1	Reconstruction of the urinary tract at the appropriate time reduces fibrosis of the
2	metanephros in rats as judged by imaging
3	
4	Short Title: Establishment of appropriate time for urinary tract reconstruction in fetal
5	metanephros by imaging
6	
7	Kotaro Nishi ¹ , Takafumi Haji ¹ , Takuya Matsumoto ¹ , Chisato Hayakawa ¹ , Kenichi
8	Maeda ¹ , Shozo Okano ¹ , Takashi Yokoo ^{2,3} , Satomi Iwai ^{1,3*}
9	
10	¹ Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato
11	University, Towada, Aomori, Japan
12	² Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei
13	University School of Medicine, Minato-ku, Tokyo, Japan
14	³ Meiji University International Institute for Bio-Resource Research, Kawasaki,
15	Kanagawa, Japan
16	
17	* Corresponding author

18 E-mail: <u>iwai@vmas.kitasato-u.ac.jp</u> (SI)

19

20

21 Abstract

22	Chronic kidney disease leads to high morbidity rates among humans. It is a
23	serious disease that requires curative treatments other than kidney transplantation.
24	Recently, we successfully established the iPS-derived generated kidney, which might
25	produce urine. The urine can be directed to the native bladder with a stepwise peristaltic
26	ureter system, followed by anastomosis with the recipient ureter for reconstruction of
27	the urinary tract. However, the growth of the regenerated kidney varies significantly,
28	whereas the time window of the anastomosis is quite narrow. Therefore, this study was
29	conducted to evaluate the growth of transplanted metanephros with bladder periodically
30	and noninvasively using computed tomography and ultrasonography. Ultrasonographic
31	findings showed high correlations with computed tomographic findings and clearly
32	evaluated metanephros with bladder. We found that the degree of growth of the
33	metanephros with bladder after the transplantation differed in each individual. However,
34	most of them reached the appropriate period for urinary tract reconstruction within 3
35	weeks after transplantation. Optimizing the stepwise peristaltic ureter system
36	anastomosis by ultrasonography reduced long-term tubular dilation of the metanephros,
37	thereby decreasing fibrosis caused by transforming growth factor- β . This may be
38	significantly related to long-term maturation of fetal grafts. These results provide new $\frac{3}{2}$

39 insights into transplanting regenerated kidneys in higher animals. We are one step closer

- 40 to the first human trial of kidney generation.
- 41

42 Introduction

43	The morbidity rate of end-stage renal disease (ESRD) remains high. Although
44	kidney transplantation is the main curative treatment, securing an available donor is
45	difficult [1]. Apart from the number of people waiting for a kidney transplant, the
46	number of patients undergoing hemodialysis is increasing. There is a large number of
47	ESRD patients worldwide; furthermore, all these associated factors cause huge medical
48	expenses and impose heavy burden on families in particular and the society in general
49	[2].
50	There is a need treatment for alternatives to kidney transplantation and dialysis,
51	which must be a fundamental treatment. There has been an attempt to make a kidney
52	from pluripotent stem cells de novo. Takasako et al. [3,4] examined a method for
53	producing renal organoids in vitro by aggregating nephron progenitor cells and ureteric
54	bud. Organoids include differentiating nephrons, interstitial, and vasculature, which
55	have matured in a culture. In addition, the use of human stem cells has made it possible

56	to produce organoids that resemble human fetal kidneys. However, the size of organoids
57	was smaller than 2 mm, and could not gain enough ability for the production of urine,
58	such as functional maturation of tubules, glomerular neovascularization, and urinary
59	excretion pathway.
60	To overcome these issues, we made an attempt to generate a kidney from induced
61	pluripotent stem cells (iPS cells) using nephrogenic niche of xeno-animal as the scaffold
62	to generate the kidney [5,6]. In this system, iPS cell-derived nephron progenitor was
63	injected into the nephrogenic zone of xeno-embryo and cultured in the nephrogenic
64	environment. We confirmed that injected cells continued to develop further to form a
65	nephron, and it started producing urine following transplantation in vivo [7]. By
66	eliminating the native nephron progenitor cells (NPCs) in the nephrogenic zone during
67	development using genetic manipulation, pure nephron from external NPCs can be
68	successfully generated [8]. We also confirmed that this system can generate interspecies
69	chimeric nephron between rats and mice [9], and also iPS cells from hemodialysis
70	patients can be used without deterioration compared with those from healthy controls
71	(Tajiri Sci Rep). Based on this success, we are currently conducting the scale up
72	experiment using bigger animals to proof the efficacy and safety for human clinical use.
73	However, one big hurdle remains for the next stage. Transplantation alone does not 5

74	provide a route for excretion of the produced urine. Thus, metanephros can cause
75	hydronephrosis and renal insufficiency [11,12]. This may be solved using Stepwise
76	Peristaltic Ureter (SWPU), which (S1 Fig.) comprises anastomosis of the ureters of the
77	recipient rats to the bladder using a developed metanephros with bladder (MNB) [11].
78	This new method made it possible to continuously excrete urine produced from the
79	MNB to the recipient bladder via the recipient ureter [11]. However, the timing of
80	anastomosis with the ureter of the recipient after transplantation is crucial and owing to
81	individual differences in the growth of MNB, hydronephrosis may occur at ambiguous
82	anastomosis times [11,13]. Postrenal nephropathy due to hydronephrosis imposes a
83	heavy burden on the kidneys, and the delayed release of obstruction has substantial
84	effects on the kidneys [14-16]. Ureteral primordia obstruction during the fetal stage has
85	been shown to cause dysplastic metanephros [17]. Therefore, we believe that early
86	released obstruction is significantly involved in subsequent renal functions, even with
87	fetal-derived grafts. In the case of xenotransplantation and MNB transplantation in large
88	experimental animals, the effects of individual differences are considered to be greater.
89	Appropriate time must be allowed for urinary tract reconstruction using a minimally
90	invasive method that can be used to observe MNB over time and can be clinically
91	performed. Clinical and general imaging methods, including contrast-enhanced

92	computed tomography (CT) and particularly, ultrasonography have been used because
93	they help to easily determine the condition of the body and are less invasive.
94	Therefore, in this study, we aimed to establish the appropriate time index for
95	urinary tract reconstruction using morphological and histopathological examination and
96	image analysis.
97	
98	Materials and methods
99	Experiment 1 was a morphological assessment of two transplanted MNBs using
100	contrast CT and ultrasonography examinations. Experiment 2 investigated the
101	hypothetical conditions for appropriate timing of urinary tract reconstruction based on
102	the results of Experiment 1 when the following two conditions were met:
103	1. Neither hydronephrosis of the MNB metanephros, nor two or more vacuoles were
104	observed in MNB by ultrasonography.
105	2. MNB bladder was larger than 0.016 cm ³ , when assessed by ultrasonography.
106	In Experiment 3, anastomosis was performed and the MNB grew up to 8 weeks after
107	transplantation; then, glomerular filtration rate (GFR) measurements and
108	histopathological examinations were performed.

110 Animals

111	The animal rearing management was carried out according to the Kitasato
112	University Faculty of Veterinary Medicine Animal Experiment Guideline and Manual
113	for Rearing and Management of Experimental Animals (Approval No: 17-127, 18-127,
114	19-085). The rats were housed in cages under temperature and light-controlled
115	conditions in a 12-hour cycle and were provided with fresh food and water <i>ad libitum</i> .
116	In Experiment 1, we used three pregnant female Lewis rats on gestation day 15
117	(E15) (Japan Charles River Laboratories, Kanagawa, Japan) to obtain fetal MNB. As
118	recipient rats (organ recipient animals), we used 12 male Lewis rats (Japan Charles
119	River Laboratories) aged 11 weeks, with a body weight of 309.0 ± 11.4 g.
120	In Experiment 2, we used three pregnant female Lewis rats on E15 (Japan Charles
121	River Laboratories), and as recipient rats, 18 male Lewis rats (Japan Charles River
122	Laboratories) aged 9 weeks, with a body weight of 243.0 ± 7.5 g.
123	In Experiment 3, we used three pregnant female Lewis rats on E15 (Japan Charles
124	River Laboratories), and as recipient rats, 9 male Lewis rats (Japan Charles River
125	Laboratories), aged 10 weeks, with a body weight of 292.8 ± 7.6 g.
126	

127 Isolation and grafting of MNB

128	The surgery was performed by an experienced surgeon specialized in
129	microsurgery. Pregnant rats were anesthetized by 2.5% isoflurane inhalation. Embryos
130	(E15) were harvested, and the pregnant rats were then killed immediately by an infusion
131	of pentobarbital (120 mg/kg). All the embryos were euthanized by decapitation. The
132	MNBs were dissected under a surgical microscope, as previously described [11].
133	
134	Method of MNB transplantation/urinary tract reconstruction
135	Experiment 1: Usefulness of CT examination and ultrasonography,
136	and image evaluation of MNB
137	The flow of the experiment is shown in Fig. S2 A. Anesthesia was introduced and
138	maintained in the recipient rats using 2.5% isoflurane. After performing a laparotomy
139	through a midline abdominal incision, the intestinal tract was pulled out of the body,
140	and the retroperitoneum and the abdominal aorta were exposed. A small incision was
141	made to the retroperitoneum under a surgical microscope, and the first MNB (MNB1)
142	was transplanted to the retroperitoneal space near the abdominal aorta. After
143	transplantation, a single interrupted suture was made on the retroperitoneum using 6-0
144	non-absorbable suture thread (PROLENE®, Johnson and Johnson K.K., Tokyo, Japan). 9

145	The wound was closed using conventional methods. The animals were divided into two
146	groups. The first group comprised randomly selected rats that had the left recipient
147	kidney removed 4 weeks after MNB1 transplantation and underwent urinary tract
148	reconstruction by an astomosing the recipient ureter to the MNB ($n = 5$: an astomosis
149	group). The second group consisted of randomly selected rats that did not undergo
150	urinary tract reconstruction by anastomoses ($n = 7$: non-anastomosis group). In addition,
151	both groups had the second MNB (MNB2) transplanted in week 4. We distinguished
152	MNB2 from MNB1 by transplanting MNB2 to the head side of MNB1. Eight weeks
153	after MNB1 transplantation, both MNB1 and MNB2 were removed, and
154	histopathological examinations were conducted.
155	
156	Experiment 2: Establishment of an appropriate anastomosis time for
157	each MNB
158	The flow of the experiment is shown in Fig. S2 B. Only a single MNB
159	transplantation was performed, with the same methods as in Experiment 1. MNB
160	observations were performed every other day from 2.5 weeks after transplantation, and
161	the morphological characteristics and MNB volume were assessed in the same

163	urinary tract reconstruction, as established in Experiment 1, the animals were
164	euthanized and the MNB was removed. Animals that did not meet the conditions were
165	observed until Week 5, before having the MNB removed. The removed MNB was fixed
166	for histopathological examinations.
167	
168	Experiment 3: MNB evaluation after SWPU at the appropriate time
169	for anastomosis
170	The flow of the experiment is shown in Fig. S2 C. Only a single MNB
171	transplantation was performed, under the same methods as in Experiment 2. MNB
172	observations were performed every other day from 2 weeks after transplantation, and
173	the morphological characteristics and MNB volume were assessed with the same
174	technique as in Experiment 1. Six animals were randomly selected and if MNBs met the
175	conditions of appropriate timing for urinary tract reconstruction, as established in
176	Experiment 1, they underwent SWPU ($n = 6$: SP group). The remaining three randomly
177	selected animals underwent SWPU at 4 weeks and were observed for 8 weeks after the
178	transplantation ($n = 3$: 28UR group). After measuring the GFR, the MNBs of rats were
179	removed and fixed for histopathological examinations. The rats were euthanized after
180	removal of the MNBs.

181

182	MNB assessment using contrast CT scans
183	For the imaging, we used the Auilion 16 Multi slice CT system (Toshiba Medical
184	Systems K.K., Tochigi, Japan). The experiments were conducted in dynamic CT mode,
185	at a tube voltage of 80 kV, tube current of 150 mA, imaging rotation speed of 0.5
186	sec/rotation, and slice thickness of 0.5 mm. The radiation exposure dose was kept
187	unified at 392.7 mGy. The animals were anesthetized and maintained with 2.5%
188	isoflurane at 2.5 weeks and 3.5 weeks after MNB2 transplantation (6.5 and 7.5 weeks
189	after MNB1 transplantation, respectively), and they were all kept in the supine position
190	during imaging.
191	For contrast CT examinations, the animals received a bolus injection of 0.3
192	mL/head Iohexol (Omnipaque® 300 injection, Daiichi Sankyo K.K., Tokyo, Japan), an
193	iodine contrast agent, into the tail vein and images were taken 30 min later, when the
194	contrast agent was thought to have accumulated in the MNB.
195	After reconstitution and reconstruction of the images, we processed them using
196	the DICOM viewer software OsiriX, to assess the morphological characteristics and
197	MNB volume.

198

12

199 MNB assessment using ultrasonography

200	Three technicians, who use the ultrasonography device on a daily basis,
201	performed the examination to randomly selected rats. To carry out these tests, the rats
202	were anesthetized and maintained until the end of the procedure using 2.5% isoflurane.
203	Their abdomens were shaved, and the animals were kept in the supine position. The
204	ultrasound device LOGIQ S8 (GE Healthcare Japan K.K., Tokyo, Japan) was used.
205	After identifying the MNB through the observation of axial, sagittal, and coronal cross-
206	sections, the maximum long-axis length of the sagittal cross-section (L), maximum
207	short-axis width of the axial cross-section (W), and height of maximum depth (H) were
208	measured. The volume (V) of the MNB bladder was also assessed.
209	As a probe, we used a 3-11 MHz linear array. We used the color Doppler mode to
210	identify the presence/absence of blood flow to the transplanted MNB. To measure the
211	MNB or MNB bladder volume, we used B mode and set the gain and depth to 90 and
212	2.3–2.5 cm, respectively, and then we observed the morphology and measured the size.
213	Volume calculation by ultrasonography assumed the MNB to be a spheroid, substituting
214	the values into the formula shown below for the volume of a spheroid:
215	$V = \frac{\pi}{6} \times L \times W \times H$

216

217 Removal of the transplanted MNB

218	After anesthetizing the rats with 2.5% isoflurane, we made a midline abdominal
219	incision and removed the MNB, which was used for histopathological examinations.
220	After we intraperitoneally administered 125 mg/kg of pentobarbital and confirmed the
221	cardiopulmonary arrest 15 min later.
222	
223	Histopathological examination
224	The MNB tissues were fixed using 4% paraformaldehyde phosphate buffer
225	solution and were embedded in paraffin as previously described [11]. Hematoxylin-
226	eosin (HE) dye and Masson's trichrome staining (MT) were used in Experiments 1 and
227	2. In Experiment 3, the tissues were thinly sliced to 2 μ m and stained for TGF- β 1 (sc-
228	130348: Santa Cruz, CA), collagen-α1 type 1 (sc-293182: Santa Cruz, CA), vimentin
229	(422101: Nichirei Biosciences Inc., Tokyo, Japan) and cell apoptosis for
230	immunostaining. TUNEL assay was performed to detect apoptotic cell death using the
231	in situ Apoptosis Detection Kit (Takara Bio Inc., Shiga, Japan) according to the
232	manufacturer's instructions. The entire metanephros cut at maximum length were
233	observed at 400× magnification, HE, MT, TGF- β 1, collagen- α 1 type 1, vimentin with
234	20 taken, TUNEL with ten images taken for each slide. The images were assessed by

235	researchers, who were blinded, using the image analysis software ImageJ® (National
236	Institutes of Health, Bethesda, Maryland, USA); HE-stained slides were used to
237	evaluate tubular lumen area and MT dyed slides to evaluate interstitial fibrosis in the
238	metanephros.
239	
240	GFR measurement
241	GFR was measured using a commercially available kit (Diacolor $_{\ensuremath{\mathbb{R}}}$ Inulin,
242	TOYOBO CO., LTD., Osaka, Japan). The measurement was performed according to the
243	kit method. Eight weeks after transplantation in Experiment 3, bilateral nephrectomy
244	was performed under the same anesthesia as mentioned previously. The blood was
245	collected from the tail vein of the rats at one and two hours after inulin administration,
246	and the measurement was carried out using the plasma. Normal kidney GFR values
247	were determined by measuring healthy adult rats (Table S).
248	
249	Statistical Analyses
250	The results are presented as mean \pm standard deviation. All statistical analyses
251	were performed with EZR (Saitama Medical Center, Jichi Medical University, Saitama,
252	Japan) [18]. More precisely, it is a modified version of R commander, designed to add

253	statistical functions frequently used in biostatistics. Scatter plot and Pearson's product
254	ratio correlation coefficient were applied for volume comparison and storage volume
255	comparison using ultrasonography and contrast CT examination, and the relationship
256	between TGF- β 1 expression levels and the percentage of apoptotic cells. We used the
257	paired student's t-test to examine the differences in volume observed over time by
258	ultrasonography. The Mann-Whitney U test was used to analyze tubular dilation, and
259	metanephros fibrosis was examined through histopathological examinations. A p-value
260	of 0.05 was set as statistically significant.
261	

```
262 Results
```

263 **Experiment 1**

264 MNB detection rate by contrast CT and ultrasonography examinations

- 265 Contrast CT and ultrasonography examinations allowed us to evaluate all MNBs
- by Week 3 (Fig. 1). However, it was not possible to assess the MNB bladder and MNB
- that underwent hydronephrosis. Ultrasonographic examinations allowed us to detect
- 268 MNB that was present near the aorta from the early stage, and the margins were clear
- too. Furthermore, it allowed 100% recognition of both MNB1 and MNB2, from Week 3
- 270 onward after transplantation (Fig. 2) and partial observation of the newly formed blood

- vessels around the MNB by the color Doppler method (Fig. 1 D). Additionally, it was
- 272 possible to confirm the metanephros (Figs 1B and C).
- 273

274	Fig. 1. Computed tomography (CT) and ultrasonography images in Experiment 1.
275	A) Visualization of MNB on the abdominal arteriovenous vein under the retroperitoneal
276	area by contrast-enhanced CT. B) Ultrasonographic images of MNB considered to be
277	maturing normally as urine retention was observed in the MNB bladder. C)
278	Ultrasonography image of suspected hydronephrosis of the MNB. D) The blood flow
279	around the MNB could be confirmed by color Doppler using an ultrasound. \times red
280	arrow: MNB1, yellow arrow: MNB2, red circle: MNB, blue arrow: bladder of MNB,
281	arrow head: metanephros of MNB, UB: Recipient's bladder
282	
283	Fig. 2. MNB volume transition during observation by contrast-enhanced CT and
284	ultrasonography examinations in Experiment 1.
285	The figure shows the volumes of MNB by CT and ultrasound. The volume of CT was
286	measured at 6.5 and 7.5 weeks and that of ultrasonography was performed weekly until
287	8 weeks after transplantation of MNB1.

- 288 *p < 0.01 vs. ultrasound, $\div p < 0.01$ vs. the week after.
- 289 MNB: metanephros with bladder, CT: computed tomography, Week: weeks after
- transplantation of MNB1.

291

Table 1. MNB detection rate by ultrasonography from weeks 1–4 after

293 transplantation in Experiment 1.

	Detection rate of MNB				
	Week 1	Week 2	Week 3	Week 4	
MNB 1	16.7%	83.3%	100%	100%	
MNB 2	75%	91.7%	100%	100%	

²⁹⁴ MNB1: the first transplanted MNBs in week 0, MNB2: the second transplanted MNBs

in week 4. The detection rates during observation by ultrasound after transplantation in

each of MNB1 and MNB2 are shown in the table.

297

298 Correlation of volume assessment with urine volume retained in MNB1

and MNB bladder volume assessment

300	The comparison of volumes measured by contrast CT and ultrasonography
301	examinations (Week 2.5: MNB1, $R = 0.78$; MNB2, $R = 0.79$ and Week 3.5: MNB1, $R =$
302	0.90; $MNB2 = 0.94$) indicated a strong positive correlation between MNB1 and MNB2
303	(Fig. 3). Furthermore, the amount of urine collected from the MNB1 showed a strong
304	positive correlation with the MNB volume determined by ultrasonography ($R = 0.89$).
305	
306	Fig. 3. Correlation of the volume between ultrasonography and contrast computed
307	tomography inspection at each week in Experiment 1.
308	The dotted line is the MNB1 and the solid line is the MNB2. A) 6.5 weeks after MNB
309	transplantation (MNB1, $R = 0.78$; MNB2, $R = 0.79$). B) 7.5 weeks after MNB
310	transplantation (MNB1, $R = 0.90$; MNB2, $R = 0.94$).
311	
312	Tubular dilation and fibrosis in MNB1 and MNB2 by histopathological
313	examinations
314	Tubular dilation was significantly larger in the non-anastomotic than in the
315	anastomotic group ($p < 0.05$). For MNB2, no significant difference was observed
316	regardless of the anastomosis or non-anastomosis of MNB1. However, tubular
317	dilatation was observed in all MNB2. Additionally, there was no significant difference 19

318	in fibrosis between MNB1 and MNB2, irrespective of anastomosis or non-anastomosis.
319	This indicates that MNB2 shows the same level of growth and induces fibrosis
320	regardless of the degree of renal impairment due to tubular dilation of MNB1.
321	
322	Experiment 2
323	Number of days from MNB transplantation to MNB removal
324	Results are shown in Fig 4. All MNBs could be confirmed by Week 2.5. MNBs
325	with no bladder formation or with hydronephrosis were deemed poorly developed
326	(3/18). The number of days for MNB removal, aside the poorly developed ones, were
327	20.7 \pm 3.6 days (17 to 29 days). For the 72.2% (13/15) of the excised MNB, it was
328	deemed appropriate for urinary tract reconstruction to be performed within 3 weeks
329	after transplantation. For the 20% (3/15), 26.7% (4/15), 40% (6/15), and 13.3% (2/15),
330	17 days, 19 days, 21 days, and 28 days or more were deemed appropriate timing for
331	reconstruction, respectively.
332	
333	Fig. 4. The number of days until the urinary tract reconstruction age and number

of MNBs excised after transplantation in Experiment 2.

- 335 The table shows the number of MNBs excised at a time considered to be an appropriate
- time for anastomosis. Most of MNBs were removed within 3 weeks after
- 337 transplantation.
- 338

339	Number of	f days to	MNB	removal	and	progression	in	rate	of ti	lbu	lar
-----	-----------	-----------	-----	---------	-----	-------------	----	------	-------	-----	-----

- 340 dilation and fibrosis
- 341 The MNBs removed 21 or more days after transplantation had significantly
- 342 milder tubular dilation than those removed less than 21 days after transplantation (p
- 343 <0.01) (Fig. 5 A). There was no difference in fibrosis in MNB removed 21 days prior
- and 21 days after transplantation. (Fig. 5 B).
- 345

Fig. 5. Comparison of tubular dilation and interstitial fibrosis in MNB removed 21

- 347 days prior and 21 days after transplantation.
- A) Tubular dilation, B) Tubulointerstitial fibrosis. The degree of tubular dilation 21
- days prior to transplantation decreased significantly compared with that of 21 days after
- 350 transplantation. * p < 0.01
- 351

352 Experiment 3

353 GFR value of MNB 8 weeks after transplantation

- Table 2 shows the GFR measurement results. GFR could be measured in all the
- animals in the SP and 28UR groups. Although no significant difference was observed
- between the 28UR and the SP groups, none of the animals in the SP group had a GFR of
- 357 **0%**.
- 358

359 Table 2. Comparison of GFR values and normal values of MNB

	SP group	28UR group
GFR (mi/min/m²)	1.95 ± 1.04	1.23 ± 1.22
Compared to Normal rats (%)	1.1 ~ 5.7%	0~5.1%

360

361 Tubular dilatation and interstitial fibrosis in MNB of experiment 3 in

362 histopathological examinations

363	An image of the extracted MNB is shown as an example (Fig. 6 A). In the SP
364	group, the color of the surface of the metanephros could be visually confirmed to have
365	blood flow, and the SP group grew without hydronephrosis. As shown in Fig. 6 B, in
366	the 28UR group, the observed shape of metanephros was irregular. In some cases, the
367	metanephros was hydronephrotic without liquid storage in the MNB bladder. Fig. 7
368	shows a micrograph of HE staining for the evaluation of tubular dilatation. The 28UR
369	group tended to expand compared to the SP group, but no significant difference was
370	observed between the two groups (Fig. 7 C).
371	
372	Fig. 6. Example of extracted MNB in Experiment 3
373	The red arrows indicate the metanephros and the yellow arrows indicate the bladder.
374	Fig. 6-A shows that the metanephros did not expand and the MNB is considered to have
375	grown steadily. By contrast, the MNB in the Fig. 6-B has an irregular shape with severe
375 376	grown steadily. By contrast, the MNB in the Fig. 6-B has an irregular shape with severe metanephros hydronephrosis.
376	
376 377	metanephros hydronephrosis.

380 ultrasonography. B) Histopathology of metanephros with hydronephrosis confirmed by

381	ultrasonography at 4 weeks. C) Comparison of tubular expansion area between the SP
382	and 28UR groups.
383	
384	MT staining for the evaluation of interstitial fibrosis is shown in Figs. 8 A and B.
385	A comparison of interstitial fibrosis is shown in Fig. 8 C. Interstitial fibrosis was
386	significantly less in the SP than in the 28UR group ($p < 0.01$). These results indicated
387	that fibrosis was progressing from the initial stage of tubular dilation.
388	
389	Fig. 8. Interstitial fibrosis in MNB in Experiment 3
390	A) MNB which was judged to be a suitable period of SWPU method by
391	ultrasonography. B) Histopathology of the metanephros with hydronephrosis confirmed
392	by ultrasonography at week 4. C) Comparison of interstitial fibrosis area between the
393	SP and 28UR groups.
394	
395	The measurements of fibrosis marker are shown in Fig. 9. TGF- β 1 was strongly
396	expressed in the 28UR group; mainly in the tubular cells, interstitial, and glomeruli, and
397	similarly, vimentin and type I collagen- α 1 showed significant expression in the tubular

interstitial. The SP group was significantly milder in all evaluations than the 28UR

- 399 group (*p* <0.01) (Fig. 9 G).
- 400

401	Fig. 9. Expression of TGF-β, collagen and vimentin in Experiment 3
402	A, D) stained image of TGF- β 1. B, E) stained image of Type I collagen- α 1. C, F)
403	stained image of Vimentin. G) All of these assays in the SP group were significantly
404	lower than those of the 28UR group ($p < 0.01$).
405	
406	The image of TUNEL staining and the comparison of the ratio of apoptotic cells
407	in the tubular and glomerular cells are shown in Fig. 10 A. The percentage of apoptotic
408	cells was significantly lower in the SP group than in the 28UR group ($p < 0.05$) (Fig. 10
409	B). Furthermore, there was a strong positive correlation between TGF- β 1 expression
410	and the percentage of apoptotic cells in both the glomerular and tubular cells ($p < 0.01$)
411	(Figs. 10 C and D).
412	
413	Fig. 10. Detection of apoptosis by fluorescent staining, and correlation between

414 expression of TGFβ-1 and apoptosis positive rate

415	A) Image of TUNEL staining in SP group; Yellow arrows indicate apoptotic cells. B)
416	Image of TUNEL staining in 28UR group; this confirmed a number of apoptotic cells in
417	tubular cells. C) Correlation between apoptosis rate and TGF- β 1 expression region in
418	glomerular cells, D) Correlation between apoptosis rate and TGF- β 1 expression region
419	in tubular cells

Discussion

422	Currently, urinary tract reconstruction or extraction is performed in the
423	transplanted MNB and metanephros approximately 3 to 6 weeks after transplantation,
424	depending on the animal species and the transplantation site [11,19-21]. Metanephros
425	weight gain stops at about 4 weeks after the transplantation [2], and it has been reported
426	that after development, the GFR is about 3%-11% of that of normal kidneys, as the
427	metanephros alone is a small tissue [21,22]. However, the survival time did not differ
428	from the cases in which one MNB was transplanted, even in experiments in which
429	several MNBs were transplanted [13]. One of the factors is that the metanephros has a
430	remarkable degree of hydronephrosis and fibrosis. Obstruction during the development
431	of rat kidneys has been reported to cause developmental suppression and persistent
432	damage after maturation [14,15]. For this reason, it was necessary to investigate the $\frac{26}{26}$

433	appropriate timing for SWPU. Therefore, as in previous papers, two MNBs were
434	transplanted, and their development was closely observed by ultrasonography and CT.
435	Contrast-enhanced CT showed no enhancement of the metanephros and bladder
436	of MNB; however, it was possible to evaluate the MNB to the extent that the MNB
437	volume was measured, and this was regarded as an accurate volume index. A single
438	intravenous dose of iohexol, the nonionic iodine-based contrast agent, undergoes rapid
439	clearance from the blood of rats and translocates to the tissues [23]. It rapidly migrates
440	to the kidneys and is distributed at high concentrations [23]. Yokote et al. [11]
441	previously performed contrast-enhanced CT on MNB to confirm urinary patency after
442	SWPU in MNB. In that study, both kidneys were removed, and the anastomotic ureter
443	was ligated; angiography was performed to visualize the recipient ureter [11]. In this
444	present study, we considered that one of the recipient's kidneys was present, resulting in
445	the excretion of the contrast agent before it flowed into the MNB.
446	Ultrasonography detected MNB in all animals, similar to contrast-enhanced CT
447	examinations. Ultrasonography assessed MNB morphologically, unlike contrast-
448	enhanced CT. As the MNB was transplanted into the retroperitoneum, it was possible to
449	be identified at an earlier stage than expected by specifying the expansion of the
450	retroperitoneal cavity. We also observed blood flow to the MNB using ultrasonography 27

451	and observed the neovascularized vessels. Urine production has been previously
452	confirmed by metanephros transplantation or MNB transplantation [11,12,24].
453	Therefore, as we hypothesized, the MNB bladder was visualized using low echo,
454	making retrieval easier. In children with congenital hydronephrosis, ultrasonography
455	can reveal septum and cyst in the kidneys when severe hydronephrosis occurs [25,26].
456	Here, it was also possible to evaluate hydronephrotic metanephros without a urinary
457	excretion pathway, because the parenchyma was visualized as a vacuole with an
458	indistinct parenchyma, like severe hydronephrosis in a developed kidney. Spheroid
459	volume measurements by ultrasonography was also used in the kidney, thyroid, and
460	prostate [27,28-31]. As the MNB volume determined by ultrasonography in this study
461	strongly correlated with that of the CT, and the MNB was approximated despite the
462	very small volume, volume calculation using the spheroid equation was also considered
463	very accurate for MNB. Therefore, ultrasonography is considered to be a simple,
464	minimally invasive, and useful method, considering the effects on the contrast medium
465	and radiation as in contrast-enhanced CT examinations.
466	In Experiment 1, there was no difference in tubule dilation and fibrosis in MNB2
467	compared with MNB1, regardless of the presence or absence of SWPU in MNB1. This
468	suggests that, by 4 weeks after transplantation, many metanephros had already

469	experienced hydronephrosis, and the appropriate timing had passed with or without
470	urinary tract reconstruction. Indeed, previous reports referred to the presence of MNBs
471	that had experienced hydronephrosis by 3 weeks after transplantation [11]. A
472	comparison of the growth rates between MNB1 and MNB2 showed no significant
473	difference in the MNB volumes, but rather showed that the detection rate by
474	ultrasonography was higher in the first week of MNB2. A plurality of blood vessels
475	around the MNB1 and MNB2 were confirmed using a color Doppler method for the
476	first 2 weeks after transplantation. It has been confirmed that the transplanted
477	metanephros regenerates recipient-derived blood vessels and is chimerized with the
478	donor's metanephros [32]. Angiogenesis involves factors such as vascular endothelial
479	growth factor, platelet-derived growth factor, and fibroblast growth factor [33]. These
480	angiogenic factors play important roles in tissue ischemia and angiogenesis. One report
481	suggests that the metanephros is provided with a spatial direction for capillary
482	development by VEGF [34] and may be involved in the vasculature identified around
483	the MNB. However, it must be considered that VEGF is also involved in fibrosis, which
484	promotes the growth of grafts and may further exacerbate fibrosis during
485	hydronephrosis [35,36]. In the unilateral ureteric obstruction (UUO) model of
486	progressive injury, an angiogenic response was observed early and the endothelial cells 29

487	proliferated; however, this led to endothelial cell loss after the 4th day [37]. Therefore,
488	the neovascularized capillaries disappeared, and the tissue fell into an ischemic state
489	again. The high detection rate of the MNB2 and the presence of tubular dilation at 4
490	weeks after transplantation suggest that the neovascularization of the MNB1 may also
491	affect MNB2. The MNB2 could be affected by MNB1 angiogenesis because it was
492	implanted just above the MNB1 in the retroperitoneal cavity. One of the reasons may be
493	that one kidney was removed during the MNB2 transplantation. Studies in fetal ewes
494	have shown that in the event of a sudden loss of unilateral renal function due to
495	obstruction in the unilateral ureter, the remaining kidney plays a compensatory role,
496	resulting in kidney enlargement [38]. Moreover, a growth period of 4 weeks may be
497	sufficient to develop into hydronephrotic metanephros of MNB2. This suggests that the
498	degree of growth was not constant when multiple grafts were transplanted and may vary
499	greatly between MNBs.
500	In Experiment 2, only one MNB was transplanted, and the MNB growth rate and
501	appearance of MNB bladder were observed over time in more details to establish an
502	index of the appropriate timing of SWPU. Even when only one MNB was transplanted,
503	the growth rate varied among individuals as can be inferred from the results.
504	Particularly well-developed MNB showed bladder dilation within the 3 weeks after 30

505	transplantation with a percentage of 38.9% of the total. By week 3 after transplantation,
506	more than half of the MNB had the appropriate timing for urinary tract reconstruction,
507	suggesting that SWPU should be done earlier than previously reported. Furthermore,
508	there was a poorly developed MNB without appearance or change in size of the MNB,
509	bladder from the third week onward. Histopathological examination did not show
510	excessive tubular dilation and progression of fibrosis as observed in Experiment 1 in
511	MNB resected at the appropriate stage of urinary tract reconstruction. Obstruction
512	causes increased ureteral/pelvic pressure and tubular dilatation in the kidney. This
513	increase in pressure stimulates tubular epithelial cells and causes fibrosis to progress
514	due to epithelial-mesenchymal transition [39]. Previous studies, using the rat UUO
515	model, showed the expression of TGF- β 1 immediately after the obstruction of the
516	urinary tract and the expression of vimentin and myofibroblasts 2 days after the
517	obstruction [37]. The same is true for the experiment conducted in the organogenesis
518	stage using the rat neonatal UUO model, and the growth rate decreased by 30% even
519	after unblocking 5 days after obstruction, while all of blood pressure, GFR, urine flow,
520	and sodium/potassium excretion decreased [15]. Therefore, it has been shown that UUO
521	is particularly susceptible to long-term effects immediately after kidney formation
522	[14,15]. Although the transplanted MNB cannot be completely explained by the 31

523	neonatal UUO model, considering the period after transplantation as being in the
524	neonatal period, it can be expected that the occlusion period is similarly involved in the
525	growth of the transplanted metanephros. Here, ultrasonographic observations were
526	performed every other day; some animals showed rapid bladder dilation even on this
527	day. Rats have only 10% of the nephron formed at birth, and it is said that kidney
528	formation is completed within the first week after birth [15]. The fetus used this time
529	was 15 days of fetal age, and the birth of the rat is usually 21 to 23 days of fetal age on
530	average; therefore, considering that the morphological formation of the kidney is
531	completed 2 weeks after transplantation, a rapid development of urine in the MNB
532	bladder, 2 to 3 weeks after transplantation is considered as normal development. It can
533	be said that, even in the case of MNB, those that grew well may grow at the same
534	growth rate as the organs in the fetal rat body that grew normally. For this reason, it is
535	important to observe and evaluate MNB bladder dilation daily from the second week
536	when MNB grows rapidly. GFR measurement had been performed, when the
537	metanephros was transplanted, and showed a low value of 3% to 11% of normal.
538	Although not the same measurement method, the value of 5% of normal in the SP group
539	in this study was within the range we assumed. This is because, in previous reports, the
540	metanephros grew about 90 to 116 days after reconstructing the urinary tract [24], and it 32

541	is thought that a certain amount of tissue was present. Urinary tract reconstruction for
542	these metanephros was performed mainly at a time determined by naked eye and may
543	have been exposed to long-term obstruction. Prolonged obstruction results in the
544	persistent dilation of the tubule, the glomerular Bowman's capsule, and the production
545	of inflammatory cytokines such as TGF- β from the tubular cells [40]. TGF- β 1 is
546	expressed in tissues such as the hematopoietic tissue, endothelial tissue, and bone tissue
547	in developing embryos, and acts as an important growth factor as in heart formation
548	[41,42]. However, TGF- β 1 is also deeply involved in fibrosis, causing epithelial to
549	mesenchymal transition (EMT) in tubular cells in the kidney and inducing expression of
550	vimentin, collagen, and alpha-smooth muscle actin [40]. In addition, TGF- β 1 targets
551	protease inhibitor-1 (PAI-1) in proximal tubular epithelial cells and stromal fibroblasts,
552	and the transcription factor p53 replicates through this PAI-1. It causes an aging state
553	and induces cell growth inhibition and apoptosis [40,43-45]. TGF-B1 expression has
554	also been reported in the metanephros in fetuses and our defined urinary tract
555	reconstruction at the appropriate anastomosis stage in MNB inhibited TGF- β 1
556	expression due to persistent inhibition of tubular dilatation. It is presumed that the
557	replacement suppressed tissue replacement by collagen and vimentin. Therefore, the

558 fact that GFR could be measured in tissues, approximately, 60 days after transplantation

- 559 would be a great knowledge.
- 560 There are some limitations to this study. First, we only performed diagnostic
- 561 imaging-based assessments and did not assess aspects such as renin and erythropoietin
- activities. Second, because we assessed the MNB only for a short period (60 days after
- transplantation), we did not perform long-term assessment of function and morphology
- of the transplants. These issues need to be elucidated further in future studies.

565 In conclusion, this is the first study to successfully observe the time course of

- 566 MNB in detail by ultrasonography. The appropriate timing for urinary tract
- reconstruction in rats by SWPU, as revealed by ultrasonography, was when the
- 568 metanephros has not undergone hydronephrosis, and the early period from when there

was urinary retention of 0.016 cm^3 in the MNB bladder. This method suppressed the

- 570 excessive dilatation of the renal tubules of the transplanted metanephros, thereby
- 571 providing evidence to reduce the progression of fibrosis. We believe that this will
- 572 greatly contribute to the evaluation of MNB development and urinary tract

573 reconstruction in xenotransplantation and in human clinical practice. In addition, there

- is a possibility that it can be found even when transplanted to another site. It is also
- 575 important to evaluate the morphology and function of small grafts in the retroperitoneal

576 cavity while minimizing invasion when considering transplantation into patients in the

- 577 future.
- 578

579 Acknowledgments

- 580 No third-party funding or support was received in connection with this study or the
- writing or publication of the manuscript. We would like to thank Dr. Satoshi
- 582 Kameshima for advice to experiment and Editage (www.editage.com) for English
- 583 language editing.
- 584
- 585
- 586

587 **References**

- 1. Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, et al. Global
- 589 Prevalence of Chronic Kidney Disease A Systematic Review and Meta-Analysis.
- 590 PLoS One. 2016;11:e0158765.1
- 2. Mills KT, Xu Y, Zhang W, Bundy JD, Chen CS, Kelly TN, et al. A systematic
- analysis of worldwide population-based data on the global burden of chronic kidney
- 593 disease in 2010. Kidney Int. 2015;88:950-957.

- 3. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, et al. Kidney
- 595 Organoids From Human iPS Cells Contain Multiple Lineages and Model Human
- 596 Nephrogenesis. Nature. 2015;526:564-568
- 4. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, et al. Redefining the
- 598 in Vivo Origin of Metanephric Nephron Progenitors Enables Generation of Complex
- 599 Kidney Structures from Pluripotent Stem Cells. Cell Stem Cell. 2014;14,53-67.
- 5. Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, et al. Human
- 601 mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to
- 602 contribute to kidney tissues. Proc Natl Acad Sci U S A. 2005;102:3296-3300.
- 603 6. Matsumoto K, Yokoo T, Matsunari H, Iwai S, Yokote S, Teratani T, et al.
- 604 Xenotransplanted embryonic kidney provides a niche for endogenous mesenchymal
- stem cell differentiation into erythropoietin-producing tissue. Stem Cells.
- 606 2012;30:1228-1235.
- 7. Yokoo T, Fukui A, Ohashi T, Miyazaki Y, Utsunomiya Y, Kawamura T, et al.
- 608 Xenobiotic Kidney Organogenesis from Human Mesenchymal Stem Cells Using a
- 609 Growing Rodent Embryo. J Am Soc Nephrol. 2006;17:1026-1034.

- 8. Yamanaka S, Tajiri S, Fujimoto T, Matsumoto K, Fukunaga S, Kim BS, et al.
- 611 Generation of interspecies limited chimeric nephrons using a conditional nephron
- 612 progenitor cell replacement system. Nat Commun. 2017;8:1719.
- 9. Fujimoto T, Yamanaka S, Tajiri S, Takamura T, SaitoY, Matsumoto K, et al. In vivo
- regeneration of interspecies chimeric kidneys using a nephron progenitor cell
- replacement system. Sci Rep. 2019;9:6965.
- 10. Tajiri S, Yamanaka S, Fujimoto T, Matsumoto K, Taguchi A, Nishinakamura R, et
- al. Regenerative potential of induced pluripotent stem cells derived from patients
- undergoing haemodialysis in kidney regeneration. Sci Rep. 2018;8:14919.
- 619 11. Yokote S, Matsunari H, Iwai S, Yamanaka S, Uchikura A, Fujimoto E, et al. Urine
- 620 excretion strategy for stem cell-generated embryonic kidneys. Proc Natl Acad Sci U S
- 621 A. 2015;112:12980-12985.
- 622 12. Fujimoto E, Yamanaka S, Kurihara S, Tajiri S, Izuhara L, Katsuoka Y, et al.
- Embryonic kidney function in chronic renal failure model in rodents. Clin Exp Nephrol.
- 624 **2017;21:579-588**.
- 13. Yokoo T, Fukui A, Matsumoto K, Kawamura T. Kidney regeneration by xeno-
- embryonic nephrogenesis. Med Mol Morphol. 2008;41:5-13.

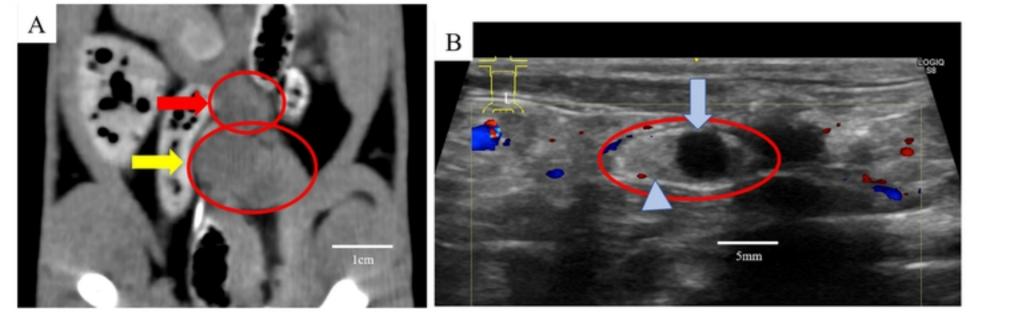
- 627 14. Chevalier RL, Kim A, Thornhill BA, Wolstenholme JT. Recovery following relief
- of unilateral ureteral obstruction in the neonatal rat. Kidney Int. 1999;55:793-807.
- 629 15. Chevalier RL, Thornhill BA, Chang AY, Cachat F, Lackey A. Recovery from
- 630 release of ureteral obstruction in the rat: relationship to nephrogenesis. Kidney Int.
- 631 2002;61:2033-2043.
- 16. Truong LD, Gaber L, Eknoyan G. Obstructive uropathy. Contrib Nephrol.
- 633 **2011;169:311-326**.
- 17. Ichikawa I, Kuwayama F, Pope JC 4th, Stephens FD, Miyazaki Y. Paradigm shift
- 635 from classic anatomic theories to contemporary cell biological views of CAKUT.
- 636 Kidney Int. 2002;61:889-898.
- 18. Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for
- medical statistics. Bone Marrow Transplant. 2013;48:452-458.
- 639 19. Marshall D, Clancy M, Bottomley M, Symonds K, Brenchley PE, Bravery CA.
- 640 Transplantation of metanephroi to sites within the abdominal cavity. Transplant Proc.
- 641 **2005**;37:194-197.
- 642 20. Vera-Donoso CD, García-Dominguez X, Jiménez-Trigos E, García-Valero L,
- 643 Vicente JS, Marco-Jiménez F. Laparoscopic transplantation of metanephroi: A first step
- to kidney xenotransplantation. Actas Urol Esp. 2015;39:527-534.

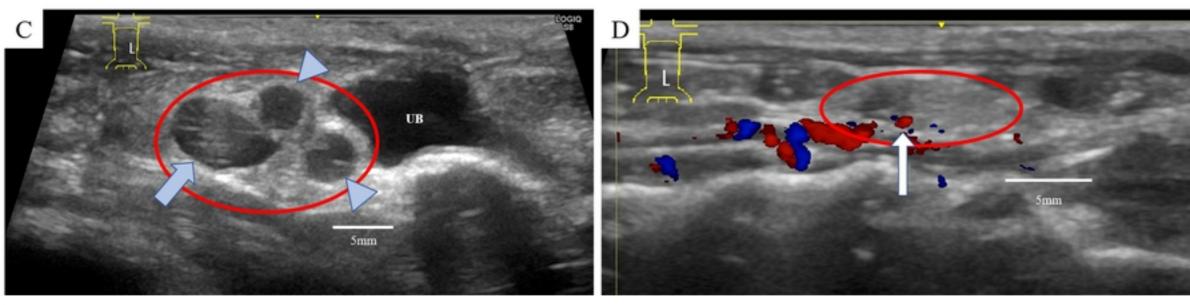
- 645 21. Rogers SA, Lowell JA, Hammerman NA, Hammerman MR. Transplantation of
- developing metanephros into adult rats. Kidney Int. 1998;54:27-37.
- 647 22. Marshall D, Clancy M, Bottomley M, Symonds K, Brenchley PE, Bravery CA.
- 648 Transplantation of metanephros to sites within the abdominal cavity. Transplant Proc.
- 649 2005;37:194-197.
- 650 23. Nagai E, Ishigaki N, Hakusui H. Pharmacokinetic Studies of Iohexol after a Single
- Intravenous Injection in Rats. Prog Med. 1986;6:2378-2389.
- 652 24. Clancy MJ, Marshall D, Dilworth M, Bottomley M, Ashton N, Brenchley P.
- 653 Immunosuppression is essential for successful allogeneic transplantation of the
- metanephros. Transplantation. 2009;88:151-159.
- 655 25. Isaksen CV, Eik-Nes SH, Blaas HG, Torp SH. Fetuses and infants with congenital
- urinary system anomalies: correlation between prenatal ultrasound and postmortem
- 657 findings. Ultrasound Obstet Gynecol. 2000;15:177-185.
- 658 26. Fernbach SK, Maizels M, Conway JJ. Ultrasound grading of hydronephrosis:
- 659 introduction to the system used by the Society for Fetal Urology. Pediatr Radiol.
- 660 1993;23:478-480.

- 661 27. Hyun CK, Dal MY, Sang HL, Yong DC. Usefulness of Renal Volume
- 662 Measurements Obtained by a 3-Dimensional Sonographic Transducer with Matrix
- Electronic Arrays. J Ultrasound Med. 2008;27:1673-1681.
- 28. Marcello M, Pier P, Antonio S, Raffaele L, Ernesto S, Massimo S, et al. Accuracy
- of Sonographic Volume Measurements of Kidney Transplant. J Clin Ultrasound.
- 666 2006;34:184-189.
- 667 29. Noto H, Kizu N, Sugaya K, Nishizawa O, Harada T, Tsuchida T. Prostate
- 668 measurement by transabdominal ultrasonography. Journal of the Japanese Urology.
- 669 **1987;78:1071-1076**.
- 670 30. Reid T, Stacy AL, Stephen RW, Gregory BD. Estimation of feline renal volume
- using computed tomography and ultrasound. Vet Radiol Ultrasound. 2012;54:127-132.
- 672 31. Barberet V, Baeumlin Y, Taeymans O, Duchateau L, Peremans K, van Hoek I,
- 673 Daminet S, Saunders JH. Pre- and posttreatment ultrasonography of the thyroid gland in
- hyperthyroid cats. Vet Radiol Ultrasound. 2010;51:324-330.
- 32. Yokoo T, Fukui A, Matsumoto K, Ohashi T, Sado Y, Suzuki H, et al. Generation of
- a transplantable erythropoietin-producer derived from human mesenchymal stem cells.
- 677 Transplantation. 2008;85:1654-1658.

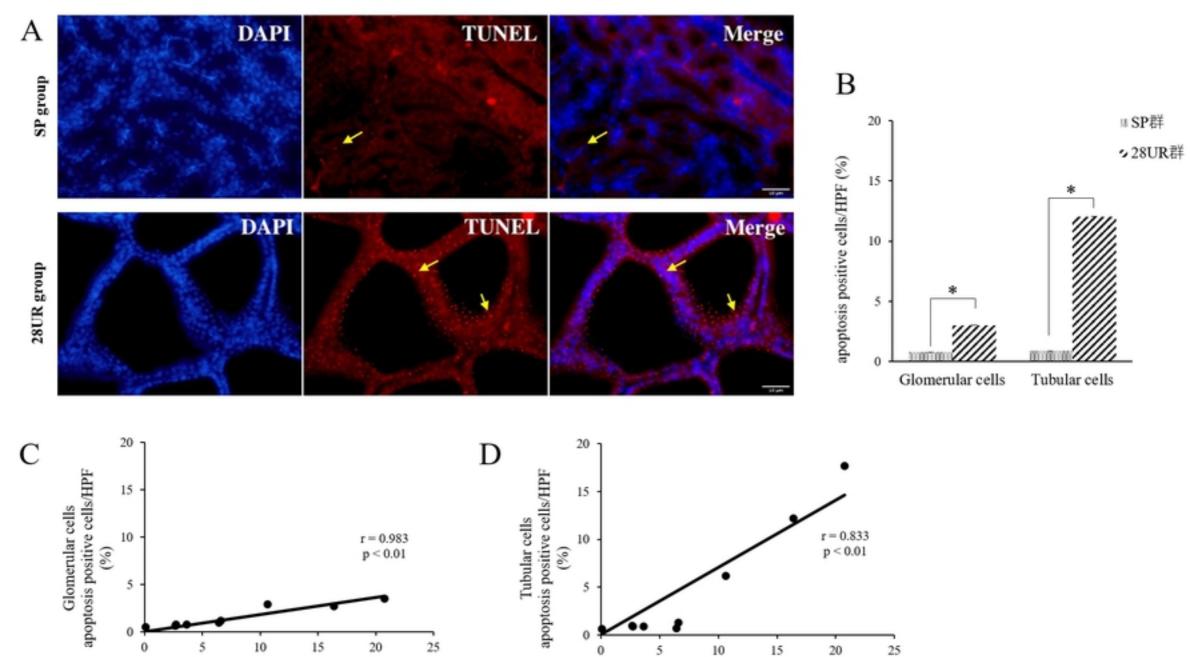
- 33. Distler JH, Hirth A, Kurowska-Stolarska M, Gay RE, Gay S, Distler O. Angiogenic
- and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med.
- 680 2003;47:149-161.
- 681 34. Tufró A. VEGF spatially directs angiogenesis during metanephric development in
- 682 vitro. Dev Biol. 2000;227:558-566.
- 683 35. Chaudhary NI, Roth GJ, Hilberg F, Müller-Quernheim J, Prasse A, Zissel G, et al.
- Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur Respir J.
- 685 **2007;29:976-985**.
- 686 36. Kariya T, Nishimura H, Mizuno M, Suzuki Y, Matsukawa Y, Sakata F, et al. TGF-
- 687 β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients
- undergoing peritoneal dialysis. Am J Physiol Renal Physiol. 2018;314:F167-180.
- 689 37. Lin SL, Chang FC, Schrimpf C, Chen YT, Wu CF, Wu VC, et al. Targeting
- 690 endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates
- kidney microvascular rarefaction and fibrosis. Am J Pathol. 2011;178:911-923.
- 692 38. Peters CA, Gaertner RC, Carr MC, Mandell J. Fetal compensatory renal growth due
- to unilateral ureteral obstruction. J Urol. 1993;150:597-600.
- 694 39. Moeller BJ, Cao Y, Vujaskovic Z, Li CY, Haroon ZA, Dewhirst MW. The
- relationship between hypoxia and angiogenesis. Semin Radiat Oncol. 2004;14:215-221.

- 696 40. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis.
- 697 Nat Rev Nephrol. 2016;12:325-338.
- 41. Akhurst RJ, Lehnert SA, Faissner A, Duffie E. TGF beta in murine morphogenetic
- processes: the early embryo and cardiogenesis. Development. 1990;108:645-656.
- 42. Gatherer D, Ten Dijke P, Baird DT, Akhurst RJ. Expression of TGF-beta isoforms
- during first trimester human embryogenesis. Development. 1990;110:445-460.
- 43. Dockrell ME, Phanish MK, Hendry BM. Tgf-beta auto-induction and connective
- tissue growth factor expression in human renal tubule epithelial cells requires N-ras.
- 704 Nephron Exp Nephrol. 2009;112:e71-79.
- 44. Higgins SP, Tang Y, Higgins CE, Mian B, Zhang W, Czekay RP, et al. TGF-β1/p53
- signaling in renal fibrogenesis. Cell Signal. 2018;43:1-10.
- 45. Schuster N, Krieglstein K. Mechanisms of TGF-beta-mediated apoptosis. Cell
- 708 Tissue Res. 2002;307:1-14.
- 709


710 Supporting information


711 S1 Fig. Stepwise peristaltic ureter (SWPU) system

- The recipient is transplanted with the MNB and allowed to grow. The ureter of the
- recipient is anastomosed to the MNB bladder where urine has accumulated. In this
- 714 manner, MNB can measure urinary excretion.
- 715
- 716 S2 Fig. Experimental procedure
- A) Experiment 1, B) Experiment 2, C) Experiment 3
- 718


719 S Table. GFR measurements in healthy adult rats using inulin clearance

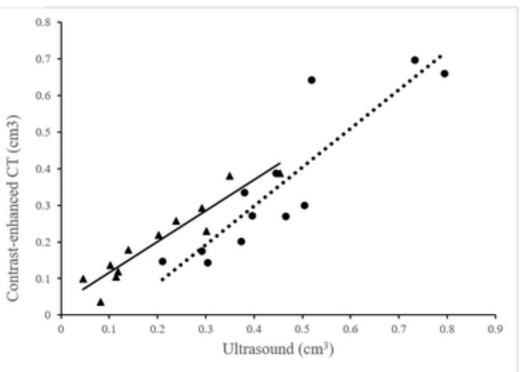
- 720 Measurements are performed in the same situation as the GFR measurement method in
- the MNB.

Fig1.

TGF-β1 expression region (μm²)

(×10³)

Fig10.


TGF-β1 expression region (μm²)

(×10³)

	MNB volume in each week by imaging devices (cm ³)										
		week 1	week 2	week 3	week 4	week 5	week 6	week 6.5	week 7	week 7.5	week 8
СТ	MNB 1	_	_	_		_		0.310±0.141*	_	0.352 ± 0.195*	_
	MNB 2		_	_				0.096± 0.053	_	0.203± 0.107	_
Ultrasound	MNB 1	ND	0.073± 0.041	$0.139 \pm 0.090^{+}$	0.277± 0.131	0.271 ± 0.082 *	0.396± 0.136	0.390 ± 0.148	0.361 ± 0.146	0.452 ± 0.164	0.381 ± 0.252
	MNB 2			_	_	0.019 ± 0.010	0.098 ± 0.090	$0.096 \pm 0.039^{+}$	0.145 ± 0.082 *	0.203 ± 0.120	0.214 ± 0.164

Fig2.

Α

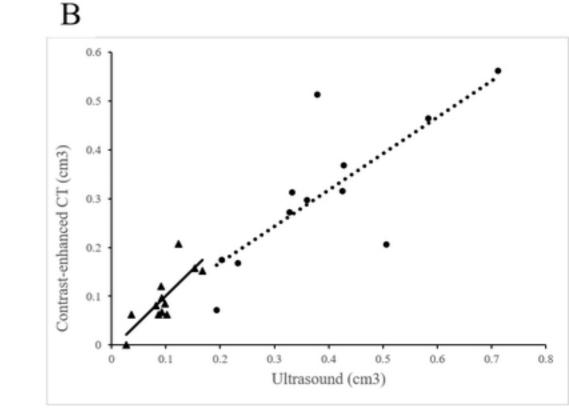
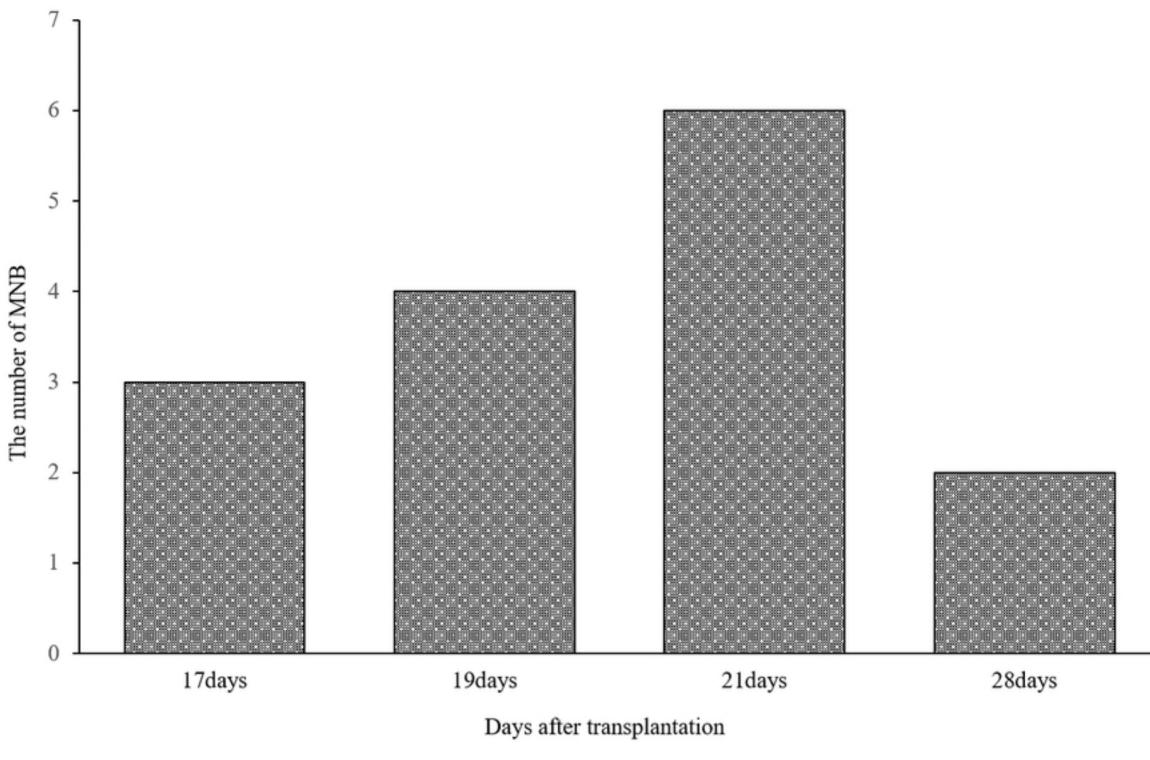
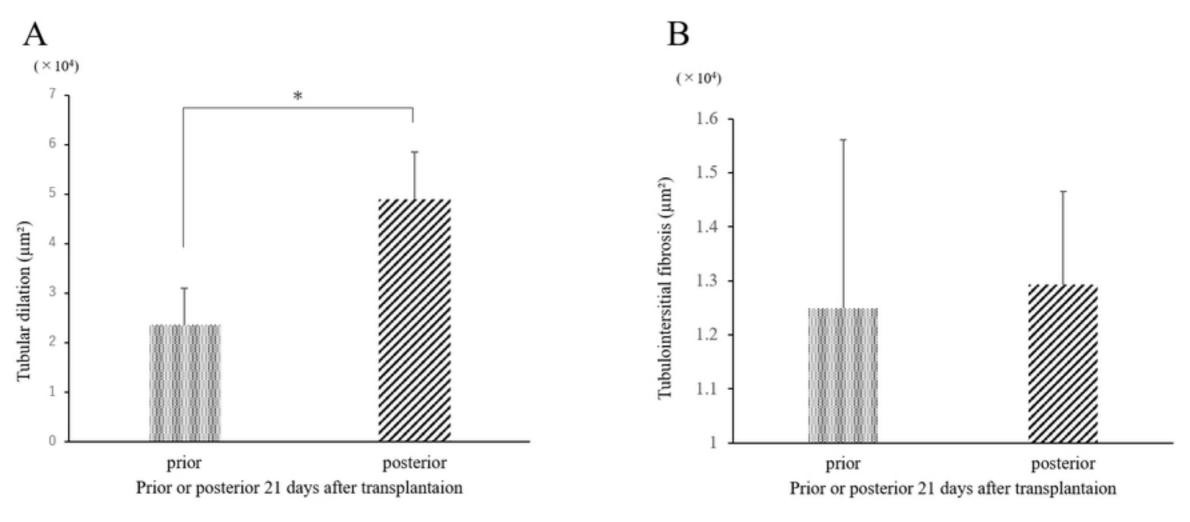
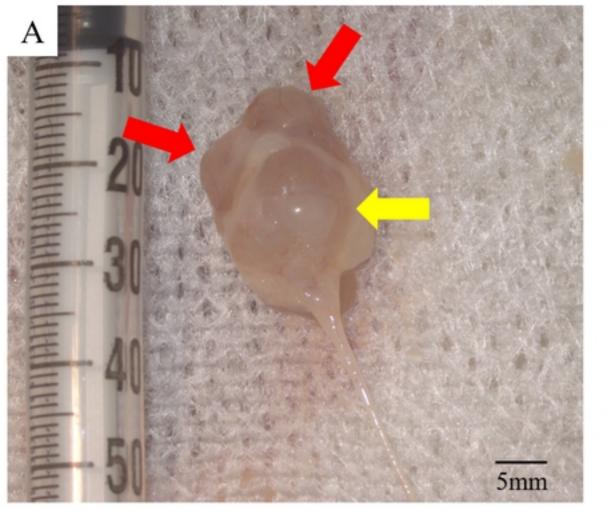
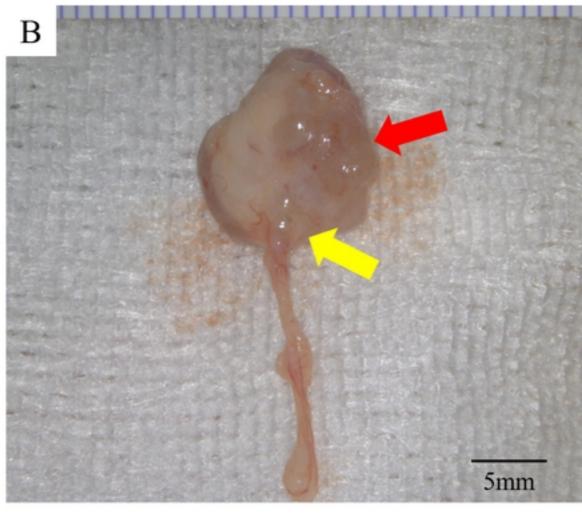
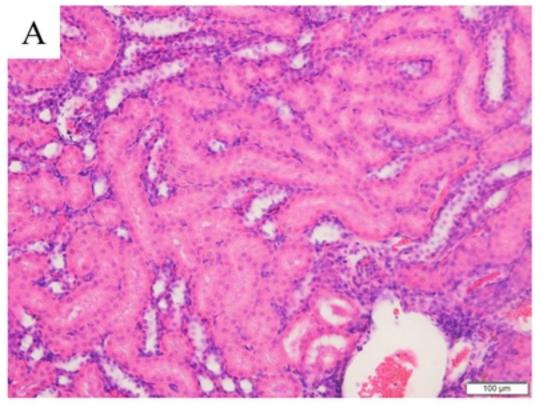



Fig3.

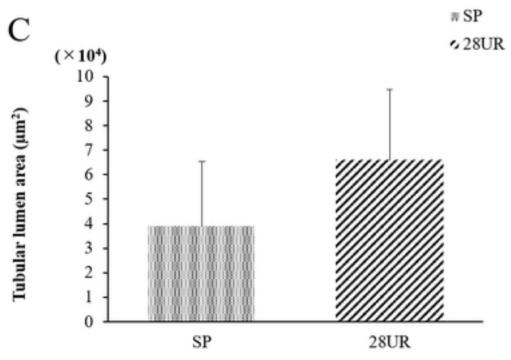

Fig5.

Fig6.

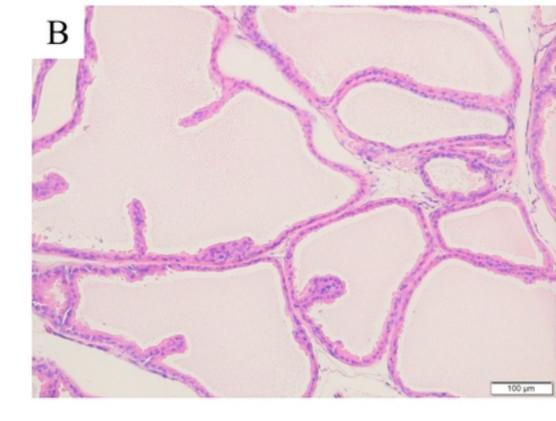
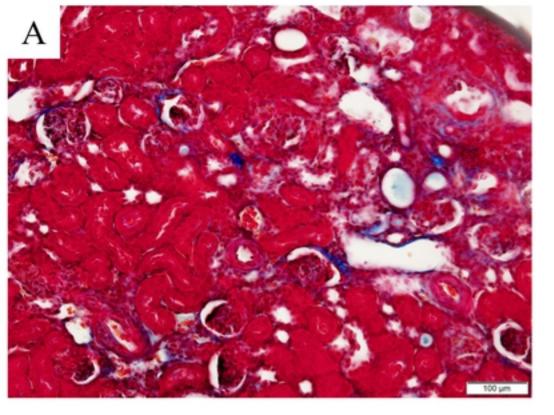



Fig7.

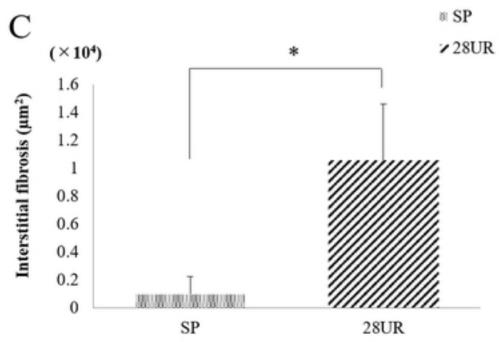
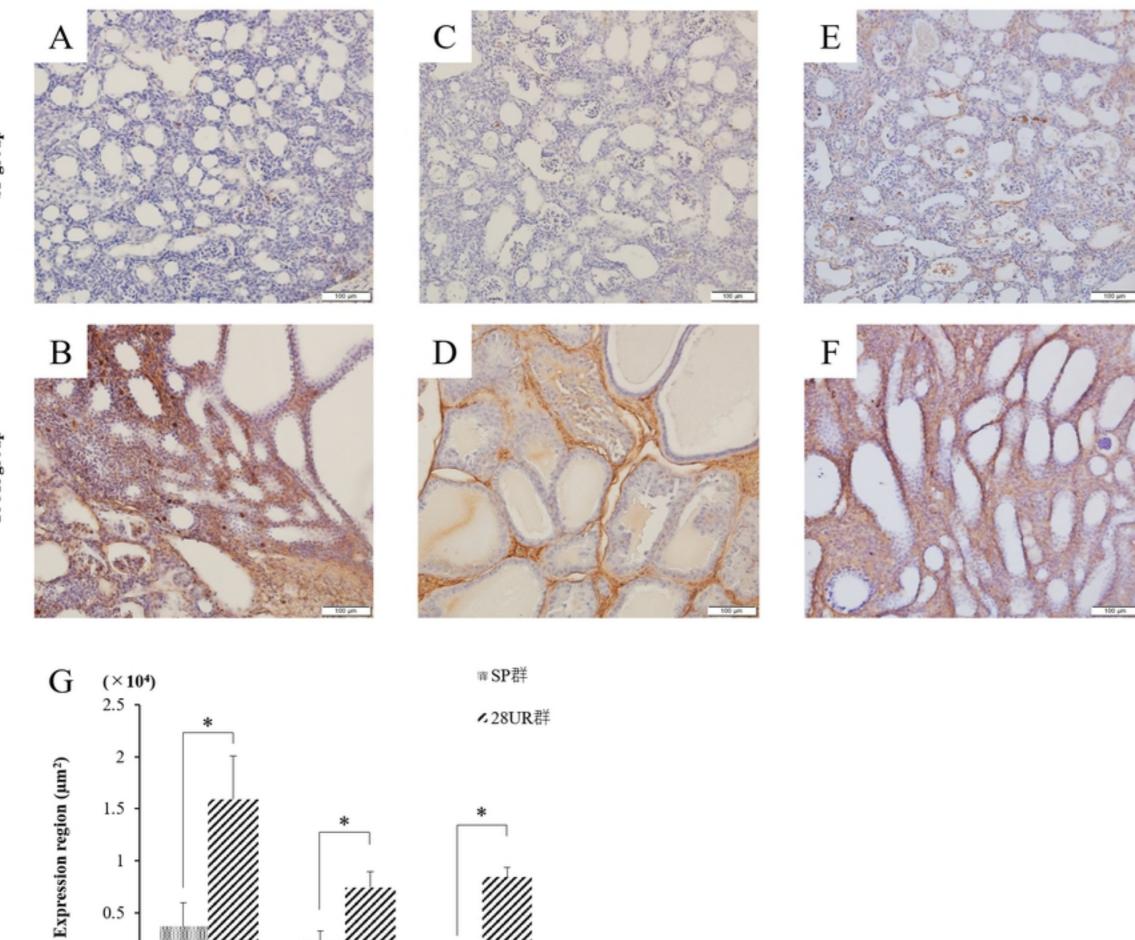



Fig8.

Type I-Collagen-α1

Vimentin

SP group

28UR group

Fig9.

0

TGF-β1