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17 Abstract

18 The rat has been used for a long time as the model of choice in several biomedical 

19 disciplines. Numerous inbred strains have been isolated, displaying a wide range of 

20 phenotypes and providing many models of human traits and diseases. Rat genome mapping 

21 and genomics was considerably developed in the last decades. The availability of these 

22 resources has stimulated numerous studies aimed at discovering disease genes by positional 

23 identification. Numerous rat genes have now been identified that underlie monogenic or 

24 complex diseases and remarkably, these results have been translated to the human in a 

25 significant proportion of cases, leading to the identification of novel human disease 

26 susceptibility genes, helping in studying the mechanisms underlying the pathological 

27 abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic 

28 tools have been developed. Several genome-editing methods were introduced to generate 

29 targeted mutations in genes the function of which could be clarified in this manner [generally 

30 these are knockout (KO) mutations]. Furthermore, even when the human gene causing a 

31 disease is identified, mutated rat strains (in particular KO strains) were created to analyze the 

32 gene function and the disease pathogenesis. Today, about 300 rat genes have been identified 

33 as underlying diseases or playing a key role in critical biological processes that are altered in 

34 diseases. This article provides the reader with an inventory of these genes.
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36 Why map and identify genes for rat disease phenotypes or related traits? The rat is more than 

37 a bigger mouse, a species which has been the mammalian genetic model of choice for a long 

38 time, with an initial focus on monogenic traits [1-4]. Rat models of monogenic traits and 

39 diseases have also been isolated but the rat has essentially been a key model for studies of 

40 complex traits in fields such as physiology, including cardiovascular and diabetes research, 

41 arthritis, pharmacology, toxicology, oncology and neurosciences. The intermediate size of the 

42 rat allows one to carry out experiments and measurements that are difficult if not impossible 

43 in the mouse and the rat exhibits more sophisticated neurobehavioral traits; it is an important 

44 animal model in neuropsychiatric and behavioral studies; in some scientific fields, the rat thus 

45 provides one with particularly reliable models of human traits or diseases [5-9]. 

46 Consequently, many rat strains have been created by selective breeding of animals expressing 

47 a desired phenotype, generating a large collection of genetic models of pathological complex, 

48 polygenic traits, most of which are quantitative. Interestingly, these strains also provide one 

49 with additional phenotypes, which were not selected for. Just as the traits that were selected 

50 for, most of these phenotypes are polygenic. All these phenotypes can be used as models of 

51 human traits or diseases [10], implying that the genes underlying these traits or diseases 

52 should be identified. Information on rat strains and rat disease models, can be found at the 

53 Rat Genome Database (RGD, https://rgd.mcw.edu/) [11]. 

54 In order to give the rat the status of a valuable genetic model, and in particular to identify the 

55 genes underlying complex traits by forward genetic approaches and to analyze the relevant 

56 biological mechanisms, several tools had to be developed. This has been accomplished. 

57 Genetic and chromosome maps have been developed; the genomic sequence of several rat 

58 strains has been established; a number of resources have been created to provide investigators 

59 with access to genetic, genomic, phenotype and disease-relevant data as well as software 

60 tools necessary for their research [3, 12]. Thanks to these resources, positional identification 
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61 of numerous genes underlying monogenic or complex diseases and related traits could be 

62 achieved. On the other hand, reverse genetic tools have also been developed. Efficient 

63 methods to generate mutant rats became available; sperm N-ethyl-N-nitrosourea (ENU) 

64 mutagenesis followed by gene-targeted screening methods lead to the isolation of several 

65 mutants, including knockout (KO) strains [13 and references therein]. Rat ES were 

66 successfully derived and could be used for targeted mutations by homologous recombination; 

67 more importantly, several methods not relying on the use of ES cells were introduced to 

68 generated targeted mutations (often these are KO mutations), namely gene editing by zinc 

69 finger nucleases, by transcription activator-like effector nucleases and finally by the clustered 

70 regularly interspaced short palindromic repeat (CRISPR/Cas) system [for a review, see 14]. 

71 Transgenic rats can also be generated, including humanized rats carrying large chromosomic 

72 fragments (“transchromosomic humanized” rats) [15]. Development of these technologies 

73 provides the researcher with all the tools required to take advantage of the unique 

74 opportunities offered by the rat as leading model for studies different areas of biomedical 

75 research [3, 8]. In this review I made an inventory of the rat genes identified as responsible 

76 for monogenic or polygenic diseases and related traits. I took into account the rat genes 

77 identified by forward genetic methods as well as those inactivated by ENU-mutagenesis and 

78 by targeted mutations, the inactivation of which generated a disease or an abnormal 

79 phenotype. This inventory shows that a considerable number of conserved genes have similar 

80 effects on biological traits in rats and humans.     
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81 Materials and methods

82 The data were collected by regular and systematic screening of the biomedical literature, 

83 PubMed searches (https://www.ncbi.nlm.nih.gov/) and Google Scholar alerts based on the 

84 terms  “knockout”, “mutation”, “rat”. In addition, relevant data were retrieved from the RGD, 

85 thanks to advices from Jennifer Smith. The official gene symbols are used in this article and 

86 were obtained from the National Center for Biotechnology Information 

87 (https://www.ncbi.nlm.nih.gov/), Gene section.  In several instances the original publications 

88 did not use the official gene symbol; in these cases, the non-official symbol is indicated in 

89 parenthesis in the footnote to the table, where the full name of each gene is described. The 

90 position of every  gene was also obtained from the NCBI.   
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91 Results and conclusions

92 The core of this article is a list of the diseases and related traits or phenotypes the causal gene 

93 of which was identified in the rat (Table 1). The genes identified by forward genetic methods 

94 or, in a few instances, by direct molecular characterization are labeled by asterisks (see 

95 legend to table).  Also listed are the phenotypes uncovered by reverse genetics methods, 

96 either by ENU-mutagenesis followed by selection of the desired mutated gene (these genes 

97 are labeled by the symbol ENU), or by targeted gene editing (these genes are labeled by T). 

98 Table 1A shows the monogenic traits, and table 1B the complex traits (it a few cases this 

99 distinction is somewhat arbitrary, but in general this is a useful classification). Of note, when 

100 a gene was associated with several distinct phenotypes, an entry was created for each 

101 phenotype and the gene thus appears several times in the table. When the human homolog 

102 gene is known to be causal of the relevant disease or trait, it is also indicated in the table. 

103 Furthermore, entries in bold characters indicate that the human gene was found to be causal 

104 as a direct translation of the results obtained in the rat.

105 The identification of gene(s) underlying a given phenotype typically starts with the mapping 

106 of the trait by linkage analysis (backcrosses, intercrosses). In the case of monogenic traits, 

107 this approach is generally sufficient to identify the causative gene (positional identification, 

108 as illustrated in Table 1A). Identifying genes controlling complex traits is much more 

109 difficult [16]; indeed, linkage analyses of such traits lead to the localization of quantitative 

110 trait loci (QTLs), which are too large to allow the identification of the causative gene. 

111 Complementary strategies are thus required to narrow down the list of candidate genes, such 

112 as the generation of congenic lines or/and the use of integrative genomic approaches [as 

113 discussed in 17]. Alternative approaches rely on the use of panels of lines that show a higher 

114 level of recombinant events, as a result of crossing parental strains for multiple generations, 

115 such as recombinant inbred strains or heterogeneous stocks [as discussed in 18, for a striking 
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116 harvest of results derived from the study of a heterogeneous stock, see 19]. The first 

117 complex-trait gene identified is the Cd36 gene, which causes insulin resistance, 

118 hyperlipidemia and hypertension in the spontaneously hypertensive rat (SHR) [20, 21]. This 

119 identification was based on a combined gene expression micro-array and linkage approach 

120 and was definitively proven by in vivo complementation, i.e. transgenic expression of normal 

121 Cd36 in the SHR [22]. Last but not least, association was then demonstrated between human 

122 CD36 and insulin resistance [23]. Subsequently, the tools of forward genetic studies as well 

123 as gene expression and/or computational analysis (integrative genomics) led to the 

124 identification of numerous genes underlying rat polygenic traits or diseases, such as blood 

125 pressure, cardiac mass, diabetes, inflammation (in particular arthritis, encephalomyelitis), 

126 glomerulonephritis, mammary cancer, neurobehavioral traits, proteinuria. In several 

127 instances, the results were translated to the human, as illustrated in Table 1 by bold entries. 

128 Interestingly, a recently discovered complex trait gene is a long non-coding RNA, itself 

129 contained within the 5’ UTR of the Rffl gene (Rffl-lnc1); Rffl-lnc1 shows a 19bp indel 

130 polymorphism which is the precise variation underlying regulation of blood pressure and QT-

131 interval. This work was based on fine and systematic congenic mapping and is the first one to 

132 identify quantitative trait nucleotides in a long non-coding RNA [24]. The human 

133 homologous region, on chromosome 17, has multiple minor alleles that are associated with 

134 shorter QT-intervals and, is some cases, hypertension [25]. 

135 Identifying rat disease genes is not only useful to discover the homologous human disease 

136 genes but also helps in studying the mechanisms underlying the pathological abnormalities. 

137 After all, this is the essence of an animal model. For instance, the study of the genetic basis of 

138 stroke in the stroke-prone SHR strain (SHRSP) led to the conclusion that mitochondrial 

139 dysfunction contributes to stroke susceptibility and to hypertensive target organ damage 

140 (such as vascular damage); this better understanding of the etiology of the disease can open 
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141 the door to novel therapies [26, 27]. Another example is provided by the identification of 

142 Ncf1 as a causative gene of arthritis [28] which led to the discovery that reactive oxygen 

143 species are important regulators of several chronic inflammatory disorders and more 

144 generally of immune and inflammatory pathways; surprisingly, they have a protective role in 

145 autoimmune diseases [29]. 

146 The rat is also a useful model to decipher the biological significance of QTLs identified in 

147 human genome-wide association studies (GWAS) aimed at understanding the aetiology of 

148 common human diseases [30, 31]. These studies pint-point human genomic regions 

149 controlling a complex trait, and generally contain several genes; the current methods lack the 

150 statistical power to pinpoint the human causative gene. Animal model such as the rat provides 

151 one with the possibility to knockout or to mutate in more subtle manner each of the rat genes 

152 homolog to the human genes contained in a given GWAS locus. In this way, the possible role 

153 of each gene can be evaluated. For instance, Flister and c-corkers [32], studying a multigene 

154 GWAS locus controlling blood pressure and renal phenotypes (AGTRAP-PLOD1 locus) used 

155 gene targeting in a rat model to test each of the genes contained in this locus. In this way 

156 these authors could show that several genes impact hypertension and that multiple causative 

157 gene variants cosegregate at this locus; several linked genes thus control blood pressure 

158 (Agtrap, Clcn6, Mthfr, Nppa, Plod1). Furthermore, each of the KO rat models so generated 

159 can be used to dissect the biological effects of the gene loss of function. 

160 The genetic basis of human diseases is also actively analyzed by whole genome sequencing; 

161 such studies have uncovered several genes underlying diseases or related phenotypes [33, 34] 

162 and one can thus questioned the importance of genetic analyses in an animal model. As 

163 argued and illustrated above, animal models and the rat in particular, remain valuable tools to 

164 analyze the biological mechanisms underlying a phenotype. In addition, transgenesis or gene 

165 substitution can also be carried out, in which a human allele can be introduced in the relevant 
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166 KO rat, in order to verify the role of the human mutation. Alternatively, the rat genome can 

167 be directly modified to specifically introduce a mutation similar to the one causing the human 

168 trait [34, 35]. If the modified rats exhibit defects similar to those observed in the human 

169 patients, it can be concluded that the tested human mutation indeed plays a causal role. In 

170 addition, similarly to examples mentioned above, such specifically modified rats provide one 

171 with models suitable to study the mechanisms responsible for the abnormalities generated by 

172 the mutation and also to carry out pharmacological tests and look for possible new therapies 

173 [35]. 

174 The need of relevant animal models is also illustrated by the fact that even when the human 

175 gene causing a disease is identified, mutated rat strains (in particular KO strains) are created 

176 to analyze the gene function and the disease pathogenesis (see numerous examples of such 

177 gene targeting in Table 1). In 2008, Aitman and coworkers [2] reported a list of 21 rat disease 

178 genes that had been identified by positional cloning since 1999. Here I included all genes, 

179 independently of the date of their identification. This inventory added a few disease genes 

180 identified before 1999 but mainly numerous genes identified (or deliberately mutated) after 

181 2008. The total rat gene number listed here is over 300, illustrating the vigor of the rat 

182 biomedical research which led to enrichment of numerous disease models, with the 

183 translation to humans of disease gene discoveries in rats.
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184 Table 1: Alphabetical list of diseases and related traits with their causative rat genes and the human homologs

                          Rat                               

Phenotype                   Causative

                                 gene name(1)

                                Localisation(3)

                   Human

Phenotype             Ortholog 

                            gene name(2) 

                            Localisation(3)             

                       Comments References

A) MONOGENIC TRAITS

Addiction BdnfT 

3, 100.77 Mb

- - The heterozygous SD KO mutant exhibits no cocaine-

seeking behavior, unlike WT rats

[36]

Addiction Cdh13T

19, 50.85 Mb

Substance 

abuse, 

behavioral 

disorders

CDH13

16q23.3

The SS KO mutant shows a stronger responsiveness to 

cocaine, metamphetamine and saccharin

[37]

Addiction: 

opioid 

Grm2T

2q32, 

- - The Wistar KO mutant shows higher heroin self-

administration and heroin intake as well as reduced 

[38, 39]
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consumption 179.58 Mb sensitivity to cocaine reward; the results suggest that Grm2 

may play an inhibitory role in opioid action; see also 

below, Polygenic traits, Addiction: alcohol consumption

Adiposity (fat 

pads)

Slc22a18**

1, 216.67 Mb

- - Positional identification revealed a splicing mutation in the 

SHR/NCrj rat (which shows reduced fat pad weight); in 

3T3-L1 cells, Slc22a18 KO leads to reduction in lipid 

accumulation

[40]

Aganglionosis 

(spotting lethal: 

sl)

Ednrb**

15q22, 

88.00 Mb

Hirschsprung 

disease 

EDNRB 

13q22

Direct analysis of the gene in sl rats revealed a deletion; the 

mutation was then shown to segregate with the phenotype in 

congenics; phenotype modulated by modifier genes, 

including Gdnf; this gene also controls the captopril effects 

on blood pressure; in the GK strain, the null mutant causes 

embryonic death; see also below, Polygenic traits, Blood 

pressure: captopril effects

[41-47]

ALSP Csf1r ALSP CSF1R See Macrophage development [48]
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Amelogenesis 

imperfecta

Sp6**

10q31, 

84.96 Mb

- - Direct sequencing of the gene revealed a insertional 

mutation in a mutant SHRSP strain; the mutation was then 

shown to segregate with the phenotype; partial 

complementation in Sp6 transgenic rats

[49]

Analbuminemia Alb**

14p21, 

19.18 Mb

Analbuminemi

a

ALB

4q13.3

Direct cloning of the mutant gene revealed a 7 bp deletion at 

splicing donor site in intron H of analbuminemic rat, which 

does not produce cytoplasmic albumin mRNA

[50]

Anemia (white 

spotting rat: 

Ws/Ws)

Kit*

14, 35.07 Mb

- - Direct sequencing of the Kit cDNA revealed a 12bp deletion 

in the Ws/Ws strain, by comparison with the BN and SD  

sequences

[51]

Anemia 

(Belgrade rat)

Slc11a2**

7, 142.03 Mb

- - Positional identification of the gene (from Belgrade rats) 

which shows a missense mutation, inactivating iron transport

[52]

Angelman 

syndrome model

Ube3aT

1, 116.59 Mb

Angelman 

syndrome

UBE3A

15q11.2

The SD KO mutant shows delayed reflex development, 

motor deficits in rearing and fine motor skills, aberrant 

social communication, impaired touchscreen learning and 

[53]
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memory, decreased brain volume and altered neuroanatomy

Ataxia and 

seizure (groggy 

rat)

Cacna1a**

 19, 25.45 Mb

FHM1, EA2, 

SCA6

CACNA1A       

19p13

Positional identification of the gene which shows a missense 

mutation in the groggy rat, absent in other strains

[54]

Ataxia-

telangiectasia

AtmENU, T

8q24, 

58.02 Mb

Ataxia-

telangectiasia

ATM

11q22.3

Rats lacking ATM (missense or KO mutation) display 

paralysis, neuroinflammation and have significant loss of 

motor neurons and microgliosis in the spinal cord

[55, 56]

Autism 

spectrum 

disorders 

Cntnap2T

4, 74.70 Mb

Epilepsy 

(CDFE 

syndrome) and 

autism 

spectrum 

disorders

CNTNAP2

7q35-q36.1

An SD KO mutant shows a delayed maturation of auditory 

processing pathways and striking parallels to disruptions 

reported in autism spectrum disorders; see also below: 

Epilepsy

[57]

Autism 

spectrum 

Fmr1T

Xq37, 

Autism 

spectrum 

FMR1

Xq27.3

The SD KO mutant exhibits abnormalities in autism-relevant 

phenotypes including juvenile play, perseverative behaviors, 

[58]
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disorders 154.68 Mb disorders and sensorimotor gating; see also below, Fragile X 

syndrome model

Autism 

spectrum 

disorders

Nlgn3T

X, 71.20 Mb

Autism 

spectrum 

disorders

NLGN3

Xq13.1

The SD KO mutant exhibits abnormalities in autism-relevant 

phenotypes including juvenile play, perseverative behaviors, 

sensorimotor gating and sleep disruptions 

[58, 59]

Autism 

spectrum 

disorders

Shank2T

1, 217.15 Mb

Autism 

spectrum 

disorders

SHANK2

11q13.3-

q13.4

The SD KO mutant exhibits social and repetitive 

impairments, as well as a profound phenotype of 

hyperactivity and hypermotivation that can be ameliorated 

through the administration of dopamine receptor 1 or 

metabotropic glutamate receptor 1 antagonists

[60]

Brain 

development 

(qc)

Lmx1a**

13, 85.92 Mb

- - Positional identification of the gene, probably involved in 

development of the ventricular system and dorsal migration 

of neurons

[61]

Cancer Brca2ENU

12p12, 

Breast, ovarian 

and other 

BRCA2

13q13.1

The SD KO mutant is sterile and develops a variety of 

tumors; surprisingly, the female KO rat does not show any 

[62]
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0.50 Mb cancers increased incidence of mammary carcinomas

Cancer Msh6ENU

6, 11.64 Mb

Lynch 

syndrome 

(HNPCC)

MSH6

2p16

Diverse tumors appear in the homozygous Wistar KO 

mutant; the tumors exhibit microsatellite instability 

[63]

Cancer Tp53 ENU, T

10q24, 

56.19 Mb

Li-Fraumeni 

syndrome

TP53

17p13.1

The heterozygous KO mutants (F344, Wistar, DAc8) 

develop lymphomas or different types of sarcomas (more 

typical of human tumors than those found in Tp53 mice 

mutants), depending on the genetic background

[64-66]

Cancer, colon ApcENU

18p12, 

27.01 Mb

Familial colon 

cancer

APC

5q21-q22

Two models are available; the Pirc mutant  is homozygous 

lethal while the heterozygous rat develops polyposis and 

colon cancers, and thus mimics the  human APC-dependent 

neoplasia (unlike the Apc mutant mice); the KAD mutant is 

homozygous, viable and shows enhanced susceptibility to 

colon cancer-inducing agents

[67-69]

Cancer, Cdkn1b**, Multiple CDKN1B Positional identification of the gene (encoding p27Kip1), [70, 71]
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multiple 

endocrine 

neoplasia-like 

syndrome X

4q43, 

168.69 Mb

endocrine 

neoplasia type 

4

12p13.1 mutated in the MNX (SDwe) rat; subsequently, a 

causative mutation was found in the CDKN1B gene of a 

patient presenting with pituitary and parathyroid 

tumors; see also below, Polygenic traits, Cancer, 

mammary gland development

Cancer, renal 

carcinoma

Flcn**

10, 46.15 Mb

Birt-Hogg-

Dube 

syndrome

BHD

17p11.2

Positional identification of the gene: frameshift mutation in 

the Nihon rat gene, causing a dominant phenotype; LOH in 

tumors

[72]

Cancer, renal 

carcinoma (Eker 

rat)

Tsc2**

10q12, 

13.96 Mb

Renal 

carcinoma

TSC2

16p3.13

Positional identification of the gene; deletion of the 3’ end of 

the gene; LOH in tumors, which only express the mutant 

mRNA

[73]

Cardiac 

inflammation 

and fibrosis

Sh2b3T

12, 40.26Mb

Increased risk 

of myocardial 

infraction 

SH2B3

12q24

The SS KO mutant shows exacerbated chronic inflammation 

and fibrosis post myocardial infraction (the gene also 

controls blood pressure: see below, Polygenic Traits)

[74]

Cardiac Il1rl2T - - An SD mutant was generated with cardiac-specific Il1rl2 [75]

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.23.003384doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.003384
http://creativecommons.org/licenses/by/4.0/


17

ischemia 9, 47.04 Mb (Il36r) KO; this mutant shows improved cardiac function, 

reduced inflammatory response and apoptosis after 

ischemia-reperfusion

Cardiac 

ischemia

UbdT

20, 1.87 Mb

- - The SD KO mutant shows cardiac dysfunction and increased 

cardiomyocyte apoptosis after myocardial infarction, 

associated with reduced Cav3 expression 

[76]

Cardiomyopathy Dnmt1T

8, 21.92 Mb

- - An SD mutant was generated with cardiac-specific Dnmt1 

KO; this mutant shows protection against pathological injury 

induced by adryamycin (increased expression of DNMT1 is 

observed in familial hypertrophic cardiomyopathy patients)

[77]

Cardiomyopathy

( atrial)

Myl4T

10, 92.63 Mb

Atrial 

cardiomyopath

y

MYL4

17q21.32

The KO mutant reproduces the clinical phenotype, showing 

atrial arrhythmias, left atrial dilation and progressive atrial 

fibrosis

[34]

Cardiomyopathy Rbm20**

1, 274.39 Mb

Dilated 

cardiomyopath

RBM20

10q25.2

Positional identification of the gene; deficiency of Rbm20 

alters splicing of several transcripts, such as titin and reduces 

[78]
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y exercise capacity  

Cataract (NUC1 

rat)

Cryba1

10, 65.16 Mb

Cataract CRYBA1

17q11.2

Positional identification of the gene: insertion in exon 6 of 

the NUC1 rat; the mutation is recessive and impairs the 

development of the retinal pigmented epithelium

[79, 80]

Cataract Crygd**

9q32, 

71.77 Mb

- - Positional identification of the gene: mutation in the start 

codon of the gene in the SS/Jr-Ctr strain

[81]

Cataract Gja3**

15p12, 

41.15 Mb

Cataract GJA3

13q12.11

Positional identification of the gene: non-conservative base 

substitution in the gene in a SHRSP-derived strain

[82]

Cataract Gja8**

2, 199.05 Mb

Cataract GJA8

1q21

Positional identification of the gene; 2 rat strains show 

dominant cataract due to non-conservative base substitutions 

(SHR-Dca and UPL); the SHR-Dca homozygote exhibits 

microphthalmia; this mutation also lowers blood pressure; 

see also below, Polygenic Traits, Blood pressure

[83, 84]
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Cataract Lss**

20, 12.84 Mb

Cataract LSS

21q22.3

Positional identification of the gene: abnormal splicing in 

the Shumiya cataract rat; phenotype modified by Fdft1 

(15, 50.10Mb); both genes affect cholesterol synthesis; 

lanosterol treatment reduces cataract severity

[85, 86]

Cataract (kfrs4 

mutation)

Mip**

7, 2.64 Mb

Catarcat MIP

12q13.3

Positional identification of the gene which, in the mutant, 

shows a 5bp insertion leading to a frameshift mutation 

producing a truncated protein; the (recessive) mutant was 

derived from a stock of fancy rats

[87]

Chediak-Higashi 

syndrome model 

(beige) 

Lyst*

17, 90.32 Mb

Chediak-

Higashi 

syndrome 1

LYST

1q42

Direct sequencing of the mutant rat beige gene revealed the 

presence of a large deletion

[88]

Cerebellar 

vermis defect 

(cvd)/ Hobble 

(hob)

Unc5c**

2q44, 247.05 

Mb

- - Positional identification of the gene; the rat mutation is  

homolog to mouse rostral cerebellar malformation mutation 

in the gene encoding netrin receptor C

[89]
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Coat color : 

albinism ; 

siamese

Tyr***,T 

1q32, 

151.01 Mb

Ocolocutaneou

s albinism

TYR

11q14.3

Positional identification of the siamese mutant; an albino DA 

KO mutant was also generated and correction of the albino 

mutation was done using the CRISP-Cas system

[90-93]

Coat color : 

nonagouti

Asip***

3, 150.49 Mb

- - Cloning of the basis of homology with the mouse variant: 

deletion in exon 2 of the nonagouti variant; correction of the 

mutation using the CRISP-Cas system

[93, 94]

Coat color : 

hooded (h) and 

the white 

spotting rat 

(Ws/Ws)

Kit***

14, 35.07 Mb

- - Positional identification of the gene: two different insertions 

found in two alleles (h and hT); correction of the hooded 

mutation using the CRISP-Cas system; the gene is also 

mutated in the Ws/Ws rat (no melanocytes)

[51, 93, 95]

Cockayne 

syndrome (CS) 

model

Ercc6T

16, 8.73 Mb

Cockayne 

syndrome

ERCC6

10q11.23

The SD KO mutant display DNA repair-deficient 

phenotypes and brain abnormalities, features that resemble 

those of CS patients

[96]

Congenital Cacna1f** Congenital CACNAIF Direct sequencing of the cDNA revealed a mutation [97]
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stationary night 

blindness

X, 15,71 Mb stationary 

night blindness

Xp11.23 generating a stop codon in a strain of spontaneous mutant 

rat; in a backcross the mutation was found to segregate with 

the phenotype

Creeping (cre) Reln**

4q11, 9.35 Mb

Lissencephaly RELN

7q22

Positional identification of the gene, mutated in the KZC rat; 

the rat mutant is homolog to the mouse reeler

[98]

Cystic fibrosis CftrT

4q21, 

42.69 Mb

Cystic fibrosis CFTR

7q31.2

Three mutant strains were described: two KO mutants and a 

mutant carrying the most frequent human mutation 

(F508del); they recapitulate many aspects of the human 

disease (defects in airway mucus production and tracheal 

development, involution of the vas deferens, intestinal 

obstruction…..); see also below, Polygenic traits, Bone 

growth

[99, 100]

Cystic 

leukoencephalop

athy model

Rnaset2T

1, 53.17 Mb

Cystic 

leukoencephal

opathy

RNASET2

6q27

The SD KO mutant shows no brain cystic lesions but 

exhibits enlarged prefrontal cortex and hippocampal 

complex as well as memory deficits (less severe 

[101]
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neurodegeneration phenotype than the human patients)

Cystinosis Ctns**

10, 59.75 Mb

Cystinosis CTNS

17p13.2

Positional identification of the gene, partially deleted in the 

Long-Evans Agouti rat; the mutation also causes renal 

glucosuria

[102]

Danon disease 

model

Lamp2T

Xq35, 

124.72 Mb

Danon disease LAMP2

Xq24

The SD KO rat shows great similarity to human patients: 

hypercholesterolemia, hyperglycaemia, cardiomyopathy, and 

other disorders including retinopathy and chronic kidney 

injury

[103]

Deafness (dfk : 

deafness Kyoto)

Kncq1**

1q41, 

223.15 Mb

Long-QT 

syndrome, 

deafness

KCNQ1

11p15.5

Positional identification of the gene, partially deleted in the 

dfk rat, which is also hypertensive

[104]

Deafness Myo7a**

 1, 163.00 Mb

Usher 

syndrome 1B

MYO7A 

11q13.5

Positional identification of an ENU-induced mutation in 

Wistar rats (tornado phenotype)

[105]

Deafness; Kyoto 

circling (kci)

Pcdh15**

 20, 14.95 Mb 

Usher 

syndrome 1F

PCDH15 

10q21

Positional identification of the gene, which shows a 

premature stop codon in the kci mutant

[106]
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Deafness, retinal 

dysfunction 

Myo15a**

10, 46.84 Mb

Deafness, 

DFNB3

MYO15A

17p11.2

Positional identification of the gene which shows a non-

conservative base substitution in the LEW/Ttm-ci2 rat, 

causing both deafness and blindness

[107]

Demyelination 

(see also below: 

Hypomyelinatio

n)

AspaT

10, 59.84 Mb

Canavan 

disease

ASPA

17p13.2

The F344 KO mutant shows abnormal myelination in the 

central nervous system (but no tremor); see also below, 

Tremor

[108]

Demyelination 

(les)

Mbp*

18, 79.33 Mb

- - Sequencing of the les Mbp gene revealed that it contains a 

large insertion altering the splicing of the Mbp RNA

[109]

Demyelination 

(dmy)

Mrs2*** 

17, 42.64 Mb

- - Positional identification of the gene; complementation by 

cDNA transgenesis in the dmy/dmy rat, which carries an 

inactivating novel splice acceptor site 

[110]

Demyelination 

(md)

Plp1**

X, 107.50 Mb

- - The mutation is linked to the X chromosome; sequencing of 

the mutant Plp1 cDNA revealed a missense mutation, 

probably inducing a conformational change in the protein 

[111]
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(homologous to the jimpy mouse mutant)

Demyelination 

(Taiep)

Tubb4a**

9, 9.96 Mb

Hypomyelinati

on

TUBB4A

19p13.3

The mutation was mapped to chromosome 9 in 12 Mb region 

containing the Tubb4a gene; sequencing of the mutant 

cDNA revealed a missense mutation

[112]

Diabetes 

insipidus

Avp***  

3q35, 

123.12 Mb                                 

Neurohypophy

s-eal diabetes 

insipidus

AVP 

20p13

Direct cloning of the gene which shows a single base 

deletion in the Brattleboro rat; complementation by 

transgenesis in the hypothalamus

[113, 114]

Dilute-

opisthotonus 

(dop)

Myo5a**

8, 82.04 Mb

Griscelli 

syndrome type 

I

MYO5A

15q21.2

Direct sequencing of the cDNA revealed an in frame, 47aa 

deletion in the dop Myo5a gene, leading to under-expression 

of the protein (resulting in diluted coat color and ataxia); a 

second mutant was identified later by whole genome 

sequencing: it shows several pleiotropic neuropathological 

and biochemical alterations leading to neurodegeneration

[115, 116]

Duchenne 

muscular 

DmdT

Xq22, 

Duchenne 

muscular 

DMD

Xp21.2-

Wistar or SD KO rats show several muscle abnormalities 

(necrosis, fibrosis, reduced strength, reduced motor activity) 

[117, 118]
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dystrophy 51.15 Mb dystrophy p21.1 and dilated cardiomyopathy

Drug behavioral 

effects

GhsrENU

2, 113.06 Mb

- - Cocaine-treated FHH mutant rats show diminished 

development of cocaine locomotor sensitization relative to 

WT rats; see also below, Food intake

[119]

Drug 

metabolism

Abcb1aT

4q12, 

22.34 Mb

- - Wistar or SD KO mutants show increased brain penetration 

of drugs and other alterations in drug pharmacokinetic 

parameters

[120-123]

Drug 

metabolism

Abcg2T     

4, 88.76 Mb

- - The SD KO mutant shows increased brain penetration of 

drugs and other alterations in drug pharmacokinetic 

parameters; see also below, Hyperbilirubinemia

[121, 122]

Drug 

metabolism

Cyp2c11T

1q53, 

257.68 Mb

- - The SD KO mutant male shows reduced fertility (CYP2C11 

is a male-specific cytochrome P450); expression of other 

P450’s is upregulated; in vivo, no significant differences 

were found in drug metabolism 

[124]
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Drug 

metabolism

Cyp2e1T

1q41, 

213.51 Mb

- - The SD KO rat is physiologically normal, shows a 

compensatory expression of CYP3A1 and impaired 

metabolism of chlorzoxazone, a CYP2E1 substrate

[125]

Drug 

metabolism

Cyp3a1T

12, 110.539 

Mb

+ Cyp3a2T 

12, 116,41 Mb

- - Double SD KO rats are physiologically normal but show 

increased testosterone serum concentrations; they also show 

a compensatory expression of several cytochrome isoforms 

and impaired metabolism towards CYP3A1/2 substrates

[126]

Dwarfism 

(SDR)

Gh**

10q32, 

94.48 Mb

Dwarfism GH

17q24

Direct cloning of the gene revealed a point mutation causing 

abnormal splicing in the spontaneous dwarf rat

[127]

Dwarfism (mri) Prkg2**

14, 12.22 Mb

Growth 

retardation

Candidate: 

PRKG2

4q13.1-

q21.1

Positional identification of the gene; complementation in 

cultured chondrocyte by cDNA transfection (restoration of 

differentiation)

[128-130]
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Dwarfism (rdw 

rat)

Tg**

7, 107.47 Mb

- - Sequencing of the Tg cDNA from the rdw rat revealed a 

missense mutation; rescue from dwarfism was obtained by 

thyroid function compensation in rdw rats 

[131, 132]

Dystonia type 

25

GnalT

18q12, 

62.80 Mb

Dystonia type 

25

GNAL

18p11

The SD KO mutant shows early-onset phenotypes associated 

with impaired dopamine transmission, such as reduction in 

locomotor activity and an abnormal motor skill learning 

ability; it may be a valuable tool for finding a suitable 

treatment for dystonia type 25

[133]

Ear and eye 

development 

(dumbo 

mutation)

Hmx1**

14, 80.54 Mb

Oculo-

auricular 

syndrome

HMX1

4p16.1

Positional identification of the gene; large deletion, 80 kb 

downstream the dumbo rat gene, which is not expressed in 

the embryo craniofacial mesenchyme

[134]

Eosinophilia 

(MES rat)

Cyba***

19, 55.25 Mb

- - Positional identification of the gene; the mutant gene is 

deleted in the 5’ splice site of intron 4, leading to an 

abnormal mRNA and absence of NADPH oxidase activity; 

[135]
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the normal phenotype was restored by transgenesis of the 

normal gene

Epilepsy 

(flathead rat)

Cit**

12, 46.33 Mb

Microcephaly CIT

12q23.24

Positional identification of the gene, which shows a single 

base deletion in the mutant rat (fh/fh), generating a stop 

codon; cytokinesis is defective in neuronal progenitors; this 

mutation also leads to microcephaly (see below)

[136, 137]

Epilepsy Cntnap2T

4, 74.70 Mb

Epilepsy 

(CDFE 

syndrome) and 

autism 

spectrum 

disorders

CNTNAP2

7q35-q36.1

An SD KO mutant exhibits motor seizures, hyperactivity and 

increased consolidation of wakefulness and rapid eye 

movement sleep; see also above: Autism spectrum disorders

[138]

Epilepsy 

(ADLTE 

mutant)

Lgi1ENU

1, 256.95 Mb

Epilepsy 

(ADLTE)

LGI1

10q23.33

The F344 mutant shows early-onset spontaneous epileptic 

seizures and audiogenic seizure susceptibility; astrocytic 

Kcnj10 expression is down-regulated

[139, 140]
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Epilepsy (and 

ataxia)

Kcna1ENU

4q42, 

159.19 Mb

Episodic ataxia 

type 1

KCNA1

12p13.32

An F344 ENU-induced mutant showing dominant 

myokimia, neuromyotonia and epileptic seizures was used 

for positional identification of the gene; expression studies in 

Xenopus oocytes

[141]

Epilepsy (febrile 

seizure ; Hiss 

rat)

Scn1aENU

 3q, 52.39 Mb

Febrile seizure, 

epilepsy

SCN1A 

2q24.3

The Hiss mutant shows impaired GABA receptor-mediated 

synaptic transmission

[142]

Epilepsy Sv2aENU

2, 198.32 Mb

Epilepsy, 

microcephaly

SV2A

1q21.2

The F344 mutant shows a high susceptibility to the 

development of kindling

[143]

Fabry disease 

model

GlaT

X, 105.41 Mb

Fabry disease GLA

Xq22.1

The DA KO mutant manifests symptoms similar to those 

seen in Fabry patients such as altered touch and pain 

detection; the sensory neuron cell membrane is sensitized to 

mechanical probing

[144]

Food intake GhsrENU, T

2, 113.06 Mb

- - The FHH mutant shows reduced intake of palatable, high-

calorie food (see also above, Drug behavioral effects); the 

[145-147]
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Wistar KO rat shows reduced body weight and blunted food 

consumption

Fragile X 

syndrome model

Fmr1T

Xq37, 

154.68 Mb

Fragile X 

syndrome

FMR1

Xq27.3

Two SD KO strains are available; they show disrupted 

cortical processing of auditory stimuli, hippocampal cellular 

and synaptic deficits, memory defects, abnormal visual 

responses, impaired spatial learning, attention deficits 

(deletion of the KH1 domain); see also above, Autism 

spectrum disorders

[148, 149 and 

references 

therein, 150]

Fused 

pulmonary lobes 

(fpl)

Frem2**  

2, 142.75 Mb

Fraser 

syndrome

FREM2 

13q13.3 

Direct sequencing of the fpl cDNA showed a premature stop 

codon; similarity with the mouse Frem2 mutant

[151]

Germline 

development

Prdm14T

5, 5.51 Mb

- - The KO mutant fails to generate primordial germ cells; 

Prdm14 thus plays a key role in the development of these 

gamete precursors

[152]

Glycogenosis Phkg2** Glycogenosis PHKG2 Direct sequencing of the human and rat cDNA’s revealed [153]
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(PHK 

deficiency; gsd 

rat)

1, 199.02 Mb 16p11.2 mutations in patients and in the gsd rat

Hairlessness Hr**

15, 52.24 Mb

Alopecia, 

atrichia

HR

8p21.2

ENU-induced mutant (Kyoto rhino rat) selected on the basis 

of the phenotype and then positional identification of the 

gene; the mutant shows hair loss as well as proteinuria and 

glomerulosclerosis

[154]

Hairlessness Krt@**

7q36, ~141 Mb

- - Positional identification of the locus revealing a 80kb 

deletion of several keratin genes in the Hirosaki hairless rats

[155]

Hairlessness 

(rex mutation)

Krt71**

7q36, 143.35 

Mb

- - Positional identification of the gene which has a 7bp deletion 

at the splicing acceptor site of the rex intron 1; curly hair in 

heterozygotes; hair loss in homozygous

[156]

Hairlessness Prss8**

1q, 199.37 Mb

- - Positional identification of the gene: mutations found in 

affected rats (CR hairless and fuzzy) as well as in mouse 

(frizzy) 

[157, 158]
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Hairlessness and 

dermatitis

Trpv3**

10, 59.83 Mb

- - Direct sequencing of the rat cDNA, after positional 

identification  of the mouse gene: dominant, missense 

mutation in the WBN/Kob-Ht rat and the DS-Nh mouse

[159]

Hemochromatos

is

Tfr2*

12q12, 

22.18 Mb 

Hemochromat

osis

TFR2 

7q22

Direct sequencing of the gene revealed an Ala679Gly 

polymorphism; homozygosity for this SNP is associated 

with the mutant phenotype in a Hsd:HHCL Wistar stock

[160]

Hemophilia A 

(WAG-

F8m1Ycb)

F8**,T

18, 367.17 Mb

Hemophilia A, 

hemophilic 

arthropathy

F8

Xq28

Evaluation of the individual clotting factors revealed a 

missense mutation in the factor FVIII cDNA of the mutant 

rat; the hemostatic defect was corrected by administration of 

human factor VIII; two KO mutants show an hemophilic 

phenotype and seems to be good models of hemophilic 

arthropathy or bone trnsplantation

[161-164]

Heriditary 

tyrosinemia type 

I model

FahT

1, 146.71 Mb

Heriditary 

tyrosinemia 

type I

FAH 

15q25.1

The SD KO mutant shows the major manifestations of the 

human disease: hypertyrosinemia, renal tubular damage and 

liver fibrosis and cirrhosis; Cas9n-mediated genome editing 

[165, 166]
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was used to correct the defect

HPS model: 

Ruby/Red eye 

dilution (platelet 

storage disease)

Rab38*

1, 152.07 Mb

HPS - Direct sequencing of the gene; same mutation in FH and TM 

rats, probably derived from a common ancestor; lung 

surfactant secretion is altered in the mutant rats; Rab38 also 

controls proteinuria (QTL Rf2; see below)

[167, 168]

Hydrocephalus Ccdc39T

2, 120.28 Mb

- - The SD KO mutant shows severe hydrocephalus with 

subarachnoid haemorrhage and inflammatory cell invasion 

into the perivascular space, as well as impaired glymphatic 

cerebrospinal fluid flow

[169]

Hydrocephalus Ccdc85cT

6, 132.11 Mb

- - The F344 KO mutant shows non-obstructive hydrocephalus, 

subcortical heterotopia and intracranial hemorrhage

[170]

Hydrocephalus, 

X-linked

L1camT

Xq37, 

156.90 Mb

X-linked 

hydrocephalus

L1CAM

Xq28

The SD KO male mutant shows reductions in fractional 

anisotropy and axial diffusivity in the corpus callosum, 

external capsule, and internal capsule

[171]

Hyperbilirubin Abcc2**, T Hyperbilirubi ABCC2 Direct sequencing of the cDNA in the Eisai [121, 172-174]
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emia 1q, 263.55 Mb -nemia II / 

DJS

10q24 hyperbilirubinemic rat (EHBR) revealed a premature 

stop codon; the same approach in the TR rat showed a 

1bp deletion; alterations were found in drug 

pharmacokinetics in an SD KO mutant; mutations were 

then discovered in the ABCC2 gene of DJS patients

Hyperbilirubine

mia 

Slco1b2T

4, 175.81 Mb

Hyperbilirubin

e-mia (Rotor 

type)

SLCO1B3

12p12.2

The SD KO mutant shows increased levels of serum 

bilirubin and altered pharmacokinetic behavior of 

pravastatin, an SLCO1B2 substrate; it could be a good 

model of the human Rotor syndrome

[175]

Hyperbilirubine

mia 

Ugt1a1***

9q35, 

95.30 Mb

Hyperbilirubin

-emia, Crigler-

Najjar 

syndrome

UGT1A

2q37.1

Direct sequencing of cDNA showed that the Gunn rat has a 

frameshift mutation in the 3’ region of the gene; correction 

of the defect could be achieved with recombinant UGT1A 

adenoviruses

[176, 177]

Hypercholestero

lemia

ApoeT

1, 80.61 Mb

Familial 

APOE 

APOE

19q13.32

An SD KO mutant displays hypercholesterolemia, 

atherosclerosis, hepatic steatosis and decreased HDL-

[178-180]
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deficiency cholesterol levels; another mutant also shows adventitial 

immune infiltrates; an Apoe/Ldlr double KO mutant was 

also studied by Zhao et al (2018) [178]

Hypercholestero

l-emia

LdlrENU, T

8, 22.75 Mb

Familial 

hypercholester

o-lemia

LDLR

19p13.2

The F344 and SD mutants display hypercholesterolemia, 

hypertriglyceridemia, atherosclerosis, xanthomatosis; 

hepatic steatosis was also found in the SD mutant

[178, 181, 182]

Hypercholestero

l-emia 

(diet-induced: 

ExHc rat)

Ppp4r3b**

14, 113.57 Mb

- - Positional identification of the gene, coupled with gene 

expression analyses; the gene is under-expressed in the 

ExHC rat and carries a strain-specific10 bp deletion leading 

to a premature stop codon

[183]

Hypodactyly 

(hd)

Cntrob**

10q24, 

55.90 Mb

- - Positional identification of the gene; the hd allele carries a 

retroviral insertion; centrobin thus controls both limb 

development and spermatogenesis

[184]

Hypohidrotic 

ectodermal 

Edaradd**

17, 90.80 Mb 

Hypohidrotic 

ectodermal 

EDARADD 

1q42.3

Positional identification of the gene, which shows a 

missense mutation in the sparse-and-wavy rat (swh); sparse 

[185]
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dysplasia (swh) dysplasia hair and oligodontia in this mutant  rat and in human patients

Hypomyelinatio

n

Bace1T

8, 50.14 Mb

- - The SD KO mutant shows increased axon density and 

relatively thinner myelin sheaths around axons of the sciatic 

nerves; it also shows increased mortality 

[186]

Hypothyroidism TshrT

6q31.2, 

115.17 Mb

Congenital 

hypothyroidis

m

TSHR

14q31.1

The SD KO mutant is infertile and shows the dwarf 

phenotype as well as suppression of the thyroid-specific 

genes; the phenotype can be reversed by levothyroxine

[187]

Hypotrichosis 

(hairlessness)

Dsg4**

18, 12.06 Mb

Hypotrichosis

18q12.1

DSG4

18q12

Direct sequencing of the IC hairless rat gene, which shows a 

large deletion; same approach in the lanceolate hair (lah) rat 

revealed  a missense mutation; positional identification of 

the mutant gene from an SHR congenic strain, which shows 

a premature termination codon

[188-190]

Immunodeficien

-cy

IghT

6q32, ~150 Mb

- - Two SD KO mutants show absence of Ig and B cells; 

transgenesis of human IG loci reconstitutes B cell 

development and leads to humanized Ig production

[191, 192]
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Immunodeficien

cy (athymia: 

nude)

Foxn1**, T

10, 65.62 Mb

Lack of 

thymus, 

anencephaly

FOXN1

17q11.2

Following positional identification of the mouse gene, the 

homolog rat gene was found to be mutated in the nude strain, 

disrupting thymus development and hair growth; two 

induced Wistar mutants were generated: they show thymus 

deficiency and incomplete hairless which was characterized 

by splicing variants

[193-195]

Immuno-

deficiency 

PrkdcT

11, 89.29 Mb 

Immuno-

deficiency, 

granuloma, 

autoimmunity

PRDKC

8q11.21

The F344 KO mutant shows severe combined 

immunodeficiency and growth retardation; this mutant was 

used to establish a model for preclinical testing of human 

neural precursor cells transplantation as a treatment of 

neonatal brain damages; a double KO mutant (Prkdc-/- and 

Il2rg-/-) was also generated; this double mutant shows 

abolishment of natural killer cells  

[196, 197]

Immunodeficien

cy (SCID)

Rag1T 

3, 91.21 Mb

SCID RAG1

11p12

The LEW KO mutant shows lymphocyte depletion (and 

attenuation of hypertension and renal damage: see below)

[198]
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Immunodifficien

cy (SCID)

Rag2T

3, 91.19 Mb

SCID RAG2

11p12

The SD KO rat lacks mature B and T cells and was shown to 

be a viable host for a range of xenograft studies

[199]

Immunodeficien

cy (SCID)

Rag1T 

3, 91.21 Mb

Rag2T

3, 91.19 Mb

Il2rgT

X, 71.17 Mb

- - The SD triple KO mutant shows impaired development of 

lymphoid organs, is severely immunodeficient with an 

absence of mature T, B, and NK cells and supports fast 

growth of patient-derived xenografts thus holding great 

potential to serve as a new model for oncology research

[200]

Immunodeficien

cy (X-SCID)

Il2rgT

X, 71.17 Mb

X-SCID IL2RG

Xq13.1

Two KO mutants are available; they show severe combined 

immunodeficiency (absence of B and T lymphocytes and of 

NK cells); a double KO, deficient for both Il2rg and Rag1, 

was also described: see above

[201, 202]

Infertility (and 

cryptorchidism)

Adamts16T

1, 36.47 Mb

- - The KO SS homozygous mutant exhibits cryptorchidism and 

is infertile; the gene also controls blood pressure (see below, 

Polygenic Traits, Blood Pressure)

[203]
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Infertility 

(testicular 

feminization)

Ar*

X, 67.66 Mb

Testicular 

feminization

AR

Xq12

Direct sequencing of the gene in a testicular feminized 

strain: a missense mutation was found in the steroid-binding 

domain of the androgen receptor 

[204]

Infertility Bscl2ENU

1, 225.04 Mb

Congenital 

generalized 

lipodystrophy

BSCL2

11q12.3

The male mutant is infertile and shows small testis and 

azoospermia (the female is fertile); the gene could be 

involved in male human fertility; see also below, 

Lipodystrophy and Brain development

[205]

Infertility Defb23T

3, 147.93 Mb

Defb26T 

3, 147.98 Mb

Defb42T

15, 46.16Mb

- - The male SD mutant with CRISPR/Cas9-mediated single 

Defb gene disruption has no obvious fertility phenotype but 

the multiple KO mutant (Defb23/26 or Defb23/26/42) is 

subfertile

[206]

Infertility (male 

pseudohermaphr

Dhh**

7, 140.58 Mb

Gonadal 

dysgenesis

DHH

12q13.12

Positional identification of the gene which shows a missense 

mutation in the TF rat; the mutation causes agenesis of 

[207]
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-odism: TF rat) Leydig cells and androgen deficiency

Infertility Esr1T

1q12, 

41.19 Mb

- - Male and female SD KO rats are infertile and show gonadal 

pathologies; see also below, Polygenic Traits, Metabolism

[208]

Infertility Esr2T

6q24.2, 

99.16 Mb

- - Two SD KO mutants were generated; male mutants are 

fertile while female mutants are infertile (no ovulation); 

however male mutants exhibit prostatic glandular 

hyperplasia and changes in expression of genes involved in 

epithelial proliferation and benign tumor formation; in the 

female mutants, numerous granulosa cell genes are 

differentially expressed (including Kiss1) 

[209-211]

Infertility Kiss1T

13, 50.53 Mb

- - Male and female KO rats fail to show secretion of luteinising 

hormone and onset of puberty

[212]

Infertility (ifm 

mutation)

Sbf1**

7, 130.26 Mb

Charcot-

Marie-Tooth 

SBF1

22q13.33

Positional identification of the gene, which shows a mutation 

at a splice site in the ifm mutant; homozygous males are 

[213]
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disease type 

4B3

infertile (azoospermia); females are normal

Infertility 

(tremor rat: 

TRM/Kyo, 

carrying the tm 

mutation)

Spata22***

10, 59,89 Mb

- - Positional identification of a deletion spanning >200kb; the 

tm deletion causes infertility and absence-like seizure in both 

sexes; male infertility was complemented by Spata22 

transgenesis

[214]

Lipodystrophy, 

congenital 

generalized 

Bscl2ENU

1, 225.04 Mb

Congenital 

generalized 

lipodystrophy

BSCL2

11q12.3

The mutant develops generalized lipodystrophy (lack of 

white adipose tissue); the mutant is glucose intolerant and 

shows elevated plasma triglyceride and concentrations; see 

also above Infertility and below, Brain development

[205]

Lipodystrophy, 

neuropathy

Lpin1**

6, 41.80 Mb

Rhabdomyolys

is 

Myoglobinuria 

Metabolic 

LPIN1 

2p25.1

ENU-induced mutant isolated on the basis of the phenotype 

and positional identification of the gene; the murine gene is 

mutated in the fld mouse (showing adipocyte defects and 

demyelination)

[215]
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disease traits

Lymphopenia 

(T-cell) & IBD

Themis**

1p, 17.28 Mb

- - Positional identification of the gene, which shows a mutation 

in the BNm rat (4-nucleotide insertion), impairing Treg 

function

[216]

Microcephaly 

(flathead rat)

Cit**

12, 46.33 Mb

Microcephaly CIT

12q23.24

Positional identification of the gene, which shows a single 

base deletion in the mutant rat (fh/fh), generating a stop 

codon; cytokinesis is defective in neuronal progenitors; this 

mutation also leads to epilepsy (see above)

[136, 217]

Morphogenesis Lpar1ENU

5, 75.56 Mb

- - The Msh6 mutant shows craniofacial disorder and small size [218]

mTORopathy Depdc5T

14, 83.09 Mb

Epilepsy DEPDC5

22q12.2-

q12.3

Homozygous F344 KO rats die in utero; heterozygous KO 

rats display cortical cytomegalic dysmorphic neurons and 

have altered cortical neuron excitability (upregulation of the 

mTORC1 pathway)

[219]

Mucopolysaccha Arsb*** Mucopolysacc ARSB Direct sequencing of the Arsb cDNA showed a frame shift [220, 221]
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r-idosis VI 2, 23.39 Mb haridosis VI 5q11-q13 mutation with premature stop codon in affected rats (MPR); 

enzyme replacement therapy

Multiple 

mitochondrial 

dysfunctions 

syndrome

Isca1T

17, 5.28 Mb

Multiple 

mitochondrial 

dysfunctions 

syndrome

ISCA1 The heterozygous SD KO mutant is normal but the 

homozygous mutant shows abnormal development at 8.5 

days and dies at embryonic stage

[222]

Myogenic 

response

Dusp5T

1, 274.25 Mb

- - The FHH.1BN congenic KO mutant shows greater myogenic 

response of cerebral arteries and enhanced autoregulation of 

cerebral blood flow

[223]

Neurological 

disorder (frogleg 

mutation)

Bckdk**

1, 199.35 Mb

Autism and 

epilepsy

BCKDK

16p11.2

The frogleg mutation causes abnormalities in hind limb 

function, reduced brain weight, infertility, seizures; 

positional identification of the gene which shows a critical 

missense mutation

[224]

Neuropathy 

(Chemotherapy-

C3T

9, 9.72 Mb

- - C3 is activated by neuronal cells in WT rats after paclitaxel 

administration; KO rats have reduced intradermal nerve fiber 

[225]
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induced 

peripheral 

neuropathy)

loss and mechanical allodynia after paclitaxel treatment

Obesity Cdkn1b*

4, 168.69 Mb

Multiple 

endocrine 

neoplasia type 

4

CDKN1B

12p13.1

The MNX (SDwe) rat is mutated in the Cdkn1b gene and 

shows multiple endocrine neoplasia syndrome (see above, 

Cancer); this mutant produces elevated levels of ghrelin 

(which has orexigenic effects) and shows increased food 

intake with enhanced body fat mass

[226]

Obesity LepT

4, 56.34 Mb

Obesity LEP

7q31

Targeted and ENU-induced mutations; F344 and SD KO rats 

are obese, infertile and immunodepressed

[227, 228]

Obesity Lepr**,T

5, 120.50 Mb

Obesity LEPR

1p31

Positional identification of the gene; missense or stop 

mutation in the Zucker fa and Koletsky obese (“corpulent”) 

rats, respectively; the SD KO mutant confirms the phenotype 

of the spontaneous mutant, with glucose intolerance, 

hyperinsulinemia, dyslipidemia,and diabetes complications

[229-231]
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Obesity Mc4rENU

18, 62.61 Mb

Obesity MC4R

18q22

The MSH6 KO mutant shows increased food intake and 

adipose mass 

[232]

Osteochondrody

splasia: (ocd)

Golgb1**

11,  66.76 Mb

- - Positional identification of the gene; the mutant shows an 

abnormal skeletal system and systemic edema

[233]

Osteopetrosis 

(incisors 

absent: ia)

Plekhm1**

10, 91.45 Mb

Osteopetrosis PLEKHM1

17q21.31

Positional identification of the gene: frameshift mutation 

in the ia rat; mutations discovered in the PLEKHM1 gene 

of osteopetrosis patients

[234]

Osteoporosis 

pseudoglioma 

model

Lrp5T

1, 218.82 Mb

Osteoporosis 

pseudoglioma

LRP5

11q13.2

Three independent SD KO lines were generated: they 

display decreased trabecular bone mass and quality as well 

as sparse and disorganized superficial retinal vasculature  as 

seen in LRP5-deficient humans

[235]

Parkinson 

disease  model

Lrrk2T

 7, 132.86 Mb

Familial PD 

(dominant)

LRRK2

12q12

The Long Evans KO mutant displays weight gain and an 

abnormal kidney, lung and liver phenotype

[236, 237]

Parkinson 

disease model

Nr4a1ENU

7, 142.90 Mb

- - The FHH KO mutant shows reduced dopamine cell loss and 

dyskinesia in an experimental Parkinson disease model; the 

[238]
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gene also controls renal function: see below, Renal injury

Parkinson 

disease  model

Park7T

5, 167.98 Mb

Familial PD 

(recessive)

PARK7 

1p36.23

The Long Evans KO mutant shows motor deficit and age-

dependent neuronal loss; Park7 is also involved in the 

control of PAH (see below, “Blood pressure”)

[239, 240]

Parkinson 

disease  model

PrknT

1, 48.88 Mb

Familial PD 

(recessive)

PRKN

6q26

The Long Evans KO mutant is not different from WT rats [240]

Parkinson 

disease model

Pink1T

 5, 156.68 Mb

Familial PD 

(recessive)

PINK1

1p36

The Long Evans KO mutant shows motor deficit and age-

dependent loss of nigral dopaminergic neuronal 

[239-241]

Parkinson 

disease model

Snca*

4, 90.78 Mb

Familial PD 

(dominant)

SNCA

4q22.1

Direct sequencing revealed a mutation in the Snca mRNA 

3’UTR in a mutant rat, which overexpresses synuclein alpha 

and shows functional alterations in the dopaminergic and 

glutamatergic systems

[242, 243]

Phelan-

McDermid 

syndrome 

Shank3T

7, 130.47 Mb

Phelan-

McDermid 

syndrome

SHANK3

22q13.33

The human neurobehavioral manifestations are due to 

mutations in SHANK3; one of these mutations (a deletion) 

was introduced in rats, which exhibited disabilities related to 

[35]
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those seen in the human patients; these deficits were 

attenuated by oxytocin treatment

Pinked eyed 

dilution (p)

Oca2**

 1q,  114.66 

Mb

Oculocutaneou

s albinism 

OCA2 

15q

Direct sequencing of the Oca2 cDNA revealed a deletion 

shared by several mutant strains, that also exhibit the same 

haplotype, distinct from control strains

[244]

Polycystic 

kidney disease 

(ADPKD) (cy/+ 

rat)

Anks6*** 

5, 62.64 Mb

Cystic kidney 

disease 

(Nephronophth

isis)

ANKS6 Positional identification of the gene, mutated in the Han SD 

(cy/+) rat; overexpression of the mutated variant causes 

polycystic kidney disease; mutations later found in the 

human gene

[245-247]

Polycystic 

kidney disease 

(ARPKD): 

nephronophtisis

Nek8**

10, 65.40 Mb

- - Positional identification of the gene, mutated in the Lewis 

Polycystic Kidney (LPK) rat, leading to abnormally long 

cilia on kidney epithelial cells

[248]

Polycystic 

kidney disease 

P2rx7T

12, 39.35 Mb

- - A P2rx7 KO was generated in the PCK rat, a model of 

ARPKD; the mutant shows slower cyst growth and 

[249]
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(ARPKD) reduction of renal pannexin-1 protein expression and daily 

urinary ATP excretion

Polycystic 

kidney disease 

(ARPKD) 

Pkhd1**

9q, 26.16 Mb

ARPKD PKHD1 

6p12.2

Positional identification of the rat gene, which lead to the 

identification of mutations in the human gene responsible 

for ARPKD

[250]

Polycystic 

kidney disease 

(Wpk rat)

Tmem67** 

5, 27.67 Mb

Meckel-

Gruber 

syndrome 

(MKS3)

TMEM67 

8q24

Positional identification of the rat gene, which lead to the 

identification of mutations in the human gene responsible 

for MKS3; central nervous system defects are also 

present in human and rat 

[251]

Polydactyly (Lx) Zbtb16**, T

8,  52.99 Mb

Skeletal 

defects and 

genital 

hypoplasia

ZBTB16

11q23.2

Positional identification of the gene which shows a 2.9 kb 

deletion in the Lx intron 3 and is down-regulated; the 

heterozygous SHR KO mutant shows anomalies in the 

caudal part of the body (caudal regression) and growth 

retardation (the homozygous KO is lethal)

[252, 253]

Pseudoxanthom Abcc6T Pseudoxantho- ABCC6 This mineralization disorder is associated with reduced [254]
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a elasticum 1, 101.95 Mb ma elasticum 16p13.11 plasma inorganic pyrophosphate; this study of the SD KO 

mutant points to a critical role of liver ABCC6 

Reed syndrome FhT

13, 93.65 Mb

Reed 

syndrome

FH

1q43

The SD heterozygous KO mutant shows hematopoietic and 

kidney dysfunction with kidney anaplastic lesions

[255]

Retinal 

dystrophy (Rdy) 

(RCS rat)

Mertk***

 3, 121.24 Mb

Retinitis 

pigmentosa 

(autosomal 

recessive)

MERTK 

2q14.1

Positional identification of the gene: small deletion in the 

RCS rat, the defect of which could be corrected by gene 

transfer

[256-258]

Retinal 

telangiectasia 

(BN-J rat)

Crb1**

13, 56.27 Mb

Retinal 

dystrophies 

(including 

telangiectasia)

CRB1

1q31.3

The BN-J rat shows several retinal abnormalities reminiscent 

of human macular telangiectasia; sequencing of the BN-J 

and BN exons revealed the presence of rearrangement in 

exon 6 of BN-J, which segregates with the phenotype in a F2 

cross

[259]

Retinitis 

pigmentosa 

Pde6bT

14, 2.33 Mb

Retinitis 

pigmentosa 

PDE6B

4p16.3

The SD KO mutant exhibits photoreceptor degeneration, 

profound retinal thinning and extensive degeneration of the 

[260]
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(autosomal 

recessive)

outer nuclear layer

Rett syndrome Mecp2T

X, 156.65 Mb

Rett syndrome MECP2

Xq28

The SD KO mutant shows early motor and breathing 

abnormalities, growth retardation, malocclusion, reduction 

of brain weight

[261-263]

Sitosterolemia Abcg5** 

6q12, 7.94 Mb

Sitosterolemia ABCG5/

ABCG8 

2p21

Positional identification of the gene; same missense 

mutation in SHR, SHRSP and WKY, exhibiting elevated 

plant sterol accumulation

[264]

Small eye 

(rSey): 

microphthalmia

Pax6*

3q, 95.70 Mb

Aniridia, 

mental 

retardation, 

autism

PAX6  

11p13

Direct sequencing of the mutant cDNA, which shows a 

0.6kb deletion; impaired migration of neural crest cells; the 

mutant rat may have some phenotypic component of autism

[265, 266]

Spondylocostal 

dysostosis 

(Oune mutation)

Tbx6**

1, 198.21 Mb

Spondylocostal 

dysostosis

TBX6

16p11.2

ENU-induced semi-dominant mutation, causing a short and 

kinked tail and several skeletal abnormalities; positional 

identification of the mutant gene

[267]
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Tenogenesis MkxT 

17, 60.54 Mb

- - The Wistar KO mutant shows heterotopic ossification of the 

Achilles tendon via failed tenogenesis

[268]

Teratoma and 

infertility (ter) 

in both sexes

Dnd1**

18, 29.61 Mb

- - Positional identification of the gene: premature stop codon in 

WKY/Ztm rats; homologous to the mouse mutation Ter 

(which induces testicular teratomas only)

[269]

Testicular 

feminization 

(Tfm)

Ar*

Xq22-q32, 

67.66 Mb

Testicular 

feminization

AR

Xq12

Direct sequencing of cDNA: single base alteration in the Ar 

gene leads to androgen insensitivity and lack of male sexual 

development

[204]

T-helper 

immuno-

deficiency (thid)

Ptprk**

1, 17.44 Mb

- - Positional identification of the gene: large deletion in LEC 

rats, the phenotype of which is rescued by reconstitution 

with normal bone marrow cells

[270, 271]

Toothless (tl), 

osteopetrosis

Csf1**

2, 210.52 Mb

- - Positional identification of the gene: early stop codon in the 

tl Csf1 gene; similar to the mouse op; see “Macrophage 

development” for Csf1r KO rats

[272, 273]

Toxicity: Nfe2l2T - - The F344 KO mutant is highly sensitive to aflatoxin B1 [274]
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aflatoxin B1 

toxicity

3, 62.50 Mb toxicity, due to impaired capacity for detoxification (Nfe2l2 

also controls vasculature function: see below)

Toxicity: 

anthrax toxin 

susceptibility

Nlrp1**

10q24, 

57.69 Mb

- - Susceptibility maps in the region of Nlrp1 (in recombinant 

inbred strains) and gene polymorphism is correlated with 

susceptibility in several rat strains (the gene also controls 

Toxoplasma susceptibility; see above)

[275]

Toxoplasma 

susceptibility 

(Toxo1)

Nlrp1***

10q24, 

57.69 Mb 

Toxoplasmosis 

susceptibility

NLRP1

17p13.2

Positional identification of the gene; KO of Nlrp1 in 

macrophages modifies Toxoplasma replication; in human, 

association between NLRP1 polymorphism and 

toxoplasmosis susceptibility; the gene also controls 

sensitivity to anthrax toxin (see below)

[276]

Tremor (tremor 

rat: TRM/Kyo, 

carrying the tm 

mutation)

Aspa*,T

10, 59.84 Mb

Canavan 

disease

ASPA

17p13.2

Positional identification of a deletion spanning >200kb in 

the TRM/Kyo rat; NAA, the Aspa precursor induces 

absence-like seizure in normal rats (the tremor rat exhibits 

absence-like seizure); the F344 KO mutant show abnormal 

[108, 277]
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myelination but no tremor; however an Aspa/Hcn1 double 

mutant shows tremor, like the TRM/Kyo rat (see below, 

Polygenic traits, “Epilepsy, tremor”, Hcn1)

Tremor: Zitter 

rat (zi mutation) 

Atrn***

 3q35, 

123.43 Mb

- - zi induces hypomyelination and vacuolation in the CNS; 

positional identification of the gene; zi is homologous to the 

mouse mg (mahogany); complementation by transgenic 

membrane-type Atrn

[278, 279]

Tremor: VF rat 

(vf mutation)

Dopey1**

8, 94.12 Mb

- - vf induces hypomyelination and vacuolation in the CNS; 

positional identification of the gene, which carries a 

nonsense mutation

[280]

Tremor (Trdk 

mutation)

Kcnn2**

18, 39.33 Mb

- - ENU-induced missense mutation; positional identification of 

the mutant gene

[281]

Unilateral renal 

agenesis (URA; 

Renag1)

Kit**

14, 37.07 Mb

- - ACI rats exhibit URA; positional identification of the gene, 

which carries an insertion; cosegregation of URA with the 

hooded phenotype (controled by Kit)

[282]
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Warfarin 

resistance (rw)

Vkorc1**             

1, 199.34 Mb

VKCFD2 and 

warfarin 

resistance

VKORC1

16p11.2

Positional identification of the gene, mutated in warfarin 

resistance (human and rat) and VKCFD2 (human)

[283, 284]

Wilson disease 

model

Atp7b**

16q12, 

74.87 Mb

Wilson disease ATP7B

13q14.3

Positional identification of the gene: deletion in the LEC rat 

gene, causing hepatitis 

[285, 286]

Wolfram disease 

model

Wfs1T

14, 78.64 Mb

Wolfram 

disease

WFS1

4p16.1

The SD KO mutant shows the core symptoms of the human 

disease: diabetes mellitus, glycosuria, neurodegeneration; 

treatment with a GLP1 receptor agonist prevents the 

development of diabetic phenotype in the KO rat

[287, 288]

Wolman disease 

model (Wolman 

rat)

Lipa* 

1, 252.82 Mb

Wolman 

disease

LIPA

10q23

Direct sequencing of the mutant rat cDNA: deletion of the 

Lipa gene in the Wolman rat

[289]
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B) POLYGENIC  TRAITS (QTL symbol)           

Addiction: 

alcohol 

consumption

Adcyap1r1*

4, 85.66 Mb

Alcohol 

consumption 

in women 

ADCYAP1

R1 

7p14.3

(Associatio

n study)

Positional identification of the gene and expression studies 

in congenic strains; the trait is female-specific; Adcyap1r1 is 

upregulated in alcohol-preferring females and its promoter 

contains several ERE’s and polymorphisms associated with 

a differential response to estrogen stimulation in vitro

[290]

Addiction: 

alcohol 

consumption

Grm2*

8, 115.34 Mb

- - Positional identification of the gene; stop codon in the 

alcohol-preferring rat strain allele; (see also above, 

Monogenic traits, Addiction; opioid consumption); however, 

this conclusion was challenged on the basis of experiments 

showing that a lentiviral-delivered short-hairpin RNA 

(shRNA)-mediated KO of Grm2 does not promote alcohol 

drinking

[291-293]

Addiction: Crhr2* - - Polymorphisms in the promoter, coding region, and [294]
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alcohol 

consumption 

(Alc22)

4, 85.29 Mb 3’UTR were associated with altered CRHR2 binding density 

in alcohol-preferring rat strain (no mapping of the trait)

Addiction: 

alcohol 

consumption 

(Alc11/13)

Cyp4f18**

16, 19.50 Mb

- - DNA sequencing of rats from HS-derived high- and low-

alcohol-drinking lines revealed several genomic regions 

showing signature of selection, including genes located in 

previously identified QTLs(4)

[295]

Addiction: 

alcohol 

consumption 

(Alc11/13)

Fam129c**

16, 20.03 Mb

- - See comment above, on Cyp4f18 [295]

Addiction: 

alcohol 

consumption 

(Alc5/9/12)

Grin2a**

10q11, 

5.71 Mb

- - See comment above, on Cyp4f18 [295]
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Addiction: 

alcohol 

consumption 

(Alc11/13)

Myo9b**

16, 19,67 Mb

- - See comment above, on Cyp4f18 [295]

Addiction: 

alcohol 

consumption

NpyT

4, 79.56 Mb

- - Npy deletion in an alcohol non-preferring rat model elicits 

differential effects on alcohol consumption and body weight

[296]

Addiction: 

alcohol 

consumption 

(Alc11/13)

Pgls**

16, 20.02 Mb

- - See comment above, on Cyp4f18 [295]

Adiposity Angptl8T

8, 22.86 Mb

- - The F344 KO mutant shows lower body weight, lower fat 

content and lower triglyceride levels, but higher heart lipase 

levels than WT rats

[297]
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Allergic rhinitis Muc1T

2, 188.54 Mb

- - The SD KO rat shows aggravation of allergic rhinitis and 

suppression of expression of epithelial cell connection 

proteins

[298]

Angiogenesis Wars2** T

2q34, 

201.17 Mb

Cardio-

metabolic 

phenotypes

WARS2 

1p12

Positional identification of the gene controlling coronary 

flow; the BN KO mutant shows diminished cardiac capillary 

density and reduced coronary flow; the gene also controls 

the metabolic syndrome

[299]

Aorta elastic 

tissue integrity 

(Vetf3)

Pi15**

5, 0.79 Mb

- - High resolution mapping in a HS; lower expression of Pi15 

in the susceptible strain BN (combined with higher 

expression of a long intergenic noncoding RNA)

[300]

Arthritis 

(Pia7, Oia2)

Aplec locus**

 4q42, 

~155.91 Mb

RA CLEC4A 

12p13

Positional identification of the rat gene complex; several 

polymorphisms in this region including a stop codon in 

Clec4b2; association was found between RA and 

CLEC4A (=DCIR) in human patients

[301-303]

Arthritis CIIta** RA, MS, CIITA Positional identification of the rat gene, definitively  [304]
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10, 5.21 Mb myocardial 

infarction

16p13 identified by sequencing and expression analysis; in 

human, polymorphism in the promoter was associated 

with disease susceptibility

Arthritis Git2T

12, 47.59 Mb

- - The SD KO rat with induced arthritis shows a more severe 

disease, with decreased collagen II expression and increased 

expression of inflammatory cytokines

[305]

Arthritis 

(Pristane-

induced 

arthritis)

Hip1**

12, 24.18 Mb

- - Positional identification of the gene, which is required for 

the increased invasiveness of synoviocytes from arthritic rats 

and from RA patients

[306]

Arthritis (Pia8) Il22ra2**

1, 15.09 Mb

See Eae29

Arthritis (Pia4) Ncf1**

12, 25.50 Mb

RA NCF4

22q13.1

Positional identification of the gene and of the QTN 

(M153T substitution), which controls the production of 

reactive oxygen species; this gene also controls EAN (see 

[28, 303, 307, 

308]
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below)

Arthritis 

(Pristane-

induced 

arthritis)

Lta,Ltb, Tnf, 

Lst1, Ncr3**

20, 

3.65 -3.71 Mb

- - Positional identification of a recombination-resistant 33kb 

segment, made of 5 genes, within the MHCIII region; one 

conserved haplotype regulates arthritis; haplotype-specific 

differences in gene expression and alternative splicing 

correlate with susceptibility to arthritis; the haplotype 

specifically regulates adjuvant-induced arthritis, but not 

antigen-induced autoimmunity

[309, 310]

Arthritis: Pia1 RT1-Ba**

20, 4.07 Mb 

and RT1-Bb**

20, 4.04 Mb

RA MHCII

6p21.32

Using a mixed genetic and functional approach, these 2 

genes (orthologs of the human HLA-DQA and HLA-DQB 

loci, in the MHCII region) were shown to control the onset 

and severity of pristane-induced arthritis 

[311]

Arthritis (PIA) Vav1**

9q12, 9.62 Mb

RA VAV1

19p13.2

Polymorphism in Vav1 controls PIA in the rat; in 

humans, VAV1 SNPs are associated with RA; see also 

below, Eae4

[312]
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Asthma Trpa1T

5, 3.78 Mb

- - The SD KO rat is largely protected from immune cell 

infltration into bronchoalveolar lung fuid in the ovalbumin 

model of asthma ; on the other hand, it shows normal 

behavioral responses in multiple models of pain and itch

[313]

Behavior Cplx1T

14, 2.20 Mb

- - The SD KO mutant shows severe ataxias and tremor, 

dystonia, uncoordinated locomotion, exploratory deficits, 

anxious behavior and sensory deficits as well as decreased 

dendritic branching in spinal motor neurons

[314]

Behavior Phf24T

5, 58.36 Mb

- - The F344 KO mutant shows no apparent changes in gross 

behaviors during adolescence but, at older age, it exhibits 

elevated spontaneous locomotor activity, emotional hyper-

reactivity, reduced anxiety behaviors and cognitive deficits; 

it also shows a higher sensitivity to induced convulsive 

seizures

[315]

Behavior: Adgrl3T ADHD ADGRL3 The SD KO mutant shows persistent hyperactivity, increased [316]
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ADHD 14, 28.36 Mb 4q13.1 acoustic startle, reduced activity in response to amphetamine 

and female-specific reduced anxiety-like behavior

Behavior: 

aggressive 

phenotype

Tph2T

7, 58.04 Mb

- - The DA KO mutant exhibits (as expected) profoundly 

diminished serotonin level and display increased 

aggressiveness

[317]

Behavior: 

anxiety

Cckar*

14, 59.61 Mb

- - Gene deletion in the OLETF rat; no mapping of the trait; see 

also above, Body temperature and below, Diabetes, type2

[318]

Behavior: 

anxiety,

depression

Ctnnd2**

2, 83.39 Mb

Schizophrenia

, Depressive 

disorder

CTNND2

5p15.2

Positional identification of the rat gene; the human gene 

was then associated with schizophrenia and major 

depressive disorder

[19, 319, 320]

Behavior: 

anxiety,

depression

Slc6a4ENU

10, 63.15 Mb

Anxiety/

depression

SLC6A4

17q11.2

The Wistar KO mutant lacking the serotonin transporter 

shows anxiety, depression-related behavior and impaired 

object memory as well as alterations in DNA methylation of 

the urocortin promoter

[321, 322]

Behavior: Oprl1ENU - - The Wistar KO mutant lacking the nociceptin/orphanin FQ [323, 324]
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anxiety, drug 

addiction

3, 177.23 Mb receptor rat shows an anxiety-like phenotype and is more 

sensitive to the rewarding effect of morphin

Behavior: 

autism-like 

symptoms

Nrxn1T

6, 14.75 Mb

Autism NRXN1

2p16

The SD KO mutant shows persistent nonsocial deficits, 

including hyperactivity, deficits in simple instrumental 

learning, latent inhibition, and spatial-dependent learning

[325]

Behavior: 

dopamine-

related brain 

disorders

Drd1ENU

17, 11.10 Mb

- - The Wistar mutant carries a missense mutation that leads to 

a decreased transmembrane insertion of DRD1; the mutant 

displays normal basic neurological parameters and 

locomotor activity but measures of social cognition (such as 

social interaction) are reduced

[326]

Behavior: 

dopamine-

related brain 

disorders

Slc6a3ENU,T

1, 32.32 Mb

Several 

psychiatric 

disorders

- Two mutants are available: an F344 ENU-induced missense 

mutant and a targeted Wistar KO mutant; both strains show 

locomotor hyperactivity and impaired cognitive processes; 

they represent excellent models for the evaluation of the 

effects of novel therapeutics on cognitive functions linked to 

[327, 328]
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the dopamine transporter

Behavior: drug 

addiction 

(cocaine)

Trpc4T 

2, 143.43 Mb

- - The F344 KO mutant shows reduced acquisition of cocaine 

self-administration compared to WT rats (the gene is also 

involved in Blood pressure control –PAH- and Behavior, 

drug addiction: see below)

[329]

Behavior: fear 

and coping

Nr3c1T

18p12, 

31.73 Mb

- - A conditional SD KO mutant was generated, targeting 

output neurons and the prelimbic cortex; females exhibit 

deficits in acquisition and extinction of fear memory while 

males exhibit enhanced active-coping behavior during forced 

swim

[330]

Behavior: 

mental illnesses

Disc1T

19, 57.82 Mb

Mental 

illnsesses

DISC1

1q41.2

The SD mutant shows changes in white matter 

microstructural integrity and deficits in neurite density (it 

recapitulates many of the neuroimaging findings seen in 

populations of schizophrenia); the male is more affected than 

the female mutant 

[331]
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Behavior 

(neuropsychiatri

c disorders 

model)

Cacna1cT

4, 150.64 Mb

Autism, 

bipolar 

disorder, 

schizophrenia 

CACNA1C

12p13.33

The heterozygous SD KO mutant shows deficits in social 

behavior and in pro-social ultrasonic communication; 

however this haploinsufficiency has a minor positive impact 

on memory functions

[332, 333]

Behavior: stress 

response

Dpp4T

3, 48.29 Mb

- - The DA.F344 KO congenic mutant is stress-resilient and 

show decreased expression of Nr3c1 and Fkbp5 in the 

amygdala and the hypothalamus as well as lower stress-

induced peripheral corticosterone levels

[334]

Behavior: stress 

response

Nrg1T

16, 62.97 Mb

Schizophrenia NRG1

8p12

The F344 KO mutant shows alterations in HPA axis activity 

and behavioral responses to stress

[335]

Behavior: stress 

response 

(Stresp24)

Stim1**

1, 167.37 Mb

- - Positional identification of the gene; nonsense mutation in 

several SHRSP substrain alleles, absent in WKY and other 

normotensive strains; this mutation impairs Ca++ signaling in 

astrocytes

[336, 337]

Bladder function Trpv4T - - The phenotype of the SD KO mutant shows that in a model [338]
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12, 47.70 Mb of underactive bladder, intravesical activation of TRPV4 

improves bladder function 

Blood pressure Agtr1aT

17q12, 

35.91 Mb

- - The MSH6 KO mutant shows an extremely high blood 

pressure-like phenotype

[218]

Blood pressure: 

BpQTL2

Adamts16**, T

1, 36.47 Mb

Hypertension ADAMTS1

6 5p15

Positional identification of the gene, which shows exonic 

variants; association between ADAMTS16 and blood 

pressure was then discovered in the human; KO of the 

gene in SS rats leads to lower blood pressure; this gene 

also controls male fertility (see above: Monogenic Traits, 

Infertility)

[339, 340]

Blood pressure Add1**

14, 82.06 Mb

Hypertension 

and CV risks

ADD1

4p16.3 

Positional identification of the gene: missense 

polymorphisms in the Milan Hypertensive Rat and the 

human; in vitro functional studies

[341, 342]

Blood pressure:  Arntl ** Hypertension ARNTL Functional polymorphisms found in the rat gene [343]

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.23.003384doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.003384
http://creativecommons.org/licenses/by/4.0/


67

Bp77  1, 171.06 Mb and NIDDM 11p15 promoter; association was then established in the human 

with blood pressure and type 2 diabetes

Blood pressure Cd247T 

13q23, 

88.88 Mb

Hypertension 1q24 locus 

(GPA33, 

CD247, F5, 

REN)

The KO SS mutant exhibits reduced kidney infiltration of T 

cells, mean arterial blood pressure and kidney damage

[344, 345]

Blood pressure Cd36**

4, 14.15 Mb

- - Positional identification of the gene, combined with gene 

expression studies; deficient renal expression of Cd36 (in 

SHR) is a genetically determined risk factor for spontaneous 

hypertension

[21]

Blood pressure

(C17QTL1)

Chrm3**, T

17q12, 

63.99 Mb

- - Positional identification of the gene; the SS rats carry a 

missense mutation enhancing receptor activity; the KO SS 

mutant exhibits lower salt-induced hypertension and 

improved renal function

[346]

Blood pressure Chst12** Hypertension 7p22 Positional identification of the gene; the SS allele contains [347]
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12, 18.19 Mb mutations when compared with several normotensive strains; 

this rat region is homologous to a region on human 

chromosome 7 that has been linked to blood pressure

Blood pressure Clcn6T

5, 168.47 Mb

Hypertension AGTRAP-

PLOD1 

locus; 1p36

The KO SS mutant shows decreased blood pressure; the 

human locus was identified in GWAS and CLCN6 could be 

linked to blood pressure and renal phenotypes

[32]

Blood pressure Cyp11b1**

7, 112.98 Mb

- - Positional identification of the gene; the characteristic 

steroid profiles of SS and SR rats can be explained by the 

biochemical properties of CYP11B1; 5 mutations found in 

the SS allele, segregating with blood pressure and altered 

steroid biosynthesis in a SS X SR cross

[348]

Blood pressure Cyp17a1**

1q55, 266.42 

Mb

Hypertension CYP17A1

10q24.32

Extensive proteomics and transcriptome studies in the BN 

and SHR strains led to the discovery that Cyp17a1 is 

downregulated in SHR, probably as a consequence of a 

promoter mutation; in the human a SNP in CYP17A1 was 

[349]
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associated with hypertension

Blood pressure Gja8**

2, 199.05 Mb

- - The Gja8 mutation present in the SHR-Dca strain (causing 

cataract; see above, Monogenic Traits) lowers blood 

pressure and decreases high density lipoprotein cholesterol 

concentration

[350]

Blood pressure Gper1T

12, 17.31 Mb

- - The KO SS mutant (male and female) presents with lower 

blood pressure, accompanied by altered microbiota and 

improved vascular relaxation

[351]

Blood pressure Hsd11b2T

19q12, 

37.48 Mb

SAME HSD11B2

16q22.1

The F344 KO mutant exhibits hypertension, hypokalemia, 

renal injury; the phenotype closely models the human SAME 

[352]

Blood pressure Htr7T

1, 254. 55 Mb

- - Unlike wild-type rats, the SD KO mutant does not show 

reduced mean arterial pressure nor splanchnic venodilation 

upon serotonin infusion

[353]

Blood pressure Kcnj1T Type II Bartter KCNJ1 The KO SS mutant exhibits protection from salt-induced [354]
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8, 33.45 Mb syndrome 11q24 blood pressure elevation

Blood pressure Kcnj16T

10, 99.33 Mb

Brugada 

syndrome 

(arrhythmias)

KCNJ16

17q24.3

The KO SS mutant exhibits hypokalemia and reduced blood 

pressure; when fed on a high salt diet, this mutant dies as a 

result of salt wasting and severe hypokalemia

[355]

Blood pressure Ncf2***, T

13, 75.2 Mb

- - Positional identification of the gene, which shows higher 

expression and promoter mutation in the SS rat; disruption 

of the gene reduces hypertension and renal oxidative stress 

and injury; Ncf2 is involved in luminal flow-mediated 

O2
·− production (i.e. oxidative stress)

[356, 357]

Blood pressure Nox4T

1, 150.80 Mb

- - The KO SS mutant shows reduction of salt-induced 

hypertension and of albuminuria compared with wild-type 

SS rats; Nox4 contributes to the production of H202 (i.e. 

oxidative stress)

[357, 358]

Blood pressure NppaT 

5q36, 

Hypertension AGTRAP-

PLOD1 

The KO SS mutant shows increased blood pressure; the 

human locus had been identified in GWAS and NPPA could 

[32]
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165.81 Mb locus; 1p36 be linked to blood pressure phenotypes

Blood pressure NppbT

5q36, 

164.79 Mb

Hypertension 

and left 

ventricular 

dysfunction

NPPB

1p36.22

The KO SS mutant shows adult-onset hypertension, left 

ventricular hypertrophy and increased cardiac stiffness

[359]

Blood pressure Nr2f2T

1, 131.45 Mb

Hypertension NR2F2

15q26

NR2F2 was associated with hypertension in humans; an 

hypomorphic SS mutant shows lower systolic and diastolic 

blood pressures

[360]

Blood pressure Pappa2**

13, 36.39 Mb

- - Positional identification of the gene (including generation of  

SS subcongenic strains); renal cortex Pappa2 mRNA level is 

lower in SS rats

[361]

Blood pressure Plekha7T

1, 185.43 Mb

Hypertension PLEKHA7

11p15.1

PLEKHA7 is a candidate gene for human hypertension; the 

KO SS mutant shows attenuated salt-sensitive hypertension 

and vascular improvements

[362]

Blood pressure Plod1T Hypertension AGTRAP- The KO SS mutant shows increased systolic blood pressure; [32]
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5, 168.38 Mb PLOD1 

locus 1p36

the human locus was identified in GWAS 

Blood pressure Prdx2T

19, 26.08 Mb

- - The KO SHR mutant exhibits shorter life span and modest 

blood pressure increase via increased oxidative stress 

[363]

Blood pressure Rag1T 

3, 97.87 Mb

SCID RAG1

11p13

The KO SS mutant exhibits attenuation of blood pressure 

and of renal damage (and lymphocyte depletion: see above)

[364]

Blood pressure Rarres2T

4, 78.21 Mb

- - SD KO females (but not KO males) exhibit  a relative 

resistance to hypertension in response to a hypertensive 

challenge

[365]

Blood pressure RenT

13q13, 

55.55 Mb

- - The KO SS mutant shows a greatly reduced blood pressure, 

changes in kidney morphology and reduced adrenal 

synthesis of aldosterone and Cyp11b2

[366, 367]

Blood pressure Resp18T

9, 82.47 Mb

- - The KO SS mutant shows increased systolic and diastolic 

blood pressure, as well as increased renal damage (Resp18 is 

located in a blood pressure QTL)

[368]

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.23.003384doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.003384
http://creativecommons.org/licenses/by/4.0/


73

Blood pressure Sh2b3T

12, 40.26 Mb

Hypertension SH2B3

12q24

SH2B3 has been associated with hypertension; in the KO SS 

mutant, hypertension and renal disease are attenuated via 

inflammatory modulation (the gene also controls cardiac 

inflammation: see above)

[369]

Blood pressure Sry1*

Y

Hypertension ?

Y

Delivery of Sry1 cDNA to the kidney increases blood 

pressure in normotensive WKY rats

[370]

Blood pressure Zbtb16** T

8, 51.57 Mb

- - Positional identification of the gene in RI strains and in an 

SHR-PD congenic; deletion in the intron 2 of the PD allele, 

which is down-regulated and is protective; the heterozygous 

SHR KO mutant shows no change in blood pressure (the 

homozygous KO is lethal)

[371, 372]

Blood pressure: 

captopril effects

Ednrb**

15q22, 

88.00 Mb

- - The antihypertensive effects of the ACE inhibitor captopril 

behave as a polygenic trait in RI strains; Ednrb was 

positionally identified: correlation between renal expression 

and captopril effects; this gene also controls aganglionosis 

[373]
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(see above)

Blood pressure: 

PAH

Ddah1T

2, 251.63 Mb

- - The SD KO mutant shows no specific phenotype under 

control conditions, but exhibits exacerbated monocrotaline-

induced PAH, lung fibrosis as well as right ventricule 

hypertrophy and dysfunction 

[374]

Blood pressure: 

PAH

Kcnk3T

6, 27.15 Mb

PAH KCNK3

2p23.3

The KO mutant shows predisposition to vasoconstriction of 

pulmonary arteries, strong alteration of right ventricular 

cardiomyocyte excitability and develops age-dependent 

PAH 

[375]

Blood pressure: 

PAH

Park7T

5, 167.98 Mb

Familial PD 

(recessive)

PARK7 

1p36.23

The KO mutant shows a worse degree of PAH than WT rats 

under hypoxia

[376]

Blood pressure: 

PAH

Slc39a12**,T

17, 81.46 Mb

- - WKY rats exposed to hypoxia show increased expression of 

the Slc39a12 gene (ZIP12 protein) , in contrast to F344 rats 

and this gene was identified as a positional candidate gene; 

the KO WKY mutant shows attenuation of PAH

[377]
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Blood pressure: 

PAH 

Sod3T

14, 61.07 Mb

- - In the KO SS mutant, the mutation favors PAH and 

subsequent RV hypertrophy under stress conditions

[378]

Blood pressure: 

PAH

Trpc4T

2, 143.43 Mb

- - The KO F344 mutant shows reduced severity of pulmonary 

arterial occlusions and survival benefit in severe PAH (the 

gene is also involved in Pain, see below and Behavior, drug 

addiction: see above)

[379]

Blood pressure 

and QT-interval

Rffl-lnc1***

10, 71.07 Mb

QT-interval 17q12 

(RFFL 

region)

Positional identification of the gene; the LEW allele contains 

a 19 bp deletion in the long non-coding RNA (5’UTR of 

Rffl), which increases blood pressure and shortens QT-

interval relative to the SS rats (“cryptic allele”); the normal 

phenotypes were rescued by a specific targeted 19bp 

insertion in the LEW allele

[24]

Body 

temperature 

Cckar*

14, 59.61 Mb

- - Gene deletion in OLETF rats (no mapping of the trait): the 

gene seems also involved in diabetes development and 

behaviour; see also above, Behavior, anxiety and below 

[380, 381]
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Diabetes type2

Body weight 

(muscle mass)

MstnT

9, 53.31 Mb

- - SS and SD KO mutants were studied; they show marked 

increases in muscle mass and lower fat content

[382, 383]

Body weight 

(liver mass)

OgdhT

14, 86.41 Mb

Hypotonia, 

metabolic 

acidosis

OGDH

7p13

The KO heterozygous mutant shows increased liver weight; 

high fat diet results in liver dysfunction (homozygous 

mutants are lethal)

[384]

Bone growth CftrT

4q21, 42.69 

Mb

Cystic fibrosis CFTR

7q31.2

Young SD KO rats do not develop lung or pancreatic 

disease; however, they show a defect in linear bone growth 

and bone health that is attributed to IGF-1 deficiency (for 

Cystic fibrosis, see above, Monogenic traits)

[385]

Bone growth NppcT

9, 93.73 Mb

Short stature NPPC

2q37.1

The F344 KO mutant exhibits a deficit in endochondral bone 

growth and growth retardation

[386]

Bone structure 

and function

BglapT

2, 87.74 Mb

- - The SD KO mutant shows increased trabecular thickness, 

density and volume, and increased bone strength

[387]

Brain Bscl2ENU Congenital BSCL2 The mutant shows a slightly decreased brain weight and [205]
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development 1, 225.04 Mb generalized 

lipodystrophy

11q12.3 impairment of spatial working memory; see also above, 

Monogenic Traits, Lipodystrophy, and Infertility

Brain injury Aqp4T

18, 6.77 Mb

- - Following subarachnoid hemorrhage, the KO mutant shows 

increased water content in the whole brain, which aggravates 

the neurological deficits through impairment of the 

glymphatic system.

[388]

Cancer, colon Rffl or Rffl-

lnc1*

10, 70,16 Mb 

or 71.07 MB

- - Positional identification of the gene(s); higher expression of 

Rffl in S-LEW congenic rats, which also show higher 

expression of Mbd2 and higher susceptibility to colorectal 

carcinogenesis (see Blood pressure and QT-interval)

[389]

Cancer, 

mammary  

(Mcs1a)

Putative 

regulatory 

site**

2, ~6.50 Mb

- - Positional identification of the locus; cancer resistance is 

associated with increased expression of the nearby gene 

Nr2f1; the human homologous region (5q11-q34) is 

frequently deleted in breast cancers

[390]

Cancer, Mier3** Breast cancer MAP3K1 or Positional identification of the gene; higher expression in [391]
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mammary  

(Mcs1b)

2, 62.31 Mb risk locus MIER3 

5q11.2

mammary glands of susceptible females

Cancer, 

mammary 

(Mcs5a1) 

Fbxo10**

5, 60.59 Mb

Breast cancer 

risk locus

FBXO10 

(MCS5A1)

9p13

Positional identification of the gene; up-regulation in T 

cells is associated with susceptibility; causal SNVs are 

probably stress-responding regulatory sites

[392, 393]

Cancer, 

mammary 

(Mcs5a2)

Frmpd1**

5, 60,75 Mb

Breast cancer 

risk locus

FRMPD1  

(MCS5A2)    

9p13

Positional identification of the gene; up-regulation in the 

spleen was associated with cancer resistance

[393]

Cancer, 

mammary 

(Mcs5c)  

Regulatory 

site**

5, ~81 Mb

- - Positional identification of the locus; Msc5c is located in a 

gene desert and regulates expression of the neighboring gene 

Pappa1 during a critical mammary developmental time 

period

[394, 395]

Cancer, 

mammary 

(Mcs30)  

Fry*

12, 7.68 Mb

- - Positional identification of the gene; several SNPs between 

F344 (susceptible) and COP (resistant); decreased 

expression of FRY in human cancers

[396]
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Cancer, 

mammary gland 

development

Cdkn1bT,

4, 168.69 Mb

Multiple 

endocrine 

neoplasia type 

4

CDKN1B

12p13.1

In the human the frequency of a population of quiescent 

CDKN1B expressing cells was associated with breast cancer 

risk; the Cdkn1b KO ACI rat shows increased proliferation 

and pregnancy-associated changes in the mammary gland; 

Cdkn1b could impact mammary cancer risk; see also above, 

Monogenic Traits, Cancer, multiple endocrine neoplasia 

[70]

Cardiac mass CfbT - - See below, Metabolic syndrome [397]

Cardiac mass 

(Cm10)

Endog**

3, 8.74 Mb

- - Positional identification of the gene, which is 

underexpressed in strains with increased cardiac mass; 

exonic mutation in SHR; Endog seems to be implicated in 

mitochondrial physiology

[398]

Cardiac mass 

(LVM)

Ogn**

17, 14.61 Mb

LVM OGN

9q22.31

Localization of a QTL and genome-wide gene expression 

studies associated upregulation of Ogn (due to sequence 

variation in the Ogn 3’ UTR) with elevated LVM; this 

finding was translated to humans

[399]
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Cardiac mass, 

fibrosis 

Zbtb16** T

8, 51.57 Mb

- - Positional identification of the gene in RI strains and in an 

SHR-PD congenic: deletion in the intron 2 of the PD allele, 

which is down-regulated and is protective; the heterozygous 

SHR KO mutant shows reduced cardiomyocyte hypertrophy 

and interstitial fibrosis (the homozygous KO is lethal)

[371, 372]

Cholesterol 

level and hepatic 

steatosis (Hpcl1)

Srebf1***

 10, 46.33 Mb

Cholesterol 

level

SREBF1

17p11.2

Positional identification of the gene; the SHR allele is 

associated with deficient expression of mRNA and protein; 

an SHR transgenic strain shows restoration of hepatic 

cholesterol level

[400]

Chronic kidney 

disease(CKD)

Mir146b (5p)T

1, 266.09 Mb

- - CKD contributes to secondary cardiovascular impairment 

(cardiorenal syndrome type 4); in the surgical excision 

model of 5/6 nephrectomy, the KO SD female mutant shows 

sex-specific exacerbated renal hypertrophy and fibrosis with 

renal dysfunction yet lower blood pressure and less 

pronounced cardiac remodeling

[401]
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Chronic kidney 

disease(CKD)

Sod3ENU

14, 60.96 Mb

- - The SS mutant develops profound CKD characterized by 

focal necrosis and fibrosis, glomerulosclerosis, massive 

proteinaceous cast accumulation with tubular dilatation, 

interstitial fibrosis with hypertension and renal failure ; see 

also below, Vascular function 

[402]

Diabetes, type 1: 

T1DM (Kdp1)

Cblb***

11, 51.04 Mb

- - Positional identification of the gene, mutated in the Komeda 

diabetes-prone rat; complementation with the WT gene 

significantly suppressed the phenotype of the KDP rats

[403]

Diabetes, type 1: 

T1DM (Iddm8)

Dock8**

1, 242.93 Mb

- - Positional identification of the gene which harbors a 

missense mutation in the diabetic LEW.1AR1/Ztm-idmm rat

[404]

Diabetes, type 

1 : T1DM

Lymphopenia 

(Iddm2/lyp)

Gimap5**     

4, 78.38 Mb

Systemic lupus 

erythematosus

GIMAP5

7q36.1

Positional identification of the gene, mutated in the diabetes-

prone BB rat; lymphopenia is essential for the development 

of the diabetic phenotype; in the human, GIMAP5 could play 

a role in the pathogenesis of systemic lupus erythematosus

[405-407]

Diabetes, type 1: Ifnar1T T1DM Several Two KO LEW.1WR1 mutants were isolated; they exhibit, as [408]
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T1DM 11, 31.64 Mb genes acting 

downstream 

IFNAR1

expected, an impaired response to interferon I treatment; 

they are partially protected against virus-induced diabetes 

Diabetes, type 

2: T2DM

Adra2a**

1, 274.77 Mb

Increased 

T2DM risk

ADRA2A

10q25.2

Positional identification of the gene, overexpressed in the 

diabetic Goto-Kakizaki rat, mediating adrenergic 

suppression of insulin secretion; association was then 

found between ADRA2A and increased T2DM risk in 

humans

[409]

Diabetes, type 2: 

T2DM

Abcc8T

1, 102.11 Mb

T2DM and 

Hyperinsuline

mic 

hypoglycemia 

and 

ABCC8

11p15.1

The KO SD mutant is glucose intolerant and shows 

enhanced insulin sensitivity; T2DM was induced in this 

mutant which was then treated with glimepiride (a 

sulfonylurea); the treatment decreased blood glucose levels, 

suggesting an extra-pancreatic, direct effect on insulin-

sensitive tissues

[410, 411]

Diabetes, type Cckar** - - Positional identification of the gene, deleted in the OLETF [412, 413]
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2 : T2DM 

(Odb2) 

14, 59.61 Mb rats; mapping studies suggest an interaction with an X-linked 

QTL; the gene might also control pancreatic duct 

hyperplasia; see also above, Body temperature and Behavior, 

anxiety

Diabetes : 

T2DM (Insulin 

resistance and 

hyperlipidemia

)

Cd36***

4, 14.15 Mb

T2DM: 

Insulin 

resistance, 

dyslipidemia

CD36

7q21.11

Positional identification of the gene, combined with 

genome-wide gene expression studies; Cd36 is deleted in 

the SHR strain; transgenic expression of Cd36 in SHR 

ameliorates insulin resistance and lowers serum fatty 

acids; association of human CD36 with T2DM

[20, 22, 23]

Diabetes, type 

2: T2DM 

(Nidd/gk1)

Inppl1**

1q33

166.90 Mb

T2DM INPPL1

11q13.4

Positional identification of the gene, mutated in the Goto-

Kakizaki diabetic rat (and the insulin-resistant SHR); 

mutations were then found in human diabetic patients

[414]

Diabetes, type 2: 

T2DM

(diet-induced)

Ndufa4*

4, 38.23 Mb

- - Positional identification of the gene, which shows a 61bp 

deletion, unique to the Cohen diabetic rat; this mutation 

adversely affects mitochondrial function and promotes diet-

[415]
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induced diabetes

Diabetes, type 2: 

T2DM (fat mass 

and insulin 

resistance)

PpargENU

4, 147.27 Mb

Lipodystrophy 

and insulin 

resistance

PPARG

3p25.2

The heterozygous F344 missense mutant shows reduced fat 

mass with adipocyte hypertrophy and insulin resistance (the 

homozygous mutant is lethal)

[416]

Diabetes, type 2: 

T2DM (Dmo1)

Prlhr** 

1, 289.10 Mb

Blood pressure PRLHR

10q26.13

Positional identification of the gene; point mutation at 

translation initiation codon in the OLETF rats; the mutation 

causes hyperphagia

[417]

Diabetes, type 

2 : T2DM (beta 

cell lipotoxicity)

Tlr4T

5, 82.59 Mb

- - The SD KO mutant shows delayed damage induced by high-

fat diet, improved beta-cell function, decreased pancreatic 

inflammatory infiltration and apoptosis; see also below, 

Inflammation

[418]

Diabetes, type 

2: T2DM

Tpcn2***

1, 218.42 Mb

Fasting 

insulin

TPCN2

11q13.3

QTL was detected in a HS; differential expression of 

Tpcn2; nonsynonymous coding variant as well as other 

SNPs were associated with fasting glucose; TPCN2 was 

[419]
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associated with fasting insulin in humans

Diabetes, type 2: 

T2DM (Diabetic 

kidney disease)

Trpc6T

8, 6.81 Mb

Familial focal 

segmental 

glomeruloscler

osis

TRPC6

11q22.1

The results indicate that TRPC6 channel inhibition (in the 

SS rat background) has partial renoprotective effects in 

diabetic rats  

[420]

Encephalo-

myelitis (EAE)

Cd8aENU

4, 163.99 Mb

- - The  KO Lewis mutant is protected from EAE [421]

EAE Dlk1**

6, 142.74 Mb

IDDM 

(depending of 

parental 

origin)

DLK1

14q32

Parent-of-origin dependent QTL; the paternal PVG risk 

allele predisposes to low Dlk1 expression; transgenic mice 

overexpressing Dlk1 are protected. 

[422]

EAE: Eae1 Btnl2*

20p12, 

6.22MB and

RT1-Db1*

Multiple 

sclerosis

HLA-DRB1

6p21.3

Positional identification: the two genes in the MHC class II 

locus were identified in a HS and are the best candidate 

variants, amongst 3 candidate genes

[320]
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20p12, 

6.17 Mb

EAE: Eae30 Rgma*

1, 134.70 Mb

Multiple 

sclerosis

RGMA

15q26.1

Positional identification of the rat gene but 

polymorphisms of Rgma were not sought; it is thus a 

suggestive causal gene; however this result lead to the 

discovery that a SNP in RGMA is associated with 

multiple sclerosis in the human

[423]

EAE: Eae4 Vav1 **

9q12, 8.6 Mb

Multiple 

sclerosis

VAV1

19p13.2

Positional identification of the gene: one SNP in rat exon 

1 correlates with EAE susceptibility and high TNF; in 

humans, association found between VAV1 haplotype 

(high expression) and multiple sclerosis; the gene also 

regulates arthritis (see above)

[312, 424]

EAE: Eae31; 

Pia32

Il21r*

1, 197.00 Mb

Multiple 

sclerosis

IL21R

16p12.1

Positional identification of the rat gene but 

polymorphisms of Il21r were not sought; it is thus a 

suggestive causal gene; however this result lead to the 

[423]
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discovery that SNP’s in IL21R are associated with 

multiple sclerosis in the human

EAE: Eae29; 

Pia8

Il22ra2**

1, 15.09 Mb

Multiple 

sclerosis

IL22RA2

6q23.3

The susceptible strain DA carries a unique variant of the 

gene, which is differently expressed; a SNP in IL22RA2 

was associated with multiple sclerosis

[303, 425]

EAN: Ean6 Ncf1*

12, 25.50 Mb

Guillain-Barré 

syndrome

- Positional identification of the gene, a suggestive causal 

gene: no polymorphism between strains was sought but 

functional studies support the role of Ncf1 (the gene also 

controls EAE and PIA: see above)

[426]

Epilepsy 

(idiopathic, 

generalized; 

GAERS)

Cacna1h**

10, 14.73 Mb

Absence 

epilepsy

CACNA1H

16p13.3

Direct sequencing of the gene showed a mutation in the 

Genetic Absence Epilepsy Rats from Strasbourg (and not in 

non-epileptic strains); in an F2 cross, the phenotype 

segregates with the mutation

[427]

Epilepsy, tremor Hcn1**, T

2, 50.10 Mb

Infantile 

epileptic 

HCN1

5p12

Positional identification of the gene; a typical example of 

epistasis: rats (TRM/Kyo) possessing a large deletion (tm) 

[428, 429]
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encephalopath

y

on chromosome 10  (240 Kb; 13 genes) exhibit tremor if 

they also possess the allele Hcn1A354V; when this allele is 

replaced by Hcn1V35A tremor is absent (TRMR rats); 

subsequently, an F344 KO mutant was generated and 

showed susceptibility to induced seizure 

Glomerulonephr

i-tis (Crgn8)

Cp**

2, 104.74 Mb

- - Positional identification of the gene in combination with 

genome-wide eQTL mapping and functional tests; 

ceruloplasmin is overexpressed in WKY macrophages

[430]

Glomeruloneph

-ritis (Crgn1)

Fcgr3-rs**

Possibly 

Fcgr2a (RGD)

13, 91.15Mb

Lupus 

nephritis

FCGR3B

1q23.3

Positional identification of the loss of a Fcgr3 paralogue 

(named Fcgr3-rs; possibly Fcgr2a) as a determinant of 

glomerulonephritis in WKY rats; expressing Fcgr3-rs in 

primary WKY macrophages results in low levels of 

phagocytosis; in humans, association found between low 

copy number of FCGR3B and lupus nephritis

[431, 432]

Glomerulonephr Jund** - - Localization of a QTL and genome-wide gene expression [433]
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i-tis (Crgn2) 16, 20.48 Mb studies associated upregulation of Jund (due to a SNP in the 

promoter region) with glomerulonephritis; Jund KO in 

primary macrophages led to reduced macrophage activity

Glomerulonephr

i-tis

Kcnn4**

1, 81.22 Mb

- - Genome-wide eQTL mapping in macrophages from a 

segregating population led to the identification of Kcnn4 as a 

key regulator of macrophage multinucleation and 

inflammatory diseases; Kcnn4 is trans-regulated by Trem2

[434]

Glucose 

homeostasis

Tbc1d1T

14, 45.60 Mb

CAKUT TBC1D1

4p14

The SD KO mutant shows impaired contraction-induced 

sarcolemmal glucose transporter 4 redistribution, impaired 

glucose-tolerance and reduced pancreatic beta-cell mass

[435-437]

Heart failure Ephx2**

15, 42.76 Mb

- - Localization of a QTL and genome-wide gene expression 

studies associated upregulation of Ephx2 (due to a sequence 

variation in the promoter region) with heart failure 

susceptibility; gene ablation in the mouse protects from heart 

failure

[438]
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Herpes simplex 

encephalitis 

susceptibility: 

Hse1

Calcr*

4q13, 28.53 

Mb

- - Differences in expression level of Calcr mRNA and in 

protein localization between the susceptible (DA) and 

resistant (PVG) strains 

[439]

Hippocampus 

function

Trpm4T

1, 101.29 Mb

- - The SD KO mutant shows a distinct deficit in spatial 

working and spatial memory as well as changes in various 

target regions of the right dorsal hippocampus upon 

stimulation of Schaffer collaterals

[440, 441]

Inflammation: 

Irf7-driven 

inflammatory 

network

Gpr183**

15q15, 108.36 

Mb

IDDM GPR183 

13q32

Gene expression analyses and QTL mapping done in the 

rat; the results were translated to the human, identifying 

GPR183 (=EBI2) as an T1DM susceptibility gene

[442]

Inflammation: 

TNF induction

Tlr4T 

5, 86.69 Mb

- - The Wistar KO rat shows markedly reduced TNF induction 

upon liposaccharide challenge; see also above, Diabetes, 

type 2

[443]
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Insulin 

resistance

Pparg** See above, Fat mass

Macrophage 

development

Csf1rT

18, 56.41 Mb

ALSP CSF1R

5q32

The DA KO mutant shows multiple abnormalities: loss of 

macrophages in several organs, osteopetrosis, infertility, lack 

of tooth eruption, loss of visceral fat, absence of microglia 

(see tootless for mutation in Csf1)

[48]

Macrophage 

function

Cyp2j4T

5, 119.55 Mb

- - The WKY KO mutant macrophages show a profibrotic 

transcriptome suggesting that macrophage epoxygenase 

could play a role in fibrotic disorders with inflammatory 

component

[444]

Metabolic 

syndrome 

(Niddm30)

Camk2n1T

5, 156.88 Mb

Elevated risk 

of T2DM and 

coronary heart 

disease

CAMK2N1

1p36.12

The gene was a solid candidate gene for metabolic syndrome 

(blood pressure, diabetes, left ventricule weight); the SHR 

KO rat shows reduced cardiorenal Camk2 activity, lower 

blood pressure, lower left ventricular mass, decreased 

visceral fat mass and increased insulin sensitivity

[445]
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Metabolic 

syndrome

CfbT

20p12, 4.54 

Mb

NIDDM and 

components 

of metabolic 

syndrome

CFB

6p21.33

The SHR KO rat shows improved glucose tolerance and 

adipose distribution, lower blood pressure, marked 

changes in gene expression and reduced left ventricular 

mass; several human SNPs in CFB were associated with 

cardiometabolic traits 

[397]

Metabolic 

syndrome

Folh1**

1, 150.32 Mb

- - Positional identification of the gene; the SHR allele shows 2 

missense mutations; an SHR congenic line harboring the BN 

Folh1 allele shows decreased glucose and insulin 

concentrations

[446]

Metabolic 

syndrome

Folr1***

1, 166.93 Mb

- - Positional identification of the gene, the promoter of which 

is mutated in the SHR; transgenic rescue experiments 

ameliorate most of the metabolic disturbances, probably 

linked to folate deficiency

[447]

Metabolic 

syndrome

Gja8**

2, 199.05 Mb

- - The Gja8 mutation present in the SHR-Dca strain causes 

dominant cataract (see above); in the heterozygous form this 

[448]
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mutation results in increased concentration of triacyl-

glycerols, decrease of cholesterol and elevation of 

inflammatory cytokines

Metabolic 

syndrome

Mt-Nd2, Mt-

Nd4, Mt-Nd5

- - The conplastic rat SHR-mtLEW only differs from SHR in the 

sequence of these 3 mitochondrial genes and exhibits 

increased serum fatty acid levels and resistance to insulin 

stimulated incorporation of glucose into adipose tissue lipids

[449]

Metabolic 

syndrome

Wars2***

2q34, 

201.17 Mb

Cardio-

metabolic 

phenotypes

WARS2 

1p12

Positional identification of the gene; the SHR allele is 

mutated (and causes reduced angiogenesis – see above); 

transgenic SHR-Wars2 rats exhibit increased glucose 

oxidation and incorporation into brown adipose tissue, as 

well as lower adiposity

[450]

Metabolic 

syndrome

Zbtb16T

8, 51.57 Mb

- - The heterozygous SHR KO rat exhibits lower serum and 

triglycerides and cholesterol as well as increased sensitivity 

to adipose and muscle tissue to insulin action

[372]
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Metabolic 

syndrome: 

obesity

Aqp11**

1, 162.70 Mb

- - Positional identification of the gene in combination with 

expression QTL mapping; the LH rat allele is mutated in the 

3’ UTR and the 5’ upstream region; downregulation of 

Aqp11 is associated with obesity in LH rats; aquaporins are 

now considered to be involved in adipose tissue homeostasis

[451]

Metabolism Apoa4T

8q23, 

50.54 Mb

- - The SD KO mutant shows improved glucose tolerance and 

altered expression of genes expressed in the liver, with 

enhanced glycolysis, attenuated gluconeogenesis and 

elevated de novo lipogenesis

[452]

Metabolism Esr1T

1q12, 41.19 

Mb

- - The male SD KO liver shows altered expression of genes 

involved in carbohydrate and lipid metabolism; see also 

above, Monogenic Traits, Infertility

[453]

Metabolism PmchENU

7, 28.65 Mb

- - The Wistar KO rat is lean, hypophagic, osteoporotic and has 

a low adipose mass resulting from lower adipocyte cell size

[454, 455]

Metabolism TspoT Anxiety- TSPO The SD KO rat displays impaired ACTH-induced steroid [456]
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(steroid 

synthesis)

7, 124.46 Mb related 

disorders

production and reduced circulating testosterone levels; in 

human a rare TSPO allele is associated with a reduced 

plasma cortisol rate of formation

Neuromyelitis 

optica spectrum 

disorders

Cd59T

3, 94.01 Mb

- - The SD KO mutant shows no overt phenotype, except for 

mild hemolysis; however upon intracerebral administration 

of autoantibodies against astrocyte aquaporin 4, it shows 

marked neuromyelitis optica pathology including 

inflammation and demyelination

[457]

Non-alcoholic 

fatty liver 

disease

PtenT

1, 251.42 Mb

- - This study reports the somatic inactivation of Pten in the 

liver; the treated SD rats showed increased body weight and 

triglyceride level, with increased lipid accumulation in the 

liver 

[458]

Pain Scn9aT (5)

3, 52.58 Mb

- - The SD KO (5) rat does not exhibit nociceptive pain 

responses in hot plate nor neuropathic pain responses 

following spinal nerve ligation, suggesting that inhibition of 

[459]
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SCN9A in humans may reduce pain in neuropathic 

conditions

Pain Trpv1T

10, 59.80 Mb

- - Neuroimaging experiments of SD KO and WT rats showed 

that capsaicin-induced pain activates neuronal circuitries 

involved in pain but also in emotion and memory in a 

TRPV1-dependent manner; this channel was independently 

shown to be dispensable for hypernatremia-induced 

vasopressin secretion 

[460, 461]

Pain (visceral 

nociception)

Trpc4T

2, 143.43 Mb 

- - The F344 KO rat is tolerant to noxious chemical stimuli 

applied to the colon (the gene is also involved in Blood 

pressure control –PAH- and Behavior, drug addiction: see 

above)

[462]

Pain processing Ano3T

3, 108.44 Mb 

- - The F344 KO rat shows increased neuronal activity and 

increased thermal and mechanical sensitivity

[463]

Proteinuria Actr3** - - Positional identification of the gene: sole gene mutated in [464]
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(Pur1) 13, 46.81Mb the Pur1 interval of the BUF/Mna rat (a model of 

glomerulosclerosis)

Proteinuria AgtrapT

5, 168.55 Mb

Renal function AGTRAP-

PLOD1 

locus; 1p36

The SS KO rat shows decreased urinary protein excretion; 

the human locus had been identified in GWAS

[32]

Proteinuria Clcn6T

5, 168.47Mb

Renal function AGTRAP-

PLOD1 

locus; 1p36

The SS KO rat shows decreased urinary protein excretion; 

the human locus had been identified in GWAS 

[32]

Proteinuria MthfrT

5, 168.50Mb

Renal function AGTRAP-

PLOD1 

locus; 1p36

The SS KO rat shows increased urinary protein excretion; 

the human locus had been identified in GWAS and MTHFR 

could be linked to blood pressure and renal phenotype

[32]

Proteinuria Plod1T

5, 168.38Mb

Renal function AGTRAP-

PLOD1 

locus; 1p36

The SS KO rat shows increased urinary protein excretion; 

the human locus had been identified in GWAS 

[32]

Proteinuria (Rf2) Rab38***, T - - Natural KO in FHH; transgenesis in FHH and targeted KO [465]
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1, 152.07 Mb in a FHH.BN congenic demonstrated the role of Rab38 in 

protein excretion

Proteinuria and 

kidney damage

Add3***

1q55, 

273.85 Mb

- - Positional identification and sequencing of the FHH gene 

revealed a deleterious mutation; knockout and transgenesis 

experiments confirmed the causal role of the mutation

[466, 467]

Proteinuria and 

kidney damage 

(Rf4)

Shroom3**

14, 16.62 Mb

Renal function SHROOM3

(GWAS)

4q21.1

Congenic mapping and sequence analysis in rats suggested 

Shroom3 was a strong positional candidate gene; variants 

disrupting the actin-binding domain of SHROOM3 may 

cause podocyte effacement and impairment of the 

glomerular filtration barrier in zebrafish

[468]

Proteinuria and 

kidney damage

TgfbT

1, 83.74Mb

- - Heterozygous KO of Tgfb protects SS rats against high salt-

induced renal injury 

[469]

Proteinuria and 

kidney damage

Tmem63c*

6, 111.04 Mb

- - Positional identification of the gene, which shows 

differential glomerular expression; the susceptible strain 

(MWF) also shows a nephron deficit; patients with focal 

[470]
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segmental glomerulosclerosis exhibit loss of glomerular 

TMEM63C expression

Proteinuria 

and kidney 

damage 

(Pur7?)

Arhgef11**

2, 206.39Mb

Glomerular 

filtration rate

1q21 Positional identification of the gene; allelic variants are 

differentially expressed in SS, SHR and congenic rats 

[471]

Proteinuria 

and kidney 

disease (Rf1)

Sorcs1**T

1q, 277.40Mb

Kidney 

disease

SORCS1

10q23-q25

The Rf1 interval was narrowed to a single gene, Sorcs1, 

which only shows polymorphisms in non-coding regions;  

Sorcs1 KO in the consomic FHH-1BN causes increased 

proteinuria and impairment of albumin transport; in 

humans, association was found between SORCS1 and 

kidney disease

[472]

QT-interval Rffl-lnc1*** See above, Blood pressure and QT-interval [24]

Renal injury Nr4a1T

7, 142.90 Mb

- - The FHH KO rat shows early onset of kidney injury and 

progressive decline in kidney function resulting from 

[473]
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macrophage-mediated enhanced inflammatory processes; the 

gene is also involved in dyskinesia in an experimental 

Parkinson disease model (see above)

Renal injury Serpinc1T

13, 78.81 Mb

- - Patients with low SERPINC1 activities present a higher risk 

of developing AKI after cardiac surgery; the heterozygous 

congenic SS.BN KO rat shows increased renal injury after 

renal ischemia/reperfusion

[474]

Rheumatoid 

factor 

production

Igl**

11q23

- - Analysis of congenic and advanced intercrossed rats showed 

that the Igl locus controls rheumatoid factor production and 

allergic bronchitis

[475]

Stroke Igh*

6, ~138 Mb

- - Congenic substitution of the SHRSP Igh locus with the 

corresponding haplotype from SHR (stroke-resistant) 

markedly reduced cerebrovascular disease, as well as the 

serum levels of autoantibodies to key cerebrovascular stress 

proteins

[476]

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.23.003384doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.003384
http://creativecommons.org/licenses/by/4.0/


101

Stroke (Str1) Ndufc2*,T

1, 162.37 Mb

Stroke NDUFC2

11q14.1

Positional identification of the gene and differential 

expression study: Ndufc2 is down-regulated in SHRSP 

(no sequence difference between SHRSP and SHRSR); 

the heterozygous KO SHRSR rat shows stroke 

occurrence and renal abnormalities, similarly to the 

SHRSP rat; in humans, association was found between 

NDUFC2 and stroke

[26, 27]

Stroke (Str2) Nppa**

5, 165.81 Mb

Stroke NPPA

 1p36.21

Positional identification of the gene; altered sequence 

and expression of Nppa in SHRSP rats; in humans, 

association was found between NPPA and stroke

[477, 478]

T-cell 

differentiation

Pon1T

4, 30.25 Mb

- - The SD KO rat shows a decrease in CD4+, CD8+ and 

double-positive T-cells; PON1 prevents excessive apoptosis 

by inhibiting activation of the p38 signaling pathway

[479]

T-cell 

differentiation

Tap2** 

20, 3.99 Mb

- - Positional identification of Tap2 and RT1-A, which interact 

with one another and control CD4:CD8 ratio and MHC class 

[480]
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+ RT1-A**

20,  ?Mb

expression

Toxicity AhrT 

6, 54.97 Mb

- - The SD KO mutant shows renal pathology and lack of 

responses to dioxin exposure (Ahr KO results in distinct 

phenotypes in mouse and rat)

[481]

Toxicity Nr1i2T

2, 65.02 Mb

- - An F344 KO mutant does not show the increase in NADPH-

cytochrome P450 oxidoreductase protein and activity upon 

dexamethasone treatment; on the other hand, unlike wild-

type rats, the SD KO rat fed diet containing pregnenolone-

16alpha-carbonitrile (a non- genotoxic carcinogen) does not 

show increased thyroid gland weight

[482, 483]

Toxicity (liver) Nr1i3T

13, 89.59 Mb

- - Unlike wild-type rats, the SD KO rat fed diet containing 

sodium phenobarbital (a non-genotoxic carcinogen) does not 

show increased liver weight, hepatocyte replicative DNA 

synthesis and induction of cytochrome P450 enzymes

[483]
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Vascular 

function

Mc4rENU 

18, 62.61 Mb

Obesity MC4R

18q22 

The MSH6 KO rat is obese (see above) and show 

bradycardia and increased sympathetic tone to the 

vasculature

[484]

Vascular 

function

Nfe2l2T

3, 623.50 Mb

- - The SD KO rat shows abnormalities in endothelium-

dependent vasodilation and in microvessel density (Nfe2l2 

also controls aflatoxin B1 toxicity: see above)

[485]

Vascular 

function 

(vasodilation)

Sod3ENU

14, 60.96 Mb

- - Missense mutation in the SS rat with deleterious effects on 

aortic vascular reactivity, but protective effects in mesenteric 

arteries; see also above, Chronic kidney disease

[486]

Vascular tone 

and nephropathy

Shc1T

2, 188.75 Mb

- - The SS rat overexpresses Shc1, a feature linked to 

hypertension-induced increased renal damage; Shc1 KO 

restores renal microvascular responses and mitigates 

glomerular damage in SS rats

[487]

185

186 (1) In forward genetic studies, the role of the causative genes is considered proven when complementation, mutation recovery, gene disruption or 

187 transgenesis was performed successfully (***); when these tests are lacking, the role of the gene can be either solid (**) (polymorphisms analysed in 
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188 several contrasting strains, genetic linkage in a cross, or translation to genetic association in the human), or suggestive only (*) (for instance, 

189 polymorphism analysed in 2 contrasting strains only). Genes inactivated by ENU-driven target-selected mutagenesis are labeleled as ENU. Targeted 

190 mutations (in general, KO rats) are labelled as T.

191 (2) The human gene is indicated only when it has been implicated in the trait or diseases analysed in the rat. 

192 (3) The gene positions are based on the data available at the NCBI (www.ncbi.nlm.nih.gov/), except those of the Lta-Ncr3 region, derived from [309]; in 

193 the case of the rat, the cytogenetic position is indicated only when it was determined by in situ hybridization.

194 (4)  The genomic scan of replicated high- and low-alcohol-drinking lines revealed signature of selection (excessive differentiation in the genomic 

195 architecture between lines) in 930 genes [295]; in the above table, only those genes residing in previously identified QTLs are quoted. 

196 (5) This mutant is in fact a knock-in mutant carrying a human insertion that, unexpectedly, was shown to be spliced out upon transcription, resulting in 

197 the generation of a premature stop codon and thus in a loss-of-function allele (except in the olfactory bulb).

198 Abbreviations: 

199 1) Genes: Abcb1a: ATP-binding cassette, sub-family B (MDR/TAP), member 1A (=Mdr1a, Multidrug resistance 1a/P-glycoprotein); Abcc2: ATP-

200 binding cassette, sub-family C (CFTR/MRP), member 2 (=Moat=Mrp2); Abcc6: ATP binding cassette subfamily C member 6; Abcc8: ATP binding 

201 cassette subfamily C member 8 (=Sur1, Sulfonylurea receptor 1); Abcg2: ATP-binding cassette, sub-family G (WHITE), member 2 (Junior blood group) 

202 (=Bcrp, Breast cancer resistance protein); Abcg5: ATP-binding cassette, sub-family G (WHITE), member 5; ABCG8: ATP-binding cassette, sub-family 

203 G (WHITE), member 8; Actr3: ARP3 actin-related protein 3 homolog (yeast); Adamts16: Disintegrin and metallopeptidase with thrombospondin type 1 
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204 motif, 16; Adcyap1r1: Adenylate cyclase activating polypeptide receptor type 1; Add1: Adducing 1 (alpha); Add3: Adducing 3 (gamma); Agtr1a: 

205 Angiotensin II receptor, type 1a; Adgrl3: Adhesion G protein-coupled receptor L3 (=Lphn3); Adra2a: Adrenoceptor alpha 2A; Ahr: Aryl hydrocarbon 

206 receptor; Angptl8: Angiopoietin-like 8; Anks6: Ankyrin repeat and sterile alpha motif domain containing 6 (= Pkdr1, SamCystin); Ano3: Anoctamin 3, 

207 calcium activated chloride channel (=Tmem16c); Apc: Adenomatous polyposis coli; Aplec: Antigen-presenting lectin-like receptor gene complex 

208 (=Dcir3); Apoa4: Apolipoprotein A4; Apoe: Apolipoprotein E; Aqp4: Aquaporin 4; Aqp11: Aquaporin 11; Ar: Androgen receptor; Arntl: Aryl 

209 hydrocarbon receptor nuclear translocator-like (=Bmal1); Ar: Androgen receptor; Arhgef11: Rho guanine nucleotide exchange factor (GEF) 11; Arsb: 

210 Arylsulfatase B; Asip: Agouti signaling protein; Aspa: Aspartoacylase; Atm: Ataxia-telangiectasia mutated serine/threonine kinase; Atp7b: ATPase, 

211 Cu++ transporting, beta polypeptide; Atrn: Attractin; Avp: Arginin vasopressin;  Bace1: Beta-secretase 1; Bckdk: Branched chain ketoacid 

212 dehydrogenase kinase; Bdnf: Brain-derived neurotrophic factor; Bglap: Bone gamma- carboxyglutamate protein (=osteocalcin); Brca2: BRCA2, DNA 

213 repair associated; Bscl2: BSCL2 lipid droplet biogenesis associated, seipin; CIIta: Class II, major histocompatibility complex, transactivator (=Mhc2ta); 

214 C3: Complement C3; Cacna1a: Calcium channel voltage-dependent subunit alpha 1A; Cacna1c: Calcium voltage-gated channel subunit alpha1 C; 

215 Cacna1f: Calcium voltage-gated channel subunit alpha1 F; Cacna1h: Calcium voltage-gated channel subunit alpha1 H; Calcr: Calcitonin receptor; 

216 Camk2: Calcium/calmodulin-dependent protein kinase II; Camk2n1: Calcium/calmodulin-dependent protein kinase II inhibitor 1; Cav3: Caveolin 3; 

217 Cblb: Cbl proto-oncogene B; Ccdc39: Coiled-coil containing domain 39; Ccdc85c: Coiled-coil containing domain 85C; Cckar: Cholecystokinin A 

218 receptor; Cd8a: Cd8A molecule; Cd36: CD36 molecule, fatty acid translocase; Cd59: Cd59 molecule; Cd247: CD247 molecule (CD3 zeta chain); 

219 Cdh13: Cadherin 13; Cdkn1b: Cyclin dependent kinase inhibitor 1B; Cfb: complement factor B; Cftr: Cystic fibrosis transmembrane conductance 
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220 regulator; Chrm3: Cholinergic receptor, muscarinic 3; Cit: Citron rho-interacting serine/threonine kinase; CLEC4A: C-type lectin domain family 4, 

221 member A (=DCIR); Cntnap2: Contactin associated protein like 2; Cntrob: Centrobin, centrosomal BRCA2 interacting protein; Cp: Ceruloplasmin; 

222 Cplx1: Complexin 1; Crb1: Crumbs cell polarity complex component 1; Crhr2: Corticotropin releasing hormone receptor 2; Cryba1: Crystallin beta 

223 A1; Crygd: Crystallin gamma D; Csf1: Colony stimulating factor 1; Csf1r: Colony stimulating factor 1 receptor; Ctnnd2: Catenin (cadherin-associated 

224 protein), delta 2; Ctns: Cystinosin, lysosomal cystin transporter; Cyba: Cytochrome b-245 alpha chain; Cyp2c11: Cytochrome P450, family 2, subfamily 

225 c, polypeptide 11; Cyp2e1: Cytochrome P450, family 2, subfamily e, polypeptide 1; Cyp2j4: Cytochrome P450, family 2, subfamily j, polypeptide 4 

226 (human CYP2J2 ortholog); Cyp3a1/2: Cytpchrome P450, family 3, subfamily a, polypeptide 1/2; Cyp4f18: Cytochrome P450, family 4, subfamily f, 

227 polypeptide 18; Cyp11b1: Cytochrome P450, family 11, subfamily b, polypeptide 1; Cyp17a1: Cytochrome P450 family 17, subfamily a, polypeptide 

228 1 ; Ddah1: Dimethylarginine dimethylaminohydrolase 1; Defb23/26/42: Defensin beta 23/26/42; Depdc5: DEP domain containing 5; Dhh: Desert 

229 hedgehog; Dmd: Dystrophin; Disc1: Disc1 scaffold protein; Dnd1: DND microRNA-mediated repression inhibitor 1; Dnmt1: DNA methyltransferase 1; 

230 Dock8: Dedicator of cytokinesis 8; Dopey1: Dopey family member 1; Dpp4: Dipeptidyl peptidase 4; Drd1: Dopamine receptor D1; Dsg4: Desmoglein 

231 4; Dusp5: Dual specificity phosphatase 5; Endog: endonuclease G; Ephx2: Epoxide hydrolase; Ercc6: ERCC excision repair 6, chromatin remodelling 

232 factor (=Csb: Cockayne syndrome B); Esr1: Estrogen receptor 1; Esr2: Estrogen receptor 2; Edaradd: EDAR-associated death domain; Ednrb: 

233 Endothelin receptor type B ; F8: Coagulation factor F8; Fah: Fumarylacetoacetate hydrolase; Fam129c: Family with sequence similarity 129, member 

234 C; Fbxo10: F-box protein 10; Fcgr2a: Fc fragment of IgG receptor IIa; FCGR3B: Fc fragment of IgG receptor IIIb ; Fcgr3-rs: Fc fragment of IgG 

235 receptor III related sequence; Fdft1: Farnesyl diphosphate farnesyltransferase1; Fh: fumarate hydratase; Fkbp5: FKBP prolyl isomerase 5; Flcn: 
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236 Folliculin (=Bhd, Birt-Hogg-Dube syndrome homolog); Fmr1: Fragile X mental retardation 1; Folh1: Folate hydrolase 1; Folr1: Folate receptor 1; 

237 Foxn1: Forkhead box N1; Frem2: FRAS1 related extracellular matrix protein 2; Frmpd1: FERM and PDZ domain containing 1; Fry: Furry homolog 

238 (Drosophila); Gdnf: Glial cell derived neurotrophic factor; Gh: growth hormone; Ghsr: Growth hormone secretagogue (ghrelin) receptor; Gimap5: 

239 GTPase, IMAP family member 5 (=Ian5); Git2: GIT ArfGAP 2; Gja3: Gap junction protein, alpha 3; Gja8: Gap junction protein, alpha 8 (=Cox50); 

240 Gla: Galactosidase alpha; Gnal: G protein subunit alpha L;  Golgb1: Golgin B1; Gper1: G protein-coupled estrogen receptor 1; Gpr183: G protein-

241 coupled receptor 183 (=Ebi2); Grin2a: Glutamate ionotropic receptor NMDA type subunit 2A; Grm2: Glutamate metabotropic receptor 2 (=mGlur2); 

242 Hcn1: Hyperpolarization activated cyclic nucleotide gated potassium channel 1; Hip1: Huntington-interacting protein 1; Hmx1: H6 family homeobox 1; 

243 Hr: Hair growth associated; Hsd11b2: Hydroxysteroid 11-beta dehydrogenase 2 ; Htr7: 5-hydroxytryptamine (serotonin) receptor 7, adenylate cyclase-

244 coupled; Igh: Immunoglobulin heavy chain locus; Igl: Immunoglobulin lambda chain complex; Il1rl2: Interleukin 1 receptor like 2 (=Il36r); Il2rg: 

245 Interleukin 2 receptor, gamma; Il21r: Interleukin 21 receptor; Il22ra2: Interleukin 22 receptor, alpha 2; Inppl1: Inositol polyphosphate phosphatase like 

246 1; Isca1: Iron-sulfur complex assembly 1: Jund: JunD proto-oncogene, AP-1 transcription factor subunit; Kcna1: Potassium voltage-gated channel, 

247 shaker-related subfamily, member 1; Kcnj1: Potassium voltage-gated channel subfamily J member 1 (=Romk); Kcnj10: Potassium voltage-gated 

248 channel subfamily J member 10 (=Kir4.1); Kcnj16: Potassium voltage-gated channel subfamily J member 16; Kncq1: Potassium voltage-gated channel, 

249 KQT-like subfamily, member 1; Kcnk3: Potassium two pore domain channel subfamily K member 3; Kcnn2: Potassium calcium-activated channel 

250 subfamily N member 2; Kcnn4: Potassium calcium-activated channel subfamily N member 4; Kiss1: KISS-1 metastasis-suppressor (kisspeptin); Kit: v-

251 kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog; Krt@: Cytokeratin gene locus (type II); Krt71: Keratin 71; L1cam: L1 cell adhesion 
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252 molecule; Lamp2: Lysosomal associated membrane protein 2; Ldlr: Low density lipoprotein receptor; Lep: Leptin; Lepr: Leptin receptor; Lgi1: Leucine 

253 rich glioma inactivated 1; Lipa: Lipase A, lysosomal acid, cholesterol esterase; Lmx1a: LIM homeobox transcription factor 1, alpha; Lpar1: 

254 Lysophosphatidic acid receptor 1; Lpin1: Lipin 1 (phosphatidate phosphatase); Lrp5: LDL receptor related protein 5; Lrrk2: Leucine-rich repeat kinase 

255 2; Lss: Lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase); Lta: Lymphotoxin alpha; Ltb: Lymphotoxin beta; Lst1: Leukocyte-specific transcript 

256 1;  Lyst: Lysosomal trafficking regulator; Mbd2: Methyl CpG binding domain binding protein 2; Mbp: Myelin basic protein; Mc4r: Melanocortin 4 

257 receptor; Mecp2: Methyl-CpG binding protein 2 ; Mertk: MER proto-oncogene, tyrosine kinase; Mip: Major intrinsic protein of lens fiber; Mir146b 

258 (5p): Micro RNA 146b; Mkx: Mohawk homeobox; Mrs2: MRS2 magnesium transporter; Msh6: MutS homolog 6; Mstn: Myostatin; Mt-Nd2, Mt-Nd4, 

259 Mt-Nd5: Mitochondrial subunits Nd2, Nd4, Nd5 encoding the NAD dehydrogenase (complex I); Muc1: Mucin 1, cellsurface associated; Myo5a:Myosin 

260 VA: Myo7a: Myosin VIIA; Myo9b: Myosin IXB; Myo15a: Myosin XVA; Myl4: Myosin, light chain 4; Ncf1: Neutrophil cytosolic factor 1 (encodes the 

261 47-kilodalton cytosolic subunit of neutrophil NADPH oxidase); Ncf2: Neutrophil cytosolic factor 2 (=p67phox; 7-kilodalton cytosolic subunit of 

262 neutrophil NADPH oxidase); NCF4: Neutrophil cytosolic factor 4, 40kDa; Ncr3: Natural cytotoxicity triggering receptor 3; Ndufa4: NADH 

263 dehydrogenase 1 alpha subcomplex 4; Ndufc2: NADH:ubiquinone oxidoreductase subunit C2; Nek8: NIMA-related kinase 8; Nfe2l2: Nuclear factor, 

264 erythroid 2 like 2 (=Nrf2); Nlgn3: Neuroligin-3; Nlrp1: NLR family, pyrin domain containing 1; Nox4: NADPH oxidase 4; Nppa: Natriuretic peptide A 

265 (=Anp); Nppb: Natriuretic peptide B (=Bnp); Nppc: Natriuretic peptide C (=Cnp); Npy: Neuropeptide Y; Nr1i2: Nuclear receptor subfamily 1 group I 

266 member 2 (=Pxr, Pregnane X receptor); Nr1i3: Nuclear receptor subfamily 1 group I member 3 (=Car, Constitutive androstane receptor); Nr2f2: 

267 Nuclear receptor subfamily 2 group F member 2; Nr3c1: Nuclear receptor subfamily 3 group C member 1 (=Gr, Glucocorticoid receptor); Nrg1: 
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268 Neuregulin 1; Nur4a1: Nuclear receptor subfamily 4 group A member 1 (=Nur77); Oca2: Oculocutaneous albinism II; Ogdh: Oxoglutarate 

269 dehydrogenase; Ogn: Osteoglycin; Oprl1: Opioid related nociceptin receptor 1 (nociceptin/orphanin FQ receptor); P2rx7: Purinergic receptor P2x7; 

270 Pappa1: Pappalysin 1; Pappa2: Pappalysin 2; Park7: Parkinson protein 7 (=Dj1); Pax6: Paired box 6; Pcdh15: Protocadherin 15; Pde6b: 

271 Phosphodiesterase 6B; Phkg2: Phosphorylase kinase, gamma 2 (testis); Pgls: 6-phosphogluconolactonase; Phf24: PHD finger protein 24; Pi15: 

272 peptidase inhibitor 15; Pink1: Pten induced putative kinase; Pkhd1: Polycystic kidney and hepatic disease 1 (autosomal recessive); Plekha7: Pleckstrin 

273 homology domain containing family A member 7; Plekhm1: Pleckstrin homology domain containing, family M (with RUN domain) member 1; Plp1: 

274 Proteolipid protein 1;  Pmch: Pro-melanin-concentrating hormone; Pon1: Paraoxonase 1; Ppp4r3b: Protein phosphatase 4 regulatory subunit 3B 

275 (=Smek2) ; Pparg: Peroxisome proliferator activated receptor gamma; Prdm14: PR/SET domain 14; Prdx2: Peroxiredoxin 2; Prkdc: Protein kinase, 

276 DNA-activated, catalytic polypeptide; Prkg2: Protein kinase, cGMP-dependent, type II; Prkn: Parkin RBR E3 ubiquitin protein ligase (=Park2); Prlhr: 

277 Prolactin releasing hormone receptor (=Gpr10); Prss8: Protease, serine, 8; Pten: Phosphatase and tensin homolog; Ptprk: Protein tyrosine phosphatase, 

278 receptor type, K; Rab38: RAB38, member RAS oncogene family; Rag1: Recombination activating gene 1; Rag2: Recombination activating gene 2; 

279 Rarres2: Retinoic acid receptor responder 2 (=chemerin); Rbm20: RNA binding motif protein 20; Rffl: Ring finger and FYVE like domain containing 

280 E3 ubiquitin protein ligase (rififylin); Rffl-lnc1: Rffl-long non-coding RNA; RT1-A: RT1 class I, locus A; RT1-Ba: RT1 class II, locus Ba; RT1-Bb: RT1 

281 class II, locus Bb; Reln: Reelin; Ren: Renin; Resp18: Regulated endocrine-specific protein 18;  Rgma: Repulsive guidance molecule BMP co-receptor a; 

282 Rnaset2: Ribonuclease T2; Sbf1: SET binding factor 1; Scn1a: Sodium channel, voltage-gated, type I, alpha subunit; Scn9a:  Sodium voltage-gated 

283 channel alpha subunit 9 (=Nav 1.7); Serpinc1: Serpin family C member 1 (=antithrombin III); Sh2b3: SH2B adaptor protein 3 (=Lnk); Shank2: SH3 and 
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284 multiple ankyrin repeat domains 2; Shank3: SH3 and multiple ankyrin repeat domains 3; Shc1: SHC adaptor protein 1; Shroom3: Shroom family 

285 member 3; Slc6a3: Solute carrier family 6 member 3 (=DAT, dopamine transporter); Slc6a4: Solute carrier family 6 member 4 (= SERT, serotonin 

286 transporter); Slc11a2: Solute carrier family 11 (proton-coupled divalent metal ion transporter), member 2 (=Nramp2); Slc22a18: Solute carrier family 

287 22, member 18; Slc39a12: Solute carrier family 39 member 12 (zinc transporter ZIP12); Slco1b2: Solute carrier organic anion transporter family 

288 member 1B2; SLCO1B3 : Solute carrier organic anion transporter family member 1B3; Snca: Synuclein alpha; Sod3: Superoxide dismutase 3, 

289 extracellular; Sorcs1: Sortilin-related VPS10 domain containing receptor 1; Spata22: Spermatogenesis associated 22; Stim1: Stromal interaction 

290 molecule 1; Sv2a: synaptic vesicle glycoprotein 2A; Tap2: Transporter 2, ATP-binding cassette, sub-family B (MDR/TAP); Tbc1d1: TBC1 domain 

291 family member 1; Tbx6: T-box 6; Tfr2: transferrin receptor 2; Themis: Thymocyte selection associated; Tg: Thyroglobulin; Tlr4: Toll-like receptor 4; 

292 Tmem63c: Transmembrane protein 63c; Tmem67: Transmembrane protein 67 (=meckelin, Mks3); Tp53: Tumor protein 53; Tph2: Tryptophan 

293 hydroxylase 2; Tpcn2: Two pore segment channel 2; Trem2: Triggering receptor expressed on myeloid cells 2 ; Trpa1: transient receptor potential 

294 cation channel, subfamily A, member 1; Trpc4: Transient receptor potential cation channel, subfamily C, member 4; Trpc6: Transient receptor potential 

295 cation channel subfamily C member 6; Trpm4: Transient receptor potential cation channel subfamily M member 4; Trpv1: Transient receptor potential 

296 cation channel subfamily V member 1; Trpv3: Transient receptor potential cation channel, subfamily V, member 3; Trpv4: Transient receptor potential 

297 cation channel subfamily V member 4; Tsh: Thyroid stimulating hormone receptor; Tspo: Translocator protein; Tubb4a: Tubulin beta 4A class Iva; Tyr: 

298 Tyrosinase; Ubd: Ubiquitin D (=Fat10); Ube3a: Ubiquitin protein ligase E3A; Ugt1a1: UDP glycosyltransferase 1 family, member A1; Unc5c: unc-5 

299 netrin receptor 5 (=Unc5h3); Vav1: Vav1 guanine nucleotide exchange factor; Vkorc1: Vitamin K epoxide reductase complex, subunit 1; Wars2: 
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300 Tryptophanyl tRNA synthetase 2, mitochondrial;  Wfs1: Wolframin ER transmembrane glycoprotein; Zbtb16: Zinc finger and BTB domain containing 

301 16 (=Plzf)

302 2) Phenotypes and diseases: ADHD: Attention deficit hyperactivity disorder; ADLTE: Autosomal dominant lateral temporal lobe epilepsy; ADPKD: 

303 Autosomal dominant polycystic kidney disease; AKI: Acute kidney injury; ALSP: Adult-onset leukoencephalopathy with axonal spheroid and 

304 pigmented glia; AMD: Age-related macular degeneration; ARPKD: Autosomal recessive polycystic kidney disease; CAKUT: Congenital anomalies of 

305 the kidneys and the urinary tract; CDFE: Cortical dysplasia-focal epilepsy; CV: Cardiovascular; DJS: Dubin-Johnson syndrome; EA2: Episodic ataxia 

306 type 2; EAE: Experimental autoimmune encephalomyelitis; EAN: Experimental autoimmune  neuritis; FHM1: Familial hemiplegic migraine type 1; 

307 HNPCC: Hereditary non-polyposis colorectal cancer; HPS: Hermansky-Pudlak syndrome; IBD: Inflammatory bowel disease; LVH: Left ventricular 

308 hypertrophy; LVM: left ventricular mass; PAH: Pulmonary artery hypertension; PD: Parkinson disease; PIA: Pristane-induced arthritis; PKHD1: 

309 Polycystic kidney and hepatic disease 1; RA: Rheumatoid arthritis; RV; Right ventricular; SAME: Syndrome of apparent mineralocorticoid excess; 

310 SCA6: Autosomal dominant spino-cerebellar ataxia 6; T1DM: Type 1 diabetes mellitus (Insulin-dependent diabetes mellitus); T2DM: Type 2 diabetes 

311 mellitus (Non-insulin-dependent diabetes mellitus); VKCFD2: Combined deficiency of vitamin K dependent clotting factors type 2; (X-)SCID: (X-

312 linked) severe combined immunodeficiency

313 3) Others: ACTH: adrenocorticotropic hormone ; CNS: Central nervous system; CRISPR-Cas: Clustered regularly interspaced short palindromic repeat; 

314 ERE: estrogen-responsive-element; ENU: N-ethyl-N-nitrosourea; eQTL: Expression quantitative trait locus; FHH: Fawn-hooded hypertensive; GLP1: 

315 Glucagon-like peptide 1; HDL: High density lipoproteins; HPA: Hypothalamus-pituitary-adrenal; HS: Heterogeneous stock; Ig: Immunoglobulins; IGF-
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316 1: Insulin-like growth factor-1; KO: Knockout; LDL: Low density lipoprotein; LEW: Lewis; LH: Lyon hypertensive; LOH: Loss of heterozygosity; 

317 mTORC1: mTOR complex 1 (MTOR=mechanistic target of rapamycin kinase); MWF: Munich Wistar Frömter; NAA: N-acetyl-L-aspartate; QTL: 

318 Quantitative trait locus; QTN: Quantitative trait nucleotide; SD: Sprague-Dawley; SNP: Single nucleotide polymorphism; SHR: Spontaneously 

319 hypertensive rat; SHRSP: Spontaneously hypertensive rat, stroke prone; SHRSR: Spontaneously hypertensive rat, stroke resistant; SR: Dahl salt-

320 resistant; SS: Dahl salt-sensitive; TNF: Tumor necrosis factor; UTR: Untranslated transcribed region; WT: Wild-type; WKY: Wistar-Kyoto; ZFN: Zinc 

321 finger nuclease.

322
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