperiod treatments. Samplings are indicated by 976 

black dots. B) Plasma osmolality following 24-h SW challenge, data are mean ± S.E.M of n = 6 977 

observations; *** / **** = significantly higher osmolality than at T1, p<0.001 / 0.0001, respectively.  978 

Figure 2  Effect of photoperiodic history on the gill transcriptomic response to SW-challenge. A) PCA 979 

plot based on gene expression of the sampled fish. Blue indicates fish sampled from FW and red 980 

indicates fish sampled after a 24-h SW challenge. B) Venn diagram showing the number of DEGs (p<0.01, 981 

log2-FC>|1|) found for each treatment condition at day 110 (T6), and the degree of overlap between the 982 

treatments. C) ‘Upset’-plots, indicating how the number of DEGs changed across the three latter 983 

timepoints of the experiment for each of the treatments. The bar graph shows number of unique or 984 

shared genes for the treatment group(s) indicated by the table below. D) GO-term analysis of SW-985 

sensitive gene expression at T6 for the 3 photoperiod treatments; data are shown as Bubble-plots of 986 

enriched biological process (BP) GO-terms and the number of genes linked to each term. Terms enriched 987 

across groups are indicated by color. Strongly represented GO-terms are labeled. See supplemental 988 

figure S1 for other timepoints and GO categories, and supplemental table S2 for a table of GO-terms and 989 

names. 990 

Figure 3 Photoperiodic history-dependent responses of NFAT family members to SW-challenge. The 991 

heatmap shows the expression of NFAT-genes (CPM) across the three latter timepoints of the SP-992 

treatment, and graphs on the right show representative profiles of selected NFAT-genes in the 3 993 

photoperiod treatments.  994 

Figure 4 Photoperiodic history-dependent promoter motif enrichment for NFAT and glucocorticoid 995 

response elements in SW-induced transcript profiles. Panels A and B show the enrichment of NFAT- and 996 

GRE-transcription motifs, respectively, in up- and down-regulated genes at T6, for the three different 997 

photoperiod-treatments. 998 
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S1 Overview of DEGs for each condition and timepoint, after filtering for FDR<0.01 and a log2-fold change 1001 
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S2 Boxplots of the genes KCNJ1, KCNJ5 and JCAD, raw counts. 1003 
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S4, S5 and S6 Results from the GO analysis and overview of the GO-terms that are included in the plots 1005 

after filtering for number of connected genes and log of the adjusted p-value for enrichment.  1006 

S7 Overview of NFAT-genes, including raw count data. Genes are ordered as in the heatmap. 1007 

S8 Boxplots of the NFAT genes, raw counts. 1008 
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