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Abstract 

After acute kidney injury (AKI), patients either recover or alternatively develop 
fibrosis and chronic kidney disease. Interactions between injured epithelia, stroma and 
inflammatory cells determine whether kidneys repair or undergo fibrosis, but the 
molecular events that drive these processes are poorly understood. Here, we use single 
nucleus RNA sequencing of a mouse model of AKI to characterize cell states during 
repair from acute injury. We identify a distinct proinflammatory and profibrotic proximal 
tubule cell state that fails to repair. Deconvolution of bulk RNA-seq datasets indicates 
that this “failed-repair proximal tubule cell” or FR-PTC, state can be detected in other 
models of kidney injury, increasing in the aging rat kidney and over time in human kidney 
allografts. We also describe dynamic intercellular communication networks and discern 
transcriptional pathways driving successful vs. failed repair.  Our study provides a 
detailed description of cellular responses after injury and suggests that the FR-PTC state 
may represent a therapeutic target to improve repair. 

 

 

Significance Statement 
Single nucleus RNA sequencing revealed gene expression changes during repair 

after acute kidney injury. We describe a small population of proximal tubule cells that fail 
to repair (FR-PTC). Since this subpopulation expresses abundant pro-inflammatory and 
profibrotic genes, it may represent a new therapeutic target to improve repair and reduce 
fibrosis after AKI.  
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Introduction 
 

Kidneys maintain fluid and electrolyte balance, excrete waste products and 
regulate blood pressure. Composed of approximately one million functional units called 
nephrons, the kidneys receive ~20% of cardiac output. Nephrons have high metabolic 
activity rendering them susceptible to injury from toxins or reduced blood flow. These 
insults cause acute kidney injury (AKI) characterized by decreased kidney function. In 
early stages of AKI, epithelial cells die and surviving epithelia dedifferentiate 
accompanied by inflammation. Dedifferentiated epithelial cells then proliferate and 
redifferentiate to repair the damaged nephron (1, 2). There are no specific treatments for 
acute kidney injury but with supportive care the kidney’s intrinsic repair capacity usually 
allows functional recovery over a period of days to weeks.  
 After repair, kidney function may not return back to baseline due to residual 
subclinical inflammation and fibrosis. Survivors of AKI are at high risk of developing 
future chronic kidney disease and even kidney failure (3). The mechanisms for failed 
repair are not well understood, but a sub-population of injured proximal tubule epithelia 
(the segment most susceptible to injury) are proposed to become arrested at the G2 / M 
cell cycle phase and adopt a senescence-associated secretory phenotype (4). This may 
prevent complete repair, driving inflammation and fibrosis, and mouse ischemia-
reperfusion injury (IRI) models this process well (5). The aim of our study was to 
understand the cellular events underlying both recovery from AKI as well as the 
transition to chronic kidney disease. Bulk transcriptional profiling has successfully 
characterized kidney injury and recovery (5, 6), but these approaches describe a 
transcriptional average across cell populations, which may hide or skew signals of 
interest. We hypothesized that understanding transcriptional changes in single cell types 
over the course of AKI, repair and fibrosis would provide unique insights into disease 
pathogenesis and potentially identify new therapeutic strategies. 
 
Results 
 

We performed single nucleus RNA-sequencing (snRNA-seq) on cryopreserved 
mouse kidney (7). Mice were sacrificed at 4 and 12 hours and 2, 14 and 42 days after 
bilateral ischemia reperfusion injury (IRI) (Fig. 1A). Both histologic changes (Fig. S1) and 
blood urea nitrogen (Fig. 1B) levels confirmed acute injury and its resolution in mouse.   

After quality control filtering, we obtained 26,643 cells from healthy mouse 
kidneys. Visualization of single nucleus transcriptomes in UMAP space resolved 26 
separate clusters (Fig. S2A, Dataset S1). Sub-clustering of both epithelial (descending 
loop of Henle, thin ascending limb) and non-epithelial cells (immune, endothelial, 
stromal) revealed additional cell clusters (Fig. S2B). For example, five separate 
endothelial clusters were identified including arterial, lymphatic, descending vasa recta 
and cortical vs. medullary endothelium. Eight stromal clusters were detected, including 
mesangium and Ren1-positive juxtaglomerular apparatus cells (Fig. S2B). Major cell 
types and subclusters were identified based on cell type-specific markers (Fig. S2C, D, 
Dataset S1) (8-10). Each nephron segment performs unique reabsorptive and secretory 
functions to transform filtrate into urine, and this is reflected by segment-specific 
expression of all detected solute linked carriers, ATPases and channels (Fig. S3).   
 
Proximal tubule responses to acute injury 
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We generated 99,935 mouse AKI single cell transcriptomes (Fig. 1C) and 
integrated these with the healthy datasets using the Harmony algorithm to reduce batch 
effects (Fig 1D) (11). We could define unique anchor genes for all clusters in the 
integrated datasets, and defined the relative abundance of each cluster in healthy vs. 
injured kidney. For example, the AKI kidneys contributed a much larger fraction of 
leukocytes than healthy kidneys (Fig. 1D, E). All original clusters were retained, but two 
new clusters in mouse (Fig. 1D cluster 4: New PT1 and cluster 5: New PT2) appeared in 
injury and these were located adjacent to healthy proximal tubule in UMAP space. 
Analysis of marker gene expression showed that these new clusters expressed the 
proximal tubule marker Lrp2 encoding Megalin, but also the injury marker Havcr1 
encoding Kim1, indicating that these clusters represented an injured proximal tubule 
state in mouse. 

We focused our analysis on proximal tubule, since this segment suffers the most 
injury due to high metabolic activity. Unsupervised subclustering of all mouse proximal 
tubule cells across timepoints yielded three healthy subclusters (the S1, S2 and S3 
segments of the proximal tubule), one repairing subcluster, and three injured subclusters 
(Fig. 2A). Differential gene expression and gene set enrichment analysis (GSEA) were 
performed to characterize the subclusters (Dataset S2). Assigning timepoints to these 
clusters in UMAP space helps visualize temporal changes in proximal tubule gene 
expression (Fig. S4A).  

 There were three categories of injured proximal tubule cells – we annotated 
these as ‘injured S1/2’, ‘injured S3’ and ‘severe injured PT’ respectively. ‘Injured S1/2’ 
and ‘injured S3’ were primarily composed of cells from the 4- and 12-hour timepoints, 
and expressed Myc, which encodes c-Myc playing a role in cell cycle progression, and 
Havcr1, and also shared a part of differentially expressed genes (DEGs) of ‘healthy S1’ 
and ‘healthy S2’ as its DEGs (Fig. 2A, Dataset S2) respectively.  ‘Severe injured PT’ 
shared expression of many injured PT genes, but additionally expressed the tubule 
injury markers Krt20 (5, 6), as well as genes encoding heat shock protein, suggesting a 
more severe injury to these cells. GSEA showed that these proximal tubule injury states 
had enrichment of response to stress and damage, and ‘severe injured PT’ had 
additionally had “cell cycle arrest” (Fig. S4B). 

A ‘Repairing PT’ cluster arose two days after injury and had enrichment of 
“mitotic cell cycle” and “meiotic cell cycle” terms, including up-regulation of Top2a which 
is essential for proliferation. Cell cycle status analysis revealed that ‘repairing PT’ had 
the highest proportion of cycling cells (Fig.S4C, D). In contrast, the proximal tubule injury 
clusters had almost disappeared by two days (Fig. 2B), and a new distinct cell cluster 
arose, growing and reaching nearly 30% of all proximal tubule states at 14 days after 
injury, and remaining ~8% of total proximal tubule by 6 weeks after injury (Fig. 2B). This 
cluster expressed a distinct set of genes not observed in either healthy or acutely injured 
mouse proximal tubule. These included Vcam1, Dcdc2a and Sema5a (Fig. 2A, Dataset 
S2). Because this cluster additionally downregulated expression of terminal 
differentiation markers such as Slc5a12, Slc22a30 and Slc7a13 even at late timepoints, 
we annotated this cluster as ‘failed repair proximal tubule cells,’ or FR-PTC. We recently 
reported that ~20% of injured proximal tubule cells fail to repair at two weeks after AKI, 
and the presence of the FR-PTC cluster in the current analysis supports and extends 
those results	 (12). GSEA of FR-PTC revealed terms such as “positive regulation of 
lymphocyte activation”, “NIK NFκB signaling” and “cell cell signaling by Wnt”, suggesting 
FR-PTC are pro-inflammatory (Fig. S4B). We localized FR-PTCs after IRI by 
immunofluorescence. Vcam1 positive FR-PTCs emerged within Kim1 positive injured 
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tubule in a scattered manner at 2 days after IRI, then expanded and remained within 
atrophic tubules with or without Kim1 expression at late timepoints (Fig. 2C). 

Mapping the PT subclusters back onto the entire dataset revealed that the “New 
PT1” cluster was primarily composed of the three acute injury states and the “New PT2” 
cluster was primarily composed of FR-PTC (Fig. S4E, F). We therefore annotatedthese 
clusters as “Injured PT” and “FR-PTC” respectively in further analyses. We asked 
whether these distinct PT states could be detected in other bulk RNA-seq datasets by 
applying the BSEQ-sc deconvolution algorithm (13). We assessed the fraction of healthy 
PT, injured PT and FR-PTC in an independent mouse IRI one year time course (5). This 
showed that healthy PT decreased after injury, but gradually recovered with time, injured 
PT increased after injury but resolved by 7 days and FR-PTC appeared beginning one 
week after injury and persisted (Fig. 2D). Similar trends were observed in a mouse folic 
acid injury model (Fig. S5A)(14). In human protocol biopsies from kidney transplants, 
FR-PTC increased at one year after transplant compared to pre-transplant (Fig. S5B) 
(15).	 The proportion of FR-PTC also increased with age in rat kidneys, increasing from 
~5% at six months to ~12% at 27 months (Fig. S5C) (16). 

We reconstructed proximal tubule lineage relationships during repair by 
pseudotemporal ordering. The mouse trajectory began with injury, and most cells 
progressed to healthy S1/S2 or S2/S3 proximal tubule segments, but FR-PTCs formed 
an alternate branchpoint off the successful repair trajectory, indicating that FR-PTCs 
represent a distinct cell state (Fig. 2E). Gene ontology analysis across the pseudotime 
trajectory showed that the successful repair trajectory included terms that would be 
expected in cells that are re-differentiating such as “organic acid metabolic process” and 
“carboxylic acid metabolic process” (Fig. 2F). The FR-PTC arm included terms like “cell 
motility” and “cell migration.” These results define FR-PTC as a distinct state after injury 
characterized by a unique set of markers and that persists after resolution of injury. 

We next used single-cell regulatory network inference and clustering (SCENIC) 
to map the gene regulatory networks governing these proximal tubule cell states (17). 
We discovered marked differences in regulon activity between FR-PTC, and either 
healthy or acutely injured states, providing further evidence that these are distinct 
proximal tubule cell states (Fig. 3A, Dataset S3). The FR-PTC cluster had regulon 
activity for both Relb and NFkB, suggesting a proinflammatory status for these cells (Fig. 
3B). Also specific to the FR-PTC cluster was the Tcf7l1 regulon, which mediates Wnt 
signaling, consistent with the strong Wnt GSEA terms in this cluster. Proximal tubule 
canonical Wnt signaling is important both in specification and development, but also in 
disease (18, 19).  

We mapped the relationship between transcription factors identified by this 
analysis and their regulation of GWAS genes associated with CKD. In the successful 
repair cluster, Hnf4a, Hnf1b and Pbx1 drive expression of multiple differentiation-
associated genes that are also GWAS hits for CKD including a variety of solute linked 
carriers plus Plxdc2, Gas2 and Dab2 (Fig. 3B) (20). By contrast, both injury and the FR-
PTC clusters had strong gene regulatory network signals for transcription factors 
regulating the expression of GWAS genes that were not expressed in healthy proximal 
tubule but rather in the injured state. Examples include the non-muscle myosin gene 
Myh9, present in both injured and delayed repair clusters, and Nrg1 encoding the 
epidermal growth factor ligand neuregulin, present primarily in the injured clusters. In 
particular, NFkB and Relb regulons were specific to FR-PTC, and we could map 
downstream CKD GWAS genes to specific clusters, both healthy and injured. These 
results provide functional annotations of cell state-specific transcription factor mediated 
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regulatory networks, helping to elucidate the cellular context for susceptibility loci 
identified in CKD GWAS studies.  

We could detect FR-PTC marker expression in apparently healthy human 
kidneys. Consistent with a prior report, these cells are located in a ‘scattered’ fashion, 
adjacent to normal proximal tubule cells, throughout the proximal tubule (21). 
Examination of images from the Human Protein Atlas (22) shows scattered cells in 
healthy human kidney that express VCAM1 and DCDC2 (Fig. S6A).  We could also 
detect evidence for downregulation of differentiation markers in isolated cells scattered 
throughout the nephron as well (Fig. S6B). These results suggest that a conserved injury 
response occurs in individual, isolated cells even during homeostasis. 
 
Stromal cell responses to injury 
 Recent scRNA-seq analyses have revealed unexpected stromal heterogeneity in 
both developing and adult kidney (8, 9, 23). With Harmony integration, we combined the 
stromal clusters from all timepoints to identify eight stromal cell subclusters (Fig. 4A). 
These included four fibroblast populations that differed according to their cortical or 
papillary site of origin. We could also detect a pericyte and vascular smooth muscle cell 
population that were both characterized by strong expression of Notch pathway 
constituents such as Notch3 and Jag1, consistent with important roles for this pathway in 
pericyte development and angiogenesis (24, 25). We identified renin-secreting 
juxtaglomerular cells as well as mesangial cells. Several stromal clusters differed 
according to kidney region. For example, the cortical fibroblast marker Dapk2 was 
expressed in cluster 3 and 4 but not in cluster 1 and 2 (Fig. 4A) (26), suggesting that 
cluster 3 and 4 are cortical fibroblasts and cluster 1 and 2 are medullary fibroblasts. 
 Myofibroblasts secrete matrix proteins and are critical for fibrogenesis (27). Two 
marker genes for myofibroblasts are Acta2 and Col1a1. In healthy kidney, Acta2 
expression was largely restricted to smooth muscle cells. After IRI, there was strong 
upregulation of Acta2 across all stromal clusters with the exception of mesangial cells, 
and Col1a1 was also strongly induced in fibroblasts (Fig. 4B). We could observe that 
cortical fibroblasts only transiently upregulated Acta2 and Col1a1 with a peak at day 2 
after IRI, whereas medullary fibroblasts showed sustained expression of Acta2 but not 
Col1a1 at 6 weeks (Fig. 4B, C). Medullary fibroblasts also increased as a fraction of the 
total stromal cells over time (Fig. S7). These results suggest an unappreciated plasticity 
of kidney stroma. We could verify the injury-induced transient upregulation of a-smooth 
muscle actin (αSMA), the protein encoded by Acta2, in cortical fibroblasts but not 
medullary fibroblasts, by immunofluorescence analysis (Fig 4D). These results suggest 
regional differences in the response of fibroblasts to injury, with medullary fibroblasts 
progressing to a myofibroblast cell state and cortical fibroblasts reverting to their prior 
quiescent state (Fig. 4E). 
 
Ligand-receptor interactions during injury and repair 
 Finally, we leveraged our datasets to explore how injury affects intercellular 
communication within the kidney. We performed ligand-receptor analysis across all time 
points with simplified global clustering (Fig. 6A). We highlight the tubulointerstitial 
compartment, comprising proximal tubule, endothelium, stroma and leukocytes, because 
interstitial fibrosis in the kidney cortex (where proximal tubule is located) best predicts 
future kidney failure (28). Ccl2 and its receptor Ccr2 play important roles in AKI by 
recruiting monocytes and T cells (29). We used a standardized ligand-receptor score to 
quantitate signaling from Ccl2 in tubulointerstitium to Ccr2 in leukocytes across time 
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(30). This revealed a temporal progression whereby fibroblasts and endothelial cells 
were the first cell type to signal to leukocytes, followed by leukocyte-leukocyte signaling 
at day 2, and finally increasing Ccl2 – Ccr2 signaling from FR-PTC (Fig. 5B, C).  
Compared to FR-PTC, proximal tubule destined for successful repair minimally 
upregulated Ccl2 even in acute injury, emphasizing the pro-inflammatory nature of FR-
PTC. 
 To examine leukocyte chemotactic signaling across cell types more globally, we 
extracted genes from the “leukocyte chemotaxis” GO term and summed the ligand-
interaction score for all cell types across time (Fig. 5D). The strongest scores were seen 
in endothelium and fibroblasts, with increasing values over time – suggesting ongoing 
leukocyte signaling even after repair was apparently nearly complete, at six weeks. 
Consistent with our analysis of Ccl2 signaling, we only observed significant leukocyte 
chemotactic signaling from epithelia at late timepoints in the injured or FR-PTC clusters 
(Fig. 5D). These results highlight striking differences in cell types that are promoting 
inflammation in kidney after injury. In the acute phase, pro-inflammatory fibroblasts and 
endothelium predominate but in the chronic phase, FR-PTC drive ongoing inflammation. 
 We then compared proinflammatory and profibrotic signaling from successful 
repair proximal tubule vs. FR-PTC across time. The pattern was similar whether 
proximal tubule was signaling to endothelial cells, fibroblasts or leukocytes. For proximal 
tubule destined to successfully repair, there was very early upregulation of growth 
factors or cytokines followed by downregulation beginning two days after injury (Fig. 6 A-
C). By contrast, the FR-PTC cluster arising at two days after injury upregulated a distinct 
set of secreted proteins whose expression rose and continued to increase six weeks 
after injury. Ligands from FR-PTC targeting endothelium include Edn1, encoding the 
potent vasoconstrictor endothelin-1, as well as Tgfb2 encoding transforming growth 
factor beta-2 which promotes fibrosis and Ltb, encoding lymphotoxin-β which drives 
inflammatory lymphangiogenesis (31). FR-PTC signaling to fibroblasts included the 
profibrotic genes Pdgfrb and Pdgfrd (32). FR-PTC signaling to leukocytes included a 
variety of pro-inflammatory and pro-fibrotic cytokines including Csf1, Il34, Ccl5, Tnf, 
Ccl2, Ccl7, Ccl8 and Cxcl10. Consistent with a pro-inflammatory role for FR-PTC, 
Vcam1+ tubules were surrounded by F4/80+ macrophages at late timepoints after IRI 
(Fig. S8). 
 
Discussion  
 

This single nucleus atlas of mouse acute kidney injury will serve as a resource 
for future studies aimed at understanding cellular responses to kidney injury. Our ability 
to differentiate between proximal tubule cells that are undergoing successful vs. failed 
repair allowed the molecular dissection of ligand receptor interactions, signaling 
pathways and gene regulons that determine whether an injured epithelial cell repairs 
successfully or not. Whether similar failed repair cell states are shared across organs will 
be an important question for future studies. Deconvolution of bulk RNA-seq datasets 
suggests that FR-PTC also exist in human kidney, and increase with age. Whether these 
pro-inflammatory cells contribute to the well-described age-associated decline in kidney 
function is another open question. Our results suggest that targeting these pro-
inflammatory FR-PTC may reduce chronic inflammation and fibrosis after injury, 
improving repair. 
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Materials and Methods 
 
Animals 
All mouse experiments were performed according to the animal experimental guidelines 
issued by the Animal Care and Use Committee at Washington University in St. Louis. 
C57BL/6J (JAX Stock # 000664) were purchased from Jackson Laboratories (Bar 
Harbor, ME). 
 
Surgery 
For bilateral IRI, 8-10 weeks old male mice were anesthetized with isoflurane and 
buprenorphine SR was administered for pain control. Body temperature was monitored 
and maintained at 36.5- 37.5°C throughout the procedure. Bilateral flank incisions were 
made and the kidneys were exposed. Ischemia was induced by clamping the renal 
pedicle with a non-traumatic microaneurysm clamp (Roboz. Rockville, MD) for 18 
minutes. The clamps were subsequently removed and kidneys were returned to the 
peritoneal cavity. The peritoneal layer was closed with absorbable suture and the flank 
incisions were closed with wound clips. Control mice underwent sham surgery. 
 
Mouse kidney samples 
Mice were euthanized with isoflurane, blood was collected and the left ventricle was 
perfused with PBS. For snRNA-seq, kidneys were snap-frozen with liquid nitrogen. For 
frozen sections, kidneys were fixed with 4% paraformaldehyde for 2 h on ice, incubated 
in 30% (vol/vol) sucrose at 4 °C overnight, and embedded in optimum cutting 
temperature compound (Sakura FineTek) to cut 7-µm sections. For paraffin sections, 
kidneys were fixed with 10% (vol/vol) formalin and paraffin-embedded to cut 4-µm 
sections. Immunofluorescence protocols and antibodies are detailed below. 
 
BUN measurement 
BUN measurement was done using the QuantiChrom Urea Assay kit as per the 
manufacturer’s protocol. 
 
snRNA-seq 
Single nuclei isolation from tissue was performed as previously described (33). Briefly, 
nuclei were isolated with Nuclei EZ Lysis buffer (Sigma #NUC-101) supplemented with 
protease inhibitor (Roche #5892791001) and RNase inhibitor (Promega #N2615, Life 
Technologies #AM2696). Samples were cut into <2 mm pieces and homogenized using 
a Dounce homogenizer (Kimble Chase #885302-0002) in 2ml of ice-cold Nuclei EZ Lysis 
buffer and incubated on ice for 5 min with an additional 2ml of lysis buffer. The 
homogenate was filtered through a 40-µm cell strainer (pluriSelect #43-50040-51) and 
then centrifuged at 500 x for 5 min at 4 ºC. The pellet was resuspended and washed 
with 4 ml of the buffer and incubated on ice for 5 min. After another centrifugation, the 
pellet was resuspended in Nuclei Suspension Buffer (1x PBS, 1% BSA, 0.1% RNase 
inhibitor), filtered through a 5-µm cell strainer (pluriSelect 43-50005). Nuclei were 
counted on hemocytometers (InCYTO C-chip) and partitioned into each droplet with a 
barcoded gel bead using the 10X Chromium instrument (10X Genomics, Pleasanton, 
CA). Single nuclei were lysed and RNAs were reverse transcribed into cDNA within each 
droplet. After breaking the emulsion, cDNAs were amplified and fragmented followed by 
the addition of Illumina adapters using Single Cell 3’ Library & Gel Bead Kit (v2). 
Samples were indexed and sequenced on the S4 flow cell of NovaSeq 6000 (Illumina). 
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Data processing of snRNA-seq libraries 
snRNA-seq data was processed with zUMIs as previously described (34). Briefly, low-
quality barcodes and UMIs were filtered out using the internal read filtering algorithm, 
then mapped to the mouse reference genome (mm10) using STAR 2.5.3a. Next, zUMIs 
quantified the reads that were uniquely mapped to exonic, intronic or intergenic region of 
the genome and inferred the true barcodes that mark nuclei by fitting a k-dimensional 
multivariate normal distribution with mclust package. Finally, a UMI count table utilizing 
both exonic and intronic reads were generated for downstream analysis. The whole data 
processing was executed by running the script on the facilities of the Washington 
University Center for High Performance Computing, which were partially provided 
through NIH grant S10 OD018091. 
 
General strategy of snRNA-seq data analysis 
Seurat v3 was used for downstream analyses including, normalization, scaling, 
clustering of nuclei. We analyzed each batch of mouse sample separately and excluded 
nuclei with less than 150 or more than 8,000 genes detected. We also excluded nuclei 
with a relatively high percentage of UMIs mapped to mitochondrial genes (>=0.01) and 
ribosomal genes (>=0.06). Subsequently, we applied SoupX	(35) to remove ambient 
RNA, because different batches can be affected by different levels of ambient RNA. 
Briefly, ambient RNA expression is estimated from the empty droplet pool (10 UMI or 
less) with setting "nonExpressedGeneList" to hemoglobin genes followed by removing 
ambient RNA counts using “adjustCounts” function with default parameters, according to 
the tutorial from SoupX package 
(https://cdn.rawgit.com/constantAmateur/SoupX/master/doc/pbmcTutorial.html). In 
parallel, we used Scrublet (36) to remove doublets. After merging all mouse data, we 
log-normalized and scaled the data to remove unwanted sources of variation driven by 
the number of detected UMIs, performed dimension reduction, clustering and sub-
clustering. In addition, after clustering or sub-clustering, we performed curated doublet 
removal based on known lineage specific markers. 
 
Clustering and dimension reduction 
We first combined all mouse datasets. The highly variable genes for principal component 
analysis were obtained by identifiying the top 500 variable genes from each dataset with 
FindVariableFeatures () and merging the list, then performed principal component 
analysis (“RunPCA” function). Combined mouse datasets were integrated using the 
“RunHarmony” function in the Harmony package. Clustering and UMAP were performed 
in Seurat using the ‘harmony’ data type as the dimensional reduction type (i.e. 
reduction.type=’harmony’). Marker genes were identified from each aligned cell type 
using the FindAllMarkers function in Seurat. Cluster reassignment was performed based 
on manual review of lineage-specific marker expression. 
  
Time course analysis of proximal tubular cells 
We subsetted mouse proximal tubular cell clusters, then performed clustering without 
Harmony integration. The highly variable genes for principal component analysis were 
obtained by identifying the top 300 variable genes from each datasets with 
FindVariableFeatures () and merging the list. We then performed principal component 
analysis (“RunPCA” function), clustering and UMAP. 
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Pseudotemporal analysis 
Pseudotemporal analysis was performed using Monocle2. We ordered the cells onto a 
pseudotime trajectory based on the union of highly variable genes in a set of PCs that 
were previously used for time course analysis of proximal tubular cells. Next, we defined 
the branch-dependent genes by BEAM function in Monocle2, then cataloged them into 2 
clusters in a pseudotime manner. Finally, we performed gene ontology analysis of each 
gene cluster. 
 
Gene regulatory network analysis on proximal tubular cells 
We used SCENIC for gene regulatory network analysis. In brief, we generated co-
expression networks of mouse proximal tubular nuclei data via GRNBoost2. We then 
utilized the SCENIC package to generate cell regulatory networks from mouse proximal 
tubular nuclei data, with the mouse mm10 genome for cis-regulatory analysis. We used 
two gene-motif rankings: 10 kb around the TSS or 500 bp up- and 100 bp downstream 
the transcriptional start site, which obtained from 
“https://resources.aertslab.org/cistarget/”. 
 
Single cell deconvolution 
We used BSeq-sc to estimate the proportion of each PT subtype identified from snRNA-
seq in the previously reported bulk RNA-seq data as previously described (37). Briefly, 
the marker genes for each PT subtype and the RPKM normalized gene expression 
matrix from bulk RNA-seq were used as input according to the tutorial from BSeq-sc 
package (https://shenorrlab.github.io/bseqsc/vignettes/bseq-sc.html).  
 
Ligand-receptor interaction analysis 
To study ligand-receptor interactions across cell types, we used a draft network (38), 
and defined an interaction score as previously described with a slight modification (30). 
In brief, first we eliminated ligand-receptor pairs that include laminin and collagen genes 
as ligands, then considered only ligands and receptors expressed in more than 0.5% of 
the nuclei in the specific cell type. Next we defined the interaction score as the product 
of the average expression of a ligand in a cell type at a time point and the average 
expression of its cognate receptor of another cell type at same time point. We then 
standardized each ligand-receptor interaction score by taking the distance between the 
interaction score and the mean interaction score in units of standard deviations. 
 
Immunofluorescence 
Kidneys were fixed in 4% paraformaldehyde (Electron Microscopy Services), 
cryoprotected in 30% sucrose solution overnight and embedded in optimum cutting 
temperature (OCT) compound (Tissue Tek). Kidneys were cryosectioned at 7 micron 
thickness and mounted on Superfrost slides (Thermo Fisher Scientific). Sections were 
washed with PBS (3 times, 5 minutes each), then blocked with 10% normal goat serum 
(Vector Labs), permeabilized with 0.2% Triton X-100 in PBS and then stained with 
primary antibody specific for Cy3-conjugated anti-αSMA (1:400, Sigma, #C6198), rat 
anti-PDGFRβ (1:200, eBioscience, #16-1402), rabbit anti-CD31 (1:200, Abcam, 
#ab28364) and rat anti-F4/80 (1:200, Abcam, #ab6640). Secondary antibodies included 
AF488-, Cy3-, or Cy5-conjugated (Jackson ImmunoResearch). Then, sections were 
stained with DAPI (40,60- diamidino-2-phenylindole) and mounted in Prolong Gold (Life 
Technologies). Images were obtained by confocal microscopy (Nikon C2+ Eclipse; 
Nikon, Melville, NY) 
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Figure 1. Single-nucleus RNA-seq atlas of mouse IRI kidney. (A) Summary of 
experimental strategy. n = 3 mice per group. (B) Blood urea nitrogen (mg/dl) after sham 
and IRI. Data are shown as the mean ± SEM. (C) Table with details of group, replicates, 
and cell numbers of mouse IRI datasets present in this figure. (D) Umap plots of all 
mouse IRI kidney datasets integrated with Harmony. PT-S1, S1 segment of proximal 
tubule; PT-S2, S2 segment of proximal tubule; PT-S3, S3 segment of proximal tubule; 
DTL, descending limb of loop of henle; ATL, thin ascending limb of loop of henle; MTAL 
thick ascending limb of loop of henle in medulla; CTAL thick ascending limb of loop of 
henle in cortex; MD, macula densa; DCT, distal convoluted tubule; CNT, connecting 
tubule; CPC; principle cells of collecting duct in cortex; MPC; principle cells of collecting 
duct in medulla; ICA, type A intercalated cells of collecting duct; ICB, type B intercalated 
cells of collecting duct; Uro, urothelium; Pod, podocytes; PEC, parietal epithelial cells; 
EC, endothelial cells; Fib fibroblasts; Per, pericytes; Mø, macrophages. (E) Dot plot 
displaying gene expression patterns of cluster-enriched markers, and bar plot displaying 
composition of clusters by groups. 
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Figure 2. Time-course analysis of proximal tubular cells revealed new cell state, failed 
repair proximal tubular cells. (A) Umap displaying the clustering of proximal tubular cells 
without Harmony integration and dot plot displaying gene expression patterns of cluster-
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enriched markers. (B) Bar plot displaying composition of groups by clusters. (C) 
Representative images of immunofluorescence staining for VCAM1 (red), Kim1 (green) 
and LTL (white). (D) Deconvolution analysis of bulk RNA-seq mouse kidney IRI dataset 
using gene sets specific for healthy PT, injured PT and failed repair PT.  *P < 0.05; **P < 
0.01; ***P < 0.001, one-way ANOVA with post hoc Dunnett’s multiple comparisons test. 
(E) Monocle2 pseudotime trajectory of proximal tubular cells colored by cluster identity. 
(F) Gene expression dynamics on the trajectories. The expression dynamics of DEGs 
were cataloged into 3 clusters across pseudotime shown as red lines (successful repair) 
and blue lines (failed repair). Thick lines indicate the average gene expression patterns 
in each cluster. The top 6 enriched gene ontology terms for each cluster are shown on 
the right.  
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Figure 3. Gene regulatory network analysis of proximal tubular cells predicts 
transcription factors for successful repair and failing repair. (A) Heat map depicting the 
average regulon activity in each cluster of proximal tubular cells. Representative 
transcription factors are highlightened along with corresponding DNA-binding motifs. 
Cluster identities are according to Fig.2. (B) Regulon activity dynamics on the 
pseudotime trajectory. The regulon activity dynamics were cataloged into 3 clusters 
across pseudotime shown as blue lines (successful repair) and red lines (delayed 
repair). Thick lines indicate the average gene expression patterns in each cluster. 
Pseudotime trajectories are according to Fig.2. Transcription factors that have 
downstream CKD GWAS hit genes are displayed with their target genes expression 
patterns by dot plots.  
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Figure 4. Novel stromal subtypes are identified including a population with reversible 
expression of αSMA. (A) Umap displaying the clustering of all stromal cells with 
Harmony integration and dot plot displaying gene expression patterns of cluster-enriched 
markers. (B) Umap displaying expression levels of typical myofibroblast markers in each 
group of the datasets. (C) Boxplot displaying percentages of myofibroblast markers 
expressing cells in mouse fibroblast3 (cortical fibroblast) and fibroblast2 (medullary 
fibroblast) at each time point. (D) Representative images of immunofluorescence 
staining for aSMA (red) and Pdgfrb (green). (E) Diagram of the fate of fibroblasts after 
IRI. 
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Figure 5. Ligand-receptor analysis reveals dynamics of leukocyte stimulating signaling 
networks during AKI to CKD transition. (A) Umap of the integrated datasets with re-
categorized cell type names for Ligand-Receptor analysis. (B) Changes in the 
standardized interaction scores for Ccl2-Ccr2 ligand-receptor pair between injured 
proximal tubular cells and interstitial cells. (C) Umap displaying expression levels of Ccl2 
and Ccr2 in each group. (D) Heatmap displaying sum of the leukocyte chemotaxis 
relating L-R interaction scores from each cell types to leukocytes  
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Figure 6. Signaling from proximal tubule to interstitial cell types in health and injury. 
Heatmaps displaying scaled ligand-receptor interaction scores between proximal tubular 
cells and interstitial cells (A; PT to endothelial cells, B; PT to fibroblasts, C; PT to 
leukocytes). 
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