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ABSTRACT 

Background: As core units of organ tissues, cells of various types play their harmonious 

rhythms to maintain the homeostasis of the human body. It is essential to identify the 

characteristics of cells in human organs and their regulatory networks for understanding the 

biological mechanisms related to health and disease. However, a systematic and 

comprehensive single-cell transcriptional profile across multiple organs of a normal human 

adult is missing. 

Results: We perform single-cell transcriptomes of 84,363 cells derived from 15 tissue organs 

of one adult donor and generate an adult human cell atlas. The adult human cell atlas depicts 

252 subtypes of cells, including major cell types such as T, B, myeloid, epithelial, and stromal 

cells, as well as novel COCH+ fibroblasts and FibSmo cells, each of which is distinguished by 

multiple marker genes and transcriptional profiles. These collectively contribute to the 

heterogeneity of major human organs. Moreover, T cell and B cell receptor repertoire 

comparisons and trajectory analyses reveal direct clonal sharing of T and B cells with various 

developmental states among different tissues. Furthermore, novel cell markers, transcription 

factors and ligand-receptor pairs are identified with potential functional regulations in 

maintaining the homeostasis of human cells among tissues.  

Conclusions: The adult human cell atlas reveals the inter- and intra-organ heterogeneity of 

cell characteristics and provides a useful resource in uncovering key events during the 

development of human diseases in the context of the heterogeneity of cells and organs. 
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INTRODUCTION 

The human body consists of multiple organs, where multiple types of cells are the core units 

of structure and function. Like instruments from different families in a symphony orchestra, 

cells and organs play their harmonious rhythms to maintain the homeostasis of the human 

body. Yet, perturbations in the homeostasis leads to various pathological conditions. Therefore, 

it is essential to identify characteristics of the cells in human organs and their regulatory 

networks for understanding the biological mechanisms related to health and disease.  

Recent technological innovations in transcriptional profiling using single-cell RNA 

sequencing (scRNA-seq) have provided a promising strategy to quantify gene expression at 

the genome-wide level in thousands of individual cells simultaneously[1-3]. This has expanded 

our knowledge regarding cellular heterogeneity and networks, as well as our understanding in 

developments in human tissues and organs at the single-cell resolution[4-11]. Previous studies 

have demonstrated the cell composition for many human and mice tissues, including the 

brain[12], kidneys[13], lungs[14], and skin[15]. The strategy also empowers the identification 

of novel cell types. Cells marked by cystic fibrosis transmembrane conductance regulator 

(CFTR) were identified in the lungs of human and mouse, and were able to regulate luminal 

pH that was implicated in the pathogenesis of cystic fibrosis[16]. Non-genetic cellular 

heterogeneity has been revealed in hematopoietic progenitor cells and keratinocytes, which 

play important roles in maintaining hematopoiesis[17] and compartmentalizing crucial 

molecular activities in human epidermis[15], respectively. For the development of human 

embryos, transcriptome analyses of about 70,000 single cells from the first-trimester’s 

placenta with matched maternal blood and decidual cells uncover the cellular organization of 

decidua and placenta, as well as distinctive immunomodulatory and chemokine profiles of 

decidual natural killer (NK) cells[18]. In addition, the single-cell transcriptional profiles of 

embryonic and adult organs in mice have been reported, which reveal the landscape of 

organogenesis and the cellular heterogeneity in organs[8, 9, 19]. A very recent study on major 

human cell types using multiple organs from different donors revealed the genetic regulation 

for fetal-to-adult cell-type transitions and genetic conservation in mammalian cells[20]. 

However, a systematic and comprehensive single-cell transcriptional profile of multiple organs 

from a normal human adult has been pending. Previous studies with scRNA-seq on human 
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samples were mostly restricted to a few specific organs with disease conditions and they did 

not attempt to characterize the heterogeneity and connections among multiple organs in a 

same individual. 

Here, we aimed to investigate the transcriptional heterogeneity and interactions of cells 

from an adult human’s organs at the single-cell resolution level. Using scRNA-seq, we profiled 

the transcriptomes of more than 84,000 cells of 15 organs from one individual donor. 

Comprehensive comparisons within and across tissues for distinct cell types were performed 

to reveal the inter-cellular complexity of gene profiles, active transcription factors and potential 

biological functions, as well as potential inter-cell connections. The resulting high-resolution 

adult human cell atlas (AHCA) provides a global view of various cell populations and 

connections in the human body, and is also a useful resource to investigate the biology of 

normal human cells and the development of diseases affecting different organs. 

 

RESULTS 

Global view of single-cell RNA sequencing of 15 organ samples  

Viable single cells were prepared from the tissue samples of 15 different organs of a research-

consented adult donor (Fig. 1A). mRNA transcripts from each sample were ligated with 

barcoded indexes at 5'-end and reverse transcribed into cDNA, using GemCode technology 

(10x Genomics, USA). cDNA libraries including enriched fragments spanning the full-length 

V(D)J segments of T cell receptors (TCR) or B cell receptors (BCR), and 5'-end fragments for 

gene expression were separately constructed, which were subsequently subjected for high-

throughput sequencing. On average, we obtained more than 400 million sequencing reads for 

each organ sample, which resulted in a median sequencing saturation (covering the fraction 

of library complexity) of 88% (61.6%-97%) for each sample (Additional file 1: Figure S1A 

and Additional file 2: Table S1). After primary quality control (QC) filters, 91,393 cells were 

identified (Additional file 1: Figure S1B and Additional file 2: Table S2). Higher number of 

UMIs and more transcribed genes were observed in the skin and trachea samples (with 

median UMIs of 4,022.5 and 4,100.5 and genes of 1,528 and 1,653, respectively) compared 

with the other organs (Additional file 1: Figure S1C, D, and Additional file 2: Table S2). We 

obtained 66,225 sequencing read pairs for each cell and 6,093 cells for each organ on average 
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(Additional file 2: Table S1, S2), with more than 2.4 and 3.5 times deeper sequencing of 

median genes and UMIs than a recent study[20]. The cells in each organ were classified using 

unsupervised clustering, and cell types were assigned based on canonical marker genes 

(Additional file 2: Table S3). Next, visualization of the cells by t-distributed stochastic 

neighbor embedding (t-SNE) revealed multiple subpopulations of cells in each organ, with the 

numbers of clusters ranging from 9 in the blood to 25 in the skin (Additional file 1: Figure S2, 

Figure S2 continued, and Additional file 2: Table S4-S18). Clusters due to cell doublets 

were identified and excluded for each organ, which resulted in a total of 84,363 cells for the 

downstream analyses (Additional file 2: Table S2).  

With transcriptional profiles of such large number of cells, we identified some rare and 

novel cell populations. A group of Langerhans cells were identified in the skin sample (1% of 

all skin cells) with specific expression of CD207 and CD1A[21]. An even smaller group of 26 

sweat gland epithelial cells (0.31%) were also identified in the skin sample, which had specific 

expression of DCD, SCGB2A2, KRT19, MUCL1, and PIP genes (Additional file 1: Figure 

S3A and Additional file 2: Table S14). A novel group of fibroblasts (0.43%) with exclusive 

expression of COCH were identified in the skin (Additional file 1: Figure S2 continued, 

Figure S3A, and Additional file 2: Table S14). Of note, another novel group of cells were 

assigned as FibSmo with a co-expression of MMP2 and ACTA2, which are marker genes for 

fibroblasts and smooth muscle cells, and were identified with higher proportions in the rectum 

(6.66%), bladder (17.59%), and heart (7.75%) than in the other tissue organs (Additional file 

1: Figure S2, Figure S2 continued, Figure S3B, and Additional file 2: Table S4, S13). 

Moreover, in contrast to the broad distribution of FibSmo cells in multiple organs, COCH+ 

fibroblasts were identified in limited organs with low abundance, while sweat gland epithelial 

cells were found specifically in the skin (Additional file 1: Figure S3B). Furthermore, the 

presence of sweat gland epithelial cells, COCH+ fibroblasts, and FibSmo cells were confirmed 

in multiple tissue samples from independent donors using existing datasets and multiplex 

immunofluorescence staining assays (Additional file 1: Figure S4-S10 and Additional file 

3: Supplementary Notes).  

 We combined all the 84,363 cells in the cluster analysis and identified 43 clusters in 15 

organs (Fig. 1B, Additional file 1: Figure S11 and Additional file 2: Table S19). We 
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observed close clustering of cells from different organs (more than seven organs) for major 

cell types, including T, B, plasma, endothelial, and smooth muscle cells, as well as fibroblasts, 

macrophages, and monocytes (Fig. 1B, C, Additional file 1: Figure S11, Additional file 1: 

Figure S12, and Additional file 2: Table S20). This is consistent with the understanding that 

cells derived from the same lineage are widely distributed within the human body, especially 

circulating immune cells. Moreover, multiple clusters were further identified for several major 

cell types (T cells, B cells, fibroblasts, myeloid cells, and endothelial cells), reflecting their 

heterogeneous transcriptional profiles (Fig. 1C, Additional file 2: Table S19).  

 

The heterogeneity of T cells in developmental state and clonalities around the body  

We identified a total of 20,034 T cells prevailing in the immune cells of most organ tissues 

(Additional file 4: Table S21), which is consistent with a previous finding[22]. These included 

1,472 γδ and 18,292 αβ T cells. The latter were divided into CD4+ (7,006) and CD8+ (11,286) 

T cells according to their gene profiles and were further grouped into 11 and 21 major 

unsupervised clusters, respectively (Fig. 2A, B), including naïve/central memory T (TN/CM), 

effector memory T (TEM), regulatory T (Treg), tissue-resident memory T (TRM), effector T (Th1 for 

CD4+ and TEFF for CD8+ T cell), intraepithelial lymphocytes (IEL) T, and mucosal-associated 

invariant T (MAIT) cells, based on known markers[23] (Fig. 2C, D). Some TN/CM cells were 

further assigned as TN, and TCM clusters based on their gene signatures (Fig. 2C, D, 

Additional file 1: Figure S13A, B). Both CD4+ and CD8+ T cell clusters showed a distribution 

pattern in an organ-specific manner (Additional file 1: Figure S13C, D) and each of them 

had differentially expressed genes (Additional file 1: Figure S13A, B and Additional file 4: 

Table S22, S23). An overlapping of clusters was also observed between organs (such as 

blood and marrow), suggesting the sharing of common T cell subtypes (Additional file 1: 

Figure S13D).  

To better understand the developmental state of T cells, we performed trajectory analyses 

of CD4+ and CD8+ T cells. We observed that the trajectory trees rooted from TN cells, sprouting 

into TCM, Th1, and TRM branches for CD4+ T cells and TN/CM, TEFF, IEL, and TRM branches for 

CD8+ T cells (Fig. 2E, Additional file 1: Figure S13E, F). TRM cells and IEL cells with higher 

pseudo-time scores were found in CD4+ and CD8+ T cells, respectively, suggesting their 
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terminal developmental state (Fig. 2E, Additional file 1: Figure S13E, F). Moreover, several 

TRM clusters at the end of other branches with mediated scores for both CD4+ and CD8+ T 

cells, indicating the middle developmental state of these clusters. The TRM clusters with 

different developmental states showed an organ-specific pattern (Additional file 1: Figure 

S13E, F), while their origin from marrow or spleen was unclear due to the limited number of 

cells. These observations reveal the heterogeneity in the developmental states of both CD4+ 

and CD8+ cells in human organs.  

 Transcription factors (TFs) have been demonstrated as important regulators of gene 

expression and with ability to shape different phenotypes of T cells[24]. We therefore, 

performed Single-Cell Regulatory Network Inference and Clustering (SCENIC) analysis to 

assess TFs underlying differential gene expression in T cells. We identified well-defined and 

cell-subtype-specific TFs for CD4+ (Fig. 2F) and CD8+ T cell (Fig. 2G) clusters (Additional 

file 4: Table S24, S25), such as higher activity of FOXP3[24] and BATF[25] in Treg cells, 

upregulation of LEF1, MYC, TCF7[26], and KLF2[27] in TN cells and TBX21, STAT1, and IRF1 

in TEFF cells[24, 28, 29] (Fig. 2F, G and Additional file 1: Figure S13G, H). In addition, many 

other poorly investigated TFs were also observed in both CD4+ and CD8+ TRM cell clusters, 

such as the upregulation of several AP-1 dimerization partners (FOS, JUN, JUND, FOSL2, 

and ATF3), REL, and RELB (Fig. 2F, G and Additional file 1: Figure S13G, H). Collectively, 

these results indicate that the combinations of multiple TFs regulate T cell development to 

maintain the heterogeneous states of CD4+ and CD8+ T cells. 

 To better investigate the clonalities and dynamic relationships among T cell subtypes 

across tissues, we preformed TCR clonal typing accompanied with transcriptome analysis 

(Fig. 1A). After stringent QC filters, we identified 5,183 TCR clonotypes with unique 

heterodimer α and β chains among 8,394 T cells (45.89% of the whole 18,292 CD4+ and CD8+ 

T cells), including 3,248 CD4+ T cells and 5,146 CD8+ T cells. Among them, 4,645 cells (2,906 

CD4+ and 1,739 CD8+ T cells) had a unique TCR clonotype for each, while the remaining 3,749 

cells (342 CD4+ and 3,407 CD8+ T cells) shared two or more of the 538 TCR clonotypes 

(Additional file 4: Table S26, S27). We observed similar numbers of V and J segments for 

the TCR α chain in both CD4+ and CD8+ T cells, both of which shared 60% and 40% of the 

top 10 frequent V and J segments, respectively (Additional file 1: Figure S14A, B). By 
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contrast, the diversity of the V segment was much higher than that of the J segment for β chain 

in both CD4+ and CD8+ T cells, which shared 40 % and 80% of the top 10 frequent V and J 

segments, respectively (Additional file 1: Figure S14A, B). Although more CD8+ T cells were 

detected than CD4+ T cells among all tissues, no significant difference in clone sizes (the 

number of unique clonotypes) was observed between the two cell populations (Additional file 

1: Figure S14C). Singular cells of unique TCR clonotypes were prevalent for CD4+ T cells 

among tissues, except that a higher proportion of multiple cells with identical TCR clonotypes 

or clonal expansions were observed in the muscle, common bile duct, and marrow (Additional 

file 1: Figure S14D top panel). Clonal expansions were much commonly found for CD8+ T 

cells in all tissues (Additional file 1: Figure S14D bottom panel).  

To investigate the clonotype distribution of T cells across tissues, we evaluated the ability 

of sharing TCR for each tissue with others. We observed a more intensive and broader sharing 

of TCR clonotype for CD8+ than CD4+ T cells across tissues (Fig. 2H). A higher migration 

capacity, reflected in the migration-index score of tissues, was found in CD8+ T cells than in 

CD4+ T cells (Fig. 2I left panel). Moreover, higher expansion ability but lower diversity was 

observed in CD8+ T cells in each tissue compared with CD4+ T cells (Fig. 2I right panel, 

Additional file 1: Figure S14E). Cells with clonal expansion had considerable proportions in 

TEM, TEFF, TRM, and IEL clusters of CD8+ T cells (Additional file 1: Figure S14F bottom panel), 

and Th1 and RGS1_TRM of CD4+ T cells (Additional file 1: Figure S14F top panel). We further 

evaluated the clonal expansion and transition (clonotype sharing ability of each subpopulation) 

of each T cell cluster, which revealed significantly stronger expansion and transition abilities 

of CD8+ compared with CD4+ T cells (Additional file 1: Figure S14G, H). This is consistent 

with the stronger sharing links of clonotypes between subtypes of CD8+ than CD4+ T cells (Fig. 

2H, Additional file 1: Figure S14I, J). Moreover, we observed the clonal expansion of certain 

CD8+ T cells (TEFF, TRM, TEM, and IEL T cells) distributed across multiple tissues with different 

developmental states (Additional file 1: Figure S15A), suggesting that most of these cells 

recognizing the same antigens propagate and migrate more intensively than T cells of other 

types. In addition, we observed consistent results of TCR diversity using β chains (Additional 

file 1: Figure S15B-D). These observations based on TCR tracing suggest the widespread of 

diverse T cells across the human body through clonal expansion and transition.  
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The heterogeneity of B cells and plasma cells 

Cluster analysis revealed 14 distinct cell clusters among 10,100 B and plasma cells from 11 

organ samples, including nine B (CD20) and six plasma cell (SDC1) clusters (Fig. 3A). We 

observed the predominance of B cells over plasma cells in all tested organs except for the 

esophagus and rectum (Fig. 3B). Differential gene expression (DEG) analysis revealed that 

B cells exhibited distinct gene profiles from plasma cells (Additional file 5: Table S28 and 

Additional file 1: Figure S16A). Although CD27 is a canonical marker of memory B cells[30], 

we observed a low transcription level of CD27 in memory B cells, but a higher level in plasma 

cells (Fig. 3C). TCL1A was significantly expressed in two naïve B cell clusters with distinct 

gene expression profiles, TCL1A_ly_naive_B from the lymph nodes and TCL1A_naive_B from 

multiple tissues, compared with the other B and plasma cell clusters (Fig. 3A, Additional file 

1: Figure S16A). Moreover, TCL1A was exclusively expressed in non-CD27-expressing B cell 

clusters and had a significantly reverse correlation with CD27 transcription (Person’s R = -

0.84, P = 0; Fig. 3C, Additional file 1: Figure S16B). Given that TCL1A has been reported 

as an important gene in B cell lymphomas[31], these findings suggest that TCL1A might be a 

novel marker of naïve B cells.  

B cells are professional antigen-presenting cells (APCs) with high expression of CIITA 

and MHC class II genes, which are silenced during the differentiation to plasma cells[32]. We 

examined the antigen-presenting ability of B and plasma cell clusters, using the antigen-

presenting score (APS) based on the expression of signature genes related to antigen-

presenting (See Methods). Interestingly, plasma cells had a much lower APS for extracellular 

antigens compared with B cell clusters (Additional file 1: Figure S16C), while they had a 

much higher APS for intercellular antigens than B cells, suggesting the different abilities to 

present antigens between the two cell types. We also investigated the potential biological 

function of different cell clusters using Gene Ontology enrichment (GO) analysis. Potential 

biological functions of B cells were found to be enriched in immune response (for example, 

‘responding to activation of immune’) and that of plasma cells were associated with protein 

synthesis (including ‘signal peptide processing’, ‘ER to Golgi vesicle−mediated transport’, and 

‘protein folding’; Fig. 3D). In addition, gene set enrichment analysis (GSEA) showed that 
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TCL1A_naive_B cells were enriched in ‘oxidative phosphorylation’ and ‘fatty acid metabolism’ 

pathways (Additional file 1: Figure S16D). These observations suggest distinct biological 

functions of B and plasma cells, although plasma cells were derived from B cells. 

TFs play a critical role in the differentiation of B cells to plasma cells, engaging B cells 

with effector or memory functions[33]. Single-cell regulatory network inference and clustering 

(SCENIC) analysis revealed that TFs exhibited similar activities in B and plasma cells but with 

distinct patterns between the two populations (Fig. 3E, Additional file 5: Table S29). TFs with 

higher activity were found in B cells, including MYC[34] and REL[35], which have been known 

to modulate B cell development, as well as other TFs that have not been characterized in B 

cells, such as EGF receptors (EGFR1/2/3) and TGIF1. Likewise, TFs enriched in plasma cells 

included PRDM1, XBP1, FOS, and IRF4, which play important roles in the development of 

plasma cells[33]. Moreover, many TFs with unknown roles were found, including ATF3, ATF4 

and ATF5. Consistently, we observed higher activity of these TFs in an independent human 

cell landscape (HCL) dataset published recently[20], including MYC, IRF8, and REL in B cell 

clusters and XBP1, PRDM1,and CREB3L2 in plasma cell clusters (Additional file 1: Figure 

S16E, F, and Additional file 4: Table S30, S31). Taken together, these results suggest that 

various TFs might regulate the development of B cells into plasma cells. 

To explore the clonalities of B and plasma cell clusters across organ tissues, we performed 

a single-cell BCR sequencing analysis. After stringent QC filters, 6,741 out of 10,100 cells 

were assigned to 6,480 clonotypes, among which 6,330 clonotypes were presented by 

singular cells and 150 by multiple cells (Additional file 4: Table S32). We observed various 

usage of V and J gene segments for both heavy and light chains of immunoglobulin genes, 

with a preferred usage of some particular variable segments (Additional file 1: Figure S16G-

I). Unlike T cells, clonal diversity was common for B cells among all the organs, while clonal 

expansion of B cells was limited and restricted to the spleen, rectum, and stomach (Additional 

file 1: Figure S16J). Moreover, less sharing of BCR clonotypes between B and plasma cells 

was observed across organs compared with T cells (Fig. 2H and Fig. 3F). In addition, BCR 

analysis showed lower expansion and transition abilities of B cells compared with plasma cells 

and T cells (Fig. 3G, Additional file 1: Figure S14G, and Additional file 1: Figure S16K, L), 

which might be due to an insufficient representation of the richness of the diverse B cell 
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repertoire with the limited number of clonal B cells detected.  

 

The heterogeneity of myeloid cells 

We obtained 5,587 myeloid cells from 15 organ tissues, which were grouped into 18 distinct 

clusters (Fig. 4A, B). Based on the differential expressions of marker genes, we further 

identified seven monocyte clusters, eight macrophage clusters, and three dendritic cell (DC) 

clusters (Fig. 4A, B, and Additional file 1: Figure S17A). The hierarchical cluster analysis 

revealed that all classical monocytes were closely related as a branch node, as were non-

classical monocytes and intermediate monocytes (Fig. 4C). All macrophages were grouped 

together and separated from monocytes, except that one subset of macrophages (C3: 

SDC3_Mac) were closely related to intermediate and non-classical monocytes (Fig. 4C). DEG 

analysis showed that each myeloid cell cluster had a specific gene signature, suggesting inter-

cell heterogeneity among monocytes, macrophages, and DC cells (Fig. 4D, Additional file 6: 

Table S33). All clusters contained cells from multiple tissues, except for 

FN1_Intermediate_Mon (C4) and CCL20_Intermediate_Mon (C10) in the rectum and 

Langerhans clusters (C15: Langerhans) in the skin, suggesting similar transcriptional profiles 

and origins of these myeloid cells (Fig. 4A, B). Monocytes showed a predominance in 11 of 

the 15 tested tissues, except for the esophagus, heart, lymph nodes, and skin, where 

macrophages and DC cells accounted for more than 50% of all myeloid cells (Additional file 

1: S17A). 

Considering two potential origins of macrophages in multiple tissues from circulating 

monocytes and embryonic progenitor cells[36-38], we examined the connection between 

macrophages and monocytes. First, we observed the coexistence of macrophages and 

monocytes in the same organs (Fig. 4A, B, and Additional file 1: Figure S17A). Second, 

trajectory analysis revealed that the classical monocytes had initial state at the root and 

sprouted into branches with more developed states of monocytes and then macrophages 

either directly or via two intermediate monocytes (Fig. 4E, Additional file 1: Figure S17B, C). 

Notably, high expression of proliferation marker genes including MKI67 and PCNA were 

exclusively detected in the HISTIH4C_Mac macrophages (C12) in the bladder, esophagus, 

heart, and rectum (each with more than five of the cells; Additional file 1: Figure S17D). 
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Gene set variation analysis (GSVA) also revealed that most of the macrophage clusters had 

a higher enrichment score of MYC and E2F target pathways (Additional file 1: Figure S17E). 

We further performed a trajectory analysis of intestinal monocytes and macrophages derived 

from our and published datasets[39]. We observed a terminal state for both the embryonic and 

adult macrophages according to pseudotime scores (Additional file 1: Figure S17F). 

Moreover, we observed a clear differentiation trajectory of the macrophages in the adult 

rectum from the intermediate monocytes (CCL20_Intermediate_Mon) to the tissue-

macrophages (HIST1H4C_Mac). Interestingly, the embryonic macrophages (Embryo_Mac) 

were found alongside the differentiation trajectory from the intermediate monocyte 

(FN1_Intermediate_Mon) to the tissue-macrophages (HIST1H4C_Mac), suggesting that the 

embryonic macrophages may contribute to the tissue-macrophages through local expansion. 

Consistently, a high expression of the proliferation marker gene PCNA was detected in the 

terminal macrophages (Additional file 1: Figure S17G). Taken together, these observations 

suggest that circulating monocytes might give rise to macrophages in organ tissues and that 

the local microenvironment may contribute to the expansion and proliferation of different 

embryo-derived macrophage populations, especially tissue-resident macrophages, in the 

bladder, esophagus, heart, and rectum.  

TFs such as SPI1 are involved in the development of monocytes to macrophages[40, 41]. 

However, how TFs regulate their development in the normal human body is still unclear. TF 

activity analysis revealed a similar activation of certain TFs among the four classical 

monocytes, which is consistent with their close similarity in gene signatures (Fig. 4D, F and 

Additional file 6: Table S34). A high activation of SPI1 was determined in classical monocytes, 

non-classical monocytes and SDC3_Mac cells, suggesting its involvement in the development 

of these cells. We also identified several TFs with high activity in the four classical monocyte 

clusters, including HCFC1, ELF2, ETV6, ELK3, and NFE2 (Fig. 4F, G). Their roles in 

maintaining the classical state of monocytes have yet to be investigated. Non-classical 

monocytes and macrophages shared several activated TFs, such as TCF7L2, STAT1, KLF3, 

NR1H3, and SPIC, which is consistent with their close pattern in the hierarchical cluster 

analysis (Fig. 4C, F and G). We observed that multiple poorly characterized TFs were highly 

activated in the intermediate, non-classical monocytes and macrophages, other than classical 
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monocytes, including POLR2A, MAF, MAFB, PRDM1, ETV5, and ATF3 (Fig. 4C, F and G). 

We also observed cluster-specific TFs for myeloid cell clusters (Fig. 4F, Additional file 6: 

Table S34). For instance, the activation of BHLHE40 and NR3C1 was higher in APOE_Mac 

cells (C14). These results suggest that these unique combinations of TFs help shape the 

different states of myeloid cells in the normal human body.  

It has been demonstrated that myeloid cells could act as professional APCs, with the 

strongest antigen-presenting ability for DCs[42]. We observed various antigen-presenting 

abilities for extracellular antigens as reflected by APS for different myeloid clusters (Additional 

file 1: Figure S17H). Langerhans cells had a stronger antigen-presenting ability than other 

macrophages and monocytes (P < 2.2 x 10-16; Additional file 1: Figure S17H). On average, 

the classical monocytes had the lowest APS among myeloid cell clusters (P < 2.2 x 10-16). 

Interestingly, different myeloid cell clusters had a similar APS for presenting intracellular 

antigen (Additional file 1: Figure S17H). These observations support the varied roles of 

myeloid cells in antigen presentation.  

 

The similarity and heterogeneity of epithelial cells from intra- and inter-tissues  

We obtained a total of 17,436 epithelial cells from nine tested organ tissues (Fig. 5A). DEG 

analysis revealed a clear and distinct pattern of gene expression among the tissue samples 

(Additional file 1: Figure S18A and Additional file 7: Table S35). There were 190 genes 

with tissue-specific expression (FC ≥ 5, pct.1 ≥ 0.2; Additional file 7: Table S35 and 

Additional file 1: Figure S18A), indicating the heterogeneity of epithelial cells among organ 

tissues, which was further confirmed in the HCL dataset (Additional file 1: Figure S18B). GO 

analysis also revealed the various biological functions of epithelial cells from different tissues, 

among which, ‘epithelial cell differentiation’ and ‘regulation of myeloid leukocyte activation’ 

were common pathways enriched in the majority of epithelial cells. This suggests that the cells 

share common functions in the development of epithelial cells and the regulation of immune 

response (Additional file 1: Figure S18C).  

The epithelial cells were further grouped into 34 clusters (Fig. 5A). Grouping of close 

clusters was seen in all organ tissues, except for tiny clusters of C25 (rectum and small 

intestine), C31 (esophagus and skin), and C32 (skin and small intestine), suggesting the 
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heterogeneity of epithelial cells at both the intra- and inter-organ contexts (Additional file 7: 

Table S36). The 34 clusters showed different expression profiles with 350 signature genes 

(FC ≥ 5, pct.1 ≥ 0.2 and pct.2 ≤ 0.2), most of which were expressed exclusively in one cluster 

(Fig. 5B, Additional file 1: Figure S18D, F left panel, and Additional file 7: Table S37). 

Similar results were observed in the previous HCL dataset (Additional file 1: Figure S18B, 

E, and F right panel, and Additional file 7: Table S38-S40). Hierarchical cluster analysis 

revealed closer grouping of cell clusters within tissues than across tissues in both our and the 

HCL datasets (Fig. 5C, Additional file 1: Figure S18E and Additional file 7: Table S39). 

Cells from digestive organs including the small intestine, stomach, rectum, and common bile 

duct were clustered closely, as were the cells from non-digestive tissues including the skin, 

trachea, and bladder (Fig. 5C, Additional file 1: Figure S19A). Although the esophagus is a 

digestive organ, the epithelial cells were clustered much closer to the skin cells than the 

digestive organs’ cells. Similarly, the stomach was grouped more closely to non-digestive 

organs in the HCL dataset, although it is classified as one of the digestive organs together 

with the ascending colon, colon, sigmoid colon, transverse colon, small intestine, liver, 

gallbladder, pancreas, and rectum. This might be explained by the different anatomical 

positions of the specimens (Additional file 1: Figure S19B). A volcano plot showed 

significantly DEG between the two groups, including 514 upregulated genes with a fold change 

greater than two (298 in the digestion-related clusters and 216 genes in the non-digestion-

related clusters; Fig. 5D).  

To explore the potential functions of cells within each cluster, we performed GO analysis 

for two groups of cells from the 14 digestion-related clusters and the 20 non-digestion-related 

clusters, separately. For cells from the digestive system, biological functions related to 

metabolic process, energy synthesis, and digestion pathways were commonly observed (Fig. 

5E). For the non-digestion-related cells, the ‘regulation of endopeptidase activity’ and 

‘epidermis development’ were the strongly enriched pathways (Fig. 5F). Interestingly, GSVA 

analysis in both our AHCA and the HCL datasets revealed significantly altered pathways 

between the digestive and non-digestive clusters, including multiple metabolic pathways with 

elevated activity in the digestive clusters, such as ‘Fatty acid metabolism’, ‘Citric acid cycle’, 

‘Protein modification’, and ‘Pyrimidine metabolism’, as well as enrichment of ‘Epithelial 
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mesenchymal transition’ and ‘TNFA signal via NFKB’ in the non-digestive epithelial cells, 

suggesting the enhanced metabolic activity of digestive epithelial cells (Additional file 1: 

Figure S19C, D). As we observed the enrichment of immune-related pathways in most of the 

cell clusters (Fig. 5E, F), we examined their antigen-presenting abilities, which revealed a 

weaker antigen-presenting ability for epithelial cells from the skin and esophagus to present 

both intra- and extracellular antigens in our AHCA dataset but a higher antigen-presenting 

ability for epithelial cells from the lungs in the HCL dataset (Additional file 1: Figure S20A).  

Next, we investigated the contribution of TFs in regulating the heterogeneous 

transcriptional profiles of epithelial cells in and between organs. SCENIC analysis revealed 

that the regulation of TFs was similar among cell clusters within a same tissue but was very 

different among cell clusters between tissues (Fig. 5G, Additional file 7: Table S41). 

Interestingly, the digestion-associated epithelial clusters exhibited similar activation of TFs, as 

did the cell clusters belonging to the non-digestive tissues including the trachea, skin, and 

esophagus (Fig. 5G, Additional file 7: Table S41). We also observed some cluster-specific 

TFs in the skin (CEBPA, HES1, GATA3, and ATF3), small intestine epithelial cells (HNF4G, 

NR1H3, NR1I2, HNF4A, CDX1, and CDX2), tuff cells (MTA3, POU2F1, and POU2F3), 

absorptive cells (HES4), and stem cells (ASCL2; Fig. 5G). Moreover, we identified 204 TFs in 

our AHCA dataset, which overlapped with about 60% (201) of all cluster-specific TFs in the 

HCL dataset. A similar activation pattern of TFs was observed between our AHCA and the 

HCL datasets for digestive-associated tissues (expect for the pancreas) and non-digestive 

tissues (except for the lungs; Additional file 1: Figure S20B and Additional file 7: Table 

S42). Together, these observations suggest that TFs may contribute to the heterogeneity of 

epithelial cells across tissues and epithelial cells from tissues with similar functions may share 

a similar activation pattern of TFs. 

 

The similarity and heterogeneity of stromal cells 

Endothelial cells (ECs) line up in a monolayer and form the interior surface of blood and 

lymphatic vessels as well as heart chambers. We identified a total of 6,932 ECs, including 

6,681 blood endothelial cells (BECs, marked with VWF), and 251 lymphatic endothelial cells 

(LECs, marked with LYVE1). BECs and LECs could be further grouped into 11 and two clusters, 
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respectively, with unique gene signatures (Additional file 1: Figure S21 A-C and Additional 

file 8: Table S43). Although various cell clusters were identified in a tissue, hierarchical cluster 

analysis revealed that the cell clusters from the same tissue were grouped closer than those 

between two different tissues (Additional file 1: Figure S21D), such as FABP4_BEC and 

TNFRSF4_BEC, and APOC1_BEC from the muscle. Interestingly, a group of LECs 

(FCN3_LEC) were strictly identified in the liver and expressed only two of the four genes for 

LECs (PECAM1 and LYVE1; but not PDPN and PROX1[43]; Additional file 1: Figure S21B, 

E) and other liver-specific markers (CD4, CD14, FCN2/3, OIT3, and CLEC4G). The other 

group of LECs (CCL21_LEC) were from tissues except for the liver, with exclusively high 

expression of CCL21, the protein which binds the chemokine receptor 7 (CCR7) and promotes 

adhesion and migration of various immune cells[44]. This suggests that these LECs have a 

higher potential to attract immune cells than the LECs in the liver. GO analysis results revealed 

that BECs and LECs from most of the clusters had common endothelial functions including 

‘blood vessel development’ and ‘response to wounding’, as well as functions regulating 

immune response (Additional file 1: Figure S21F). Moreover, the cells from each cluster 

were shown to have specific biological functions, including ‘endocrine processing’ for liver 

BECs (TIMP1_BEC), ‘cellular extravasation’ and ‘adaptive immune response’ for heart BECs 

(ACKR1_BEC), and ‘macrophage migration’ for non-liver LECs (CCL21_LEC). We further 

examined the APS for each cell cluster, which revealed a higher ability in presenting 

extracellular antigens for BECs from the skin (CTSC_BEC, P < 2.2x10-16) and the LECs in the 

liver (FCN3_LEC; P = 7.232x10-15) than the other tissues (Additional file 1: Figure S21G). 

We also identified a total of 17,690 fibroblasts and smooth muscle cells from nine tissues. 

These cells were further grouped into 14 fibroblast clusters (11,697 cells, MMP2), four smooth 

muscle cell clusters (3,165 cells, ACTA2), and another five novel clusters assigned as FibSmo 

(2,828 cells; marked with MMP2 and ACTA2; Additional file 1: Figure S22A, B). We 

observed organ-specific distribution for fibroblasts of different clusters, but a mixture of 

multiple organs for smooth muscle cell clusters (Additional file 1: Figure S22A), which is 

consistent with previous findings in a mouse model[9]. DEG analysis revealed that cells from 

each cluster had a unique signature (Additional file 1: Figure S22C and Additional file 8: 

Table S44). Hierarchical cluster analysis showed that cells from clusters were grouped in an 
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organ-specific manner, namely close distance for those within a same tissue (Additional file 

1: Figure S22D). The presence of the novel FibSmo cells was further confirmed by double 

immunostaining of fibroblast maker MMP2 and smooth muscle cell marker ACTA2 in multiple 

tissues (Additional file 1: Figure S10). Fibroblasts, smooth muscle cells, and FibSmo cells 

had distinct gene signatures (Additional file 1: Figure S23A and Additional file 8: Table 

S45). GO analysis revealed that the three cell types shared classical functions, including 

‘response to wounding’ and ‘tissue remodeling’ (Additional file 1: Figure S23B). However, 

each of them has unique functions. Fibroblasts have specific enrichment of genes that are 

involved in the ‘extracellular structure organization’, which is consistent with their strong 

expression of extracellular matrix protein genes (DCN and FBLN2) and genes related to matrix 

assembly (MFAP5 and SFRP2) and matrix remodeling (MMP2; Additional file 1: Figure 

S23B, C). Smooth muscle cells have specific enrichment of genes related to muscle system 

processing, including MYH11, MYLK, CAV1, and MEF2C (Additional file 1: Figure S23B, C). 

By contrast, FibSmo cells exhibited a high and specific expression of PLAT (Additional file 1: 

Figure S7) and ID1, which were related to clotting and angiogenesis[45, 46], as well as a 

higher expression of COL3A1 and COL1A1 (Additional file 1: Figure S23B, C), which have 

been involved in wound healing[47], compared with other stromal cells. Moreover, the 

enrichment of BMP signal genes BMP4 and BMP5 were also observed in the FibSmo cells 

(Additional file 1: Figure S23B, C and Figure S7). Furthermore, GO analysis revealed that 

FibSmo cells had enhanced biological functions in ‘response to wounding’ and ‘growth factor’, 

which is consistent with the functions of their highly expressed signature genes detailed above 

(Additional file 1: Figure S23B, C). 

 

Complex and broad intercellular communication networks within and between tissues  

Since we observed heterogeneity for cells in each organ tissue, we explored their potential 

intercellular communication network. CellphoneDB interaction analysis was conducted to 

explore cell-cell crosstalk of different cell types in various organs based on the repository of 

ligands, receptors and their interactions, which mediates cell-cell communication critical to 

coordinating diverse biological processes[48]. We observed a total of 20,630 significant 

interactions based on 475 ligand-receptor pairs among cell types and tissues, which varied 
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from 131 in the lymph nodes to 3,229 in the skin (Additional file 1: Figure S24A). Among 

them, MIF_CD74, HBEGF_CD44, MIF_TNFRSF14, CD55_ADGRE5, and APP_CD74 were 

the top five frequent interacting pairs detected across different cell types (Additional file 1: 

Figure S24B and Additional file 9: Table S46), suggesting their important roles in mediating 

crosstalk between different cell types. Next, we focused on the interactions between pairs of 

the major cell types (Additional file 1: Figure S24C and Additional file 9: Table S47). 

Myeloid cells were the most active cell type interacting with the other types of cells (6,949 

inter-cell interactions), especially with epithelial cells (24.3% of the total inter-cell interactions) 

in the skin and trachea (51.8%). Interestingly, common interactions were observed between 

myeloid cells and epithelial cells, with the most frequent ligand-receptor pair HBEGF_CD44 

(Fig. 6A, Additional file 1: Figure S25), of which dysregulations were involved in tumor and 

metastasis initiation[49]. CD8+ T cells were another cell type with intensive interactions with 

other types of cells (total inter-cell 4,290 interactions), especially with myeloid cells (29.9% of 

the total inter-cell interactions). The interactions were found mainly in the liver, trachea, and 

common bile duct (44.6%). The frequent interaction pairs between CD8+ T and myeloid cells 

were RPS19_C5AR1, CD55_ADGRE5, MIF_CD74, HBEGF_CD44, CD99_PILRA, and 

ANXA1_FPR1, most of which play important roles in immune regulation[50-52] (Fig. 6B, 

Additional file 1: Figure S26). CD8+ T cells also had broad interactions with non-immune 

cells (Additional file 9: Table S47). For instance, the most frequent interacting chemokine 

and receptor pair CXCL12_CXCR4[53] was observed between stromal (fibroblasts, FibSmo, 

and smooth muscle cells) and CD8+ T cells, suggesting the chemoattraction potential of those 

stromal cells for T cells migration into tissues (Fig. 6C, Additional file 1: Figure S27). We 

observed broad interactions with different densities among various organ tissues (Fig. 6D, 

Additional file 10: Table S48). We noted that cells in the trachea had a high density of 

interaction pairs with multiple tissues including the rectum, liver, and spleen, suggesting the 

potential regulatory communications between these organs. Interestingly, myeloid, CD8+ T, 

and epithelial cells were the core nodes of cell-cell interactions, which had the greatest number 

of interacting pairs and enhanced pairwise communications (Fig. 6E, Additional file 10: Table 

S48).  
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DISCUSSION 

Here, to the best of our knowledge, we for the first time generated an adult human cell atlas 

(AHCA), by profiling the single cell transcriptome for 84,363 cells from 15 organs of one adult 

donor. The AHCA included 252 cell subtypes, each of which was distinguished by multiple 

marker genes and transcriptional profiles and collectively contributed to the heterogeneity of 

major human organs. The AHCA empowered us to explore the developmental trajectories of 

major cell types and identify regulators and interacting networks in one donor that might play 

important roles in maintaining the homeostasis of the human body. We have made the AHCA 

publicly available (http://research.gzsums.net:8888), as a resource to uncover key events 

during the development of human disease in the context of heterogeneity of cells and organs. 

 It has been demonstrated that TN cells are generated in the thymus and populate lymphoid 

tissues where they differentiate to TEFF cells upon antigen stimulus, and subsequently develop 

into long-lived memory T cells[54]. However, how T cells develop into different states 

throughout human organs and the links across T cells of different states as well as the 

underlying regulatory networks, are largely unknown, especially in the context of one individual 

body. In our study, trajectory analysis revealed a clear development route from TN cells into 

TEFF cells and then CD4+ and CD8+ TRM cells in non-lymphoid organs with terminal 

developmental states, which is consistent with previous findings[54]. Indeed, TRM cells share 

many properties with recently activated effector T cells, supporting the fact that they may 

constitute a terminally differentiated population[55-57]. However, for CD4+ T cells, we noted a 

clear TCM cell cluster (STMN1_TCM) at the end of the trajectory, likely differentiated from TRM 

cells (TNF_TRM). Together with STMN1_TCM cells collected from lymph nodes, this observation 

provides a clue to solving the puzzle as to whether TRM cells can further differentiate or migrate 

back to the lymphoid compartment[58]. In support of such, a very recent mice model study 

demonstrated that TRM cells in the skin could differentiate into TCM and TEM cells upon local 

reactivation, which then rejoined the circulation. Moreover, trajectory analysis with TNF_TRM 

and STMN_TCM clusters revealed that TNF_TRM cells from two branches in an early state 

gradually progressed towards STMN1_TCM cells in a terminal state (Additional file 1: Figure 

S28A). TRM cells at the beginning of the trajectory expressed high levels of TRM markers, such 

as RUNX3, NR4A1, chemokines (CCL5)[59], and other TRM associated genes, including 
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ID2[60]. By contrast, TCM cells at the end of the trajectory were marked with expression of well-

known TCM molecules, such as SELL and CCR7 (Additional file 1: Figure S28B). Taken 

together, these observations suggest that TRM cells have developmental plasticity rather than 

representing a terminal stage of differentiation[61]. We also noted that TRM cells exhibit 

development states at organ-specific patterns and consistently these cells were regulated by 

different types of TFs, suggesting that tissue microenvironments might regulate gene 

expression by affecting TF’s activity, which in turn, shapes specific T cell phenotypes. TCR 

analysis tracking cell of a same lineage revealed widespread links among subpopulations of 

TRM cells, however, these are considered as non-recirculating[62]. Moreover, intensive sharing 

of TCRs were observed among TRM, TEM, and TEFF cells (Additional file 1: Figure S14I, J). 

Together with their development states, these results suggest that TEM cells and TEFF cells 

might enter the tissues and develop into TRM cells and IEL T cells. In addition, we observed 

the branching out of CTLA4_Treg cells next to KLF2_TCM cells along the development trajectory 

from TN cells to TRM cells (Fig. 2E). Given that previous in vitro studies have demonstrated a 

potential development from central memory T cells to Treg cells upon stimulation[63, 64], this 

observation suggested that differentiation of Treg cells from central memory T cells is possible. 

However, whether it holds true in vivo remains to be established with precise lineage tracing 

methods.  

 Infiltrating macrophages come from classical monocytes in pathological settings, such as 

cancers[65], while various origins of adult macrophages among tissues in a steady state have 

been reported[66]. As such, it has been debated how macrophages are renewed in the 

maintenance of hemostasis in tissues, whether through local proliferation or recruitment of 

monocytes from peripheral blood[67, 68]. In our study, multiple observations suggest that 

macrophages in organs are derived from either circulating monocytes or in situ expansion and 

proliferation of macrophage populations coping with the local microenvironments. Consistently, 

entry of monocytes to steady-state non-lymphoid organs and self-maintenance of tissue 

macrophages have been reported in mice models[36, 69]. Although our observations suggest 

a potential developmental relationship between circulating monocytes and tissue-resident 

macrophages, we acknowledge that further investigations are needed to address whether self-

expansion alone, or slightly together with circulating monocytes contributes to the 
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development of tissue-resident macrophages, considering that most tissue-resident 

macrophages have been demonstrated to be originated from embryonic progenitor cells[36]. 

We observed a more isolated clustering of epithelial and stromal cells compared with 

immune cells, which have circulating capability. Because epithelial and stromal cells are 

fundamental components that form protective barriers and supporting matrix for many organs, 

disruptions in their homeostasis have been implicated in various diseases[70-73]. 

Accumulating studies have demonstrated the remarkable functional heterogeneity of epithelial 

cells among tissues[74-76]. Consistently, our GO enrichment analyses revealed very diverse 

functions of epithelial cells among different tissues, as well as stromal cells. Taken together, a 

higher degree of heterogeneity might reflect a higher degree of terminal differentiation states 

and distinct specific functions of these cells among different organs. Nevertheless, we note 

that epithelial cells derived from digestive organs had similar biological functions and activation 

of TFs, which were consistently observed in both our AHCA and the HCL datasets[20]. Given 

that most of the digestion-related organs develop from the endoderm, this might explain their 

similarity in genetic profiles and functions[77]. In addition, we suspected that the epithelial cells 

with the same digestive functions might also share similar responses to pathogens or 

stimuli[78]. 

 The AHCA not only brings more detailed understanding of cell development and 

heterogeneity, but also reveals novel cell types and genes as well as regulatory factors that 

might be important for cell development. We identified subsets of novel cells, including COCH+ 

fibroblasts and FibSmo cells with a broad distribution among organ tissues. TFs are known as 

the ‘master regulators’ for gene expression[79, 80]. We identified numerous novel TFs in 

regulating the development of different cell states of major cell types, such as CEBPD, EGR1 

in CD4+ TRM, ELF1 in CD8+ TRM, and MAFF in both CD4+ and CD8+ TRM, POLR2A in B cells, 

KLF13 in plasma cells, as well as EGR1, MYC, YY1, and BCL11A in the non-digestive tissues. 

These findings not only extend our understanding in how the TFs regulate gene expression 

and shape different phenotypes, but also provide potential gene combinations in 

reprogramming applications. The AHCA also provides useful data to explore the cellular 

networks at a single-cell resolution. We discovered a large number of interactions between 

immune cells and other cells in all tissues, reflecting essential and broad communications 
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between immune cells and other cell types in the human body. Epithelial cells had the most 

frequent inter-cell interactions compared with other cell types, suggesting that they could 

interact with each other intensively to regulate their biological functions (Additional file 1: 

Figure S29). Moreover, the AHCA is based on a large-scale of single-cell transcriptomes from 

multiple organs, which might provide common biological understanding at a higher resolution. 

First, the heterogeneous nature of human cells in organs is consistent with the findings in 

mice[8] and a recent study with human tissues[20]. Second, we identified well-known markers 

for different cell types and well-characterized TFs responsible for cell development, such as 

TCF7, SELL, MYC, and KLF2 for TN cells, TBX21, STAT1, and IRF1 for TEFF cells, and etc. 

Third, similar transcription profiles of well-differentiated epithelial cells were observed between 

the AHCA and the recent published HCL datasets[20] (Fig. 5A, Additional file 1: Figure 

S18B), as were important TFs regulating plasma cell development (Fig. 3E, Additional file 1: 

Figure S16F) and digestion-related cells (Fig. 5G, Additional file 1: Figure S20B). Lastly, 

our discovery of novel and/rare cell types were validated in existing datasets and replicated in 

independent human samples (Additional file 1: Figure S4-S10).  

Cellular dissociation is a prerequisite of technical manipulation in single-cell studies. One 

previous study reported dissociation procedures induced stress and caused transcriptional 

disturbances of varying degrees, leading to a misinterpretation of results[81]. Enzymes and 

duration of dissociation procedures might be two important factors[81, 82]. Considering the 

properties of different enzymes and the heterogeneous cell types in organs, we optimized the 

protocols to achieve better dissociation and higher cell viability for each organ (Additional file 

11: Table S49). We observed that most organs had a higher density of low total dissociation 

scores[81], meaning that dissociation-related genes were not significantly induced in the 

majority of cells (Additional file 1: Figure S30). Moreover, high expression of FOS, a 

dissociation-related gene according to previous studies[81], was observed widely in multiple 

human tissues before dissociation (Additional file 1: Figure S31). Furthermore, each major 

cell type derived from multiple organs treated with different dissociation procedures shared 

similar transcriptional profiles as reflected by the cluster analyses. These suggest that the 

dissociation procedures had minimal effects on the transcriptomes in our study. However, we 

could not rule out the possibility that the dissociation procedures might have impacts on some 
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cell types, which awaits further investigations.  

We acknowledge that the current AHCA has several limitations. First, although we 

obtained a sufficient number of sequencing reads for each sample, the number of genes 

detected in each cell was limited. This might underestimate the roles of some lowly expressed 

genes, such as long non-coding RNAs. Second, we obtained around 5,000 cells on average 

for each organ, which might limit our ability to identify rare cell types and thus underestimate 

the heterogeneity of inter-cell interactions in organs. Third, we included only 15 organ tissues 

from a single donor in our study. Further studies on gene expression profiling at both the 

transcriptional and protein levels, as well as functional characterization with more organs from 

a larger number of donors, would provide a much broader and more detailed global view of 

the human cell atlas and cell biology.  

 

CONCLUSIONS 

We generated an AHCA, by profiling the single cell transcriptome for more than 84,000 cells 

of 15 organs from one research-consented donor. The AHCA uncovered the heterogeneity of 

cells in major human organs, containing more than 250 subtypes of cells. Comprehensive 

analyses of the AHCA enabled us to delineate the developmental trajectories of major cell 

types and to identify novel cell types, regulators, and key molecular events that might play 

important roles in maintaining the homeostasis of the human body and or those otherwise 

developing into human diseases. 
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MATERIALS AND METHODS 

Organ tissue collection  

An adult male donor who died of a traumatic brain injury was recruited at the First Affiliated 

Hospital of Sun Yat-sen University (SYSU-1H). For single-cell RNA sequencing, besides the 

organs for transplantation purposes, we collected tissues from 15 organs in sequence, 

including blood, bone marrow, liver, common bile duct, lymph node (hilar and mesenteric), 

spleen, heart (apical), urinary bladder, trachea, esophagus, stomach, small intestine, rectum, 

skin, and muscle (thigh). All hollow viscera tissues were dissected according to the whole layer 

structure, and all parenchymal viscera tissues were obtained from the organ lower pole. All 

the tissue collection procedures were accomplished within 20 minutes to maximize cell viability. 

To avoid cross-contamination, we used different sets of sterilized surgical instruments. The 

blood and bone marrow samples were loaded into 10ml anticoagulation tubes containing 

EDTA (BD Biosciences, Cat. no. BD-366643) and other tissues were placed in physiological 

saline (4 °C) to wash away the blood and secretions, and then immediately in a D10 

resuspension buffer, containing a culture medium (DMEM medium; Gibco™, Cat. no. 

11965092) with 10% fetal bovine serum (FBS; Gibco™, Cat. no. 10099141). All tissue samples 

were kept on ice and delivered to the laboratory within 40 min for further processing. For 

immunohistochemistry assays, paraffin-embedded normal samples were collected from 

additional patient donors at the SYSU-1H. 

 

Tissue dissociation and cell purification 

All tissues were dissociated within 1.5 hours and viable cells were collected at the end using 

fluorescence-activated cell sorting (FACS; BD FACS Aria™ III). For solid tissues exclusive of 

the liver, each fresh tissue was cut into 1 mm pieces and incubated with a proper digestive 

solution including enzyme cocktail (Additional file 11: Table S49), followed by neutralization 

with the D10 buffer and then passed through a 40 µm cell strainer (BD, Cat. no. 352340). The 

cell suspension was centrifuged at 300x g for 5 min at 4 °C, and the pellet was resuspended 

with a 0.8% NH4Cl (Sigma-Aldrich, Cat. no. 254134-5G) red blood cells lysis buffer (RBCL) on 

ice for 10 min, followed by an additional wash with the D10 buffer. The liver tissue was cut into 

3-4 mm pieces and incubated with 1 mM EGTA (Sigma-Aldrich, Cat. no. E0396-10G) in 1 x 
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DBPS (Gibco™, Cat. no. 14190250) for 10 min at 37 °C with rotation at 50 rpm. After washing 

with 1 x DPBS to remove EGTA, each tissue was then incubated in a pre-warmed digestion 

buffer (Additional file 11: Table S49) with rotation at 100 rpm at 37 °C for 30 min. The liver 

cell suspension was carefully passed through a 70 mm nylon cell strainer (BD, Cat. no. 

352350), which was further centrifuged at 50x g for 3 min at 4°C to pellet hepatocytes. The 

supernatant was centrifuged at 300x g for 5 min at 4°C to pellet non-parenchymal cells. The 

pellet was resuspended and treated with RBCL. The blood and bone marrow samples were 

pelleted by centrifugation at 300x g for 5 min at 4 °C and resuspended with RBCL on ice for 

10 min, followed by an additional wash with the D10 buffer. All cells from each tissue were 

resuspended with the D10 buffer to a concentration of 50-500 million cells per milliliter and 

stained with Calcein AM (Component A: AM) and Ethidium homodimer-1 (Component B: EH) 

in LIVE/DEAD Viability/Cytotoxicity Kit (Invitrogen, Cat. no. L3224) for 20 min on ice. Only the 

AM+EH- cells were collected by FACS for each tissue.  

 

cDNA library preparation 

The concentration of single cell suspension was determined using a Cellometer Auto 2000 

instrument (Cellometer) and adjusted to 1,000 cells/μl. Approximately 14,000 cells were 

loaded into a CHROMIUM instrument (10x Genomics, CA, USA) according to the standard 

protocol of the Chromium single cell V(D)J kit in order to capture 5,000 ~ 10,000 cells per 

channel. In brief, mRNA transcripts from each sample were ligated with barcoded indexes at 

5'-end and reverse transcribed into cDNA, using GemCode technology (10x Genomics, USA). 

cDNA libraries including the enriched fragments spanning the full-length V(D)J segments of T 

cell receptors (TCR) or B cell receptor (BCR), and 5'-end fragments for gene expression were 

separately constructed, which were subsequently subjected for high-throughput sequencing.  

 

Single-cell RNA sequencing data processing 

5'-end cDNA, TCR and BCR libraries were mixed and subjected for sequencing on Illumina 

HiSeq XTen instruments with pared-end 150 bp. Raw data (BCL files) from HiSeq platform 

was converted to fastq files using Illumina-implemented software bcl2fastq (version 

v2.19.0.316). cDNA reads were aligned to the human reference genome (hg38) and digital 
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gene expression matrix was built using STAR algorithm in CellRanger (“count” option; version 

3.0.1; 10x Genomics)[83]. TCR and BCR reads were aligned to human reference VDJ dataset 

(http://cf.10Xgenomics.com/supp/cell-vdj/refdata-cellranger-vdj-GRCh38-alts-ensembl-

2.0.0.tar.gz) using CellRanger (“vdj” option; version 3.1.0; 10x Genomics). Parameters were 

set as default except for “force-cells” as 13,000. Raw digital gene expression matrix in the 

“filtered_feature_bc_matrix” file folder generated by CellRanger was used for further analysis. 

 

Cell clustering, doublet identification, and differential gene expression analysis 

Quality control filtering, variable gene selection, dimensionality reduction and clustering for 

cells were performed using the Seurat package[6] (version 3.1.5; https://satijalab.org/seurat). 

“DoubletFinder” (version 2.0.3; https://github.com/chris-mcginnis-ucsf/DoubletFinder) was 

used to identify doublets in each organ. All the analytic packages were performed in R software 

(version 3.6.3; https://www.r-project.org), with default settings unless otherwise stated. For 

each tissue, output cells were forced to 13,000 under ‘cellranger count’ module, and we 

removed cells with low quality (UMI < 1,000, gene number < 500, and mitochondrial genome 

fragments > 0.25) as well as genes with rare frequencies (0.1% of all cells). For the remaining 

cells, gene expression counts data for each sample was normalized with “NormalizedData” 

function, followed by scaling to regress UMIs and mitochondrial content using “ScaleData” 

function (negative binomial model). Principal Component Analysis (PCA) and t-SNE 

implemented in the “RunPCA” and “RunTSNE” functions, respectively, were used to identify 

the deviations among cells. Genes with high variations were identified using 

“FindVariableGenes” and included for PCA (“mean.cutoff” ≥ 0.1, “dispersion.cutoff” ≥ 0.5). We 

used a different value of perplexity and the number of principal components (PCs) determined 

by elbow plots for each tissue and cell type (Additional file 11: Table S50). Cell clusters were 

identified using the “FindClusters” function and shown using t-SNE. Subsequently, 

“DoubletFinder” was used to identify doublets using the same PCs in PCA analysis above, 

assuming the 5% doublet formation rate to the loaded cells for each sample in a droplet 

channel. The optimal pK values were determined for each organ based on the Mean-variance 

normalized bimodality coefficient (BCmvn; Additional file 11: Table S51). After doublet 

removal, we rerun the above analyses. Next, differential expression markers or genes were 
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determined using the Wilcoxon test implemented in the “FindAllMarkers” function, which was 

considered significant with an average natural logarithm (fold-change) of at least 0.25 and a 

Bonferroni-adjusted P-value lower than 0.05. Subsequently, the candidate markers were 

reviewed and were used to annotate cell clusters. We further manually removed cell clusters 

that had multiple well-defined marker genes and overlapped gene profiles of multiple different 

cell types (Additional file 2: Table S4-S18). For analyses of the merged data from all tissues, 

we used 30 PCs and a resolution parameter set to 1 for cell clustering.  

 

Identification and removal of highly transcribed genes with contamination potentials  

Because we observed that some cell-specific genes were broadly expressed among all cell 

types in a tissue, for example, APOC3 in enterocytes cells in the small intestine with an 

average of more than 200 UMIs in a cell, we suspected that if a fraction of a certain type of 

cells were broken during the sample processing, cell-specific genes with high transcriptions 

would be released and thus contaminate all cell droplets. Especially, as such the genes would 

screw the differential expression analysis of cell type among all tissues. Therefore, we 

identified these genes and removed them for comparison analyses within major cell types. We 

assumed that non-epithelial cells from a same linage have similar gene profiles at a certain 

degree and that a few genes would have modest expression in only one organ. Here is a given 

example for T cells, in which we grouped together the cells previously labeled with NK/T, T, 

and immune cells (Additional file 2: Table S4-S18) in each tissue. Next, we determined the 

top 2% of genes with high transcription in each tissue sample based on the total number of 

UMIs (Additional file 11: Table S52) and marked these as potentially contaminating genes. 

We further randomly sampled 300 cells for each cell type in a tissue and as such generated 

artificial data for all tissues, with which differential expression gene analysis was performed 

using the “FindAllMarker” function. Any gene with a normal logarithm of FC above 0.25 and 

with an expression in less than 5% cells in all other tissue samples was considered a 

contaminating gene. We performed the above sampling and calculation for four independent 

times, with seed numbers 1 to 4 in the “FindMarker” function, and only the genes commonly 

observed in the four calculations were determined as contaminating genes. After removing the 

above contaminating genes, we performed cluster analysis with the first 20 PCs and a 
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resolution of 1.5. After further removal of cell clusters that had multiple well-defined marker 

genes of different cell types, we repeated cluster analysis using a lower resolution setting and 

removing the genes encoding immunoglobulins from the gene expression matrices 

(Additional file 11: Table S50) to identify CD4+, CD8+, and NK cell (Additional file 11: Table 

S53) clusters. For B cells, plasma cells, endothelial cells, macrophages, monocytes and 

fibroblasts, we applied a similar strategy to remove contaminating genes (Additional file 11: 

Table S54-S58) and cell clusters with multiple cell-specific markers.  

 

Trajectory analysis 

We performed trajectory analysis using Monocle3 alpha[4] for all tissue-derived T cells, 

macrophages/monocytes, according to the general pipeline (http://cole-trapnell-lab.github.io 

/monocle-release/monocle3/). For T cells, after identification of T cells clusters for CD4+ and 

CD8+ T, raw gene expression counts of cells were imported to the software. Only genes 

matching the thresholds (both of mean expression and dispersion ratio greater than 0.15 for 

CD4+, CD8+ T cell and myeloid cells) were used for cell ordering and training the pseudo-time 

trajectory. For investigating the dynamic gene expression between TRM and TCM, we extracted 

those two CD4+ T clusters and performed the trajectory analysis using Monocle2 with 1,000 

high variable genes. For trajectory analysis of intestinal macrophages/monocytes, we 

extracted the cell clusters with more than 50 cells in our dataset and combined 50 embryonic 

macrophages from a previous study[39]. The analysis was done by correcting the batch effect 

using function “align_cds” of Monocle3 with 25 PCs included.  

 

TCR and BCR analysis 

We assessed the enrichment of TCR and BCR in various organs using R package STARTRAC 

(version 0.1.0)[23], which included only the cells with the certain clonotypes assigned by 

Cellranger (version 3.1.0 with updated algorithms to improve the identification of TCR/BCR 

clonotypes) and with paired chains (α and β for T cells, heavy and light chains for B cells). In 

brief, cells sharing identical TCR or BCR clones between tissues were measured using 

migration-index score, and the degree of cell linking between different clusters of T cells or B 

cells was determined by the transition-index score. TCR or BCR diversity (Shannon-index 
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score) was calculated using “1 - expansion-index score”. For the detailed pipeline, please refer 

to the website (https://github.com/Japrin/STARTRAC/blob/master/vignettes/startrac.html). 

 

Presenting-antigen score 

To evaluate the antigen-presenting ability of extra- and intracellular of each cell, antigen-

presenting score (APS) were calculated using the “AddModuleScore” function implemented in 

the Seurat package, with gene sets “MHC_CLASS_II_ANTIGEN_PRESENTATION”, and 

“REACTOME_CLASS_I_MHC_MEDIATED_ANTIGEN_PROCESSING_PRESENTATION” 

pathways, respectively, in the REACTOME database (http://www.reactome.org).  

 

Gene Ontology (GO) pathway enrichment analysis 

All GO enrichment analysis was performed using the online tools metascape[84] with the 

“multiple gene list mode” (http://metascape.org/gp/index.html). For epithelial cells, we selected 

genes with FC ≥ 2 and p.adjust < 0.05 for each tissue, while FC ≥ 1.5, p.adjust < 0.05, and 

ptc.1 > 0.2 for each cluster. For non-epithelial cells, we selected genes with lnFC ≥ 0.25, 

p.adjust < 0.05 and ptc.1 > 0.2 in each cluster. Only the genes that ranked in the top 150 

according to the FC were used for comparisons in each tissue and subpopulation. The 

background was given as all the genes expressed in corresponding cell types. In addition, 

only the gene sets in the “GO Biological Processes” were considered. 

 

Cellular interaction analysis 

To investigate the cellular interaction, we identified the inferred paired molecules using 

CellphoneDB software (version 2.0)[18] with default parameters. First, to facilitate the pairwise 

analyses by reducing cell types, we grouped clusters within major cell types, including T, B, 

NK, myeloid, endothelial cells, fibroblasts, smooth muscle cells and FibSmo cells within each 

tissue. Moreover, we manually assigned ITGB1_TN/CM, LEF1_TN/CM, and GADD45B_TN/CM as 

TCM cell cluster, and KLF2_TN/CM as TN cell cluster based on their expression profiles and the 

developmental states along the trajectory trees, although naïve and memory T cell clusters 

could not be accurately determined in our study. The grouped cell types were as follows, CD4+ 

T cell (TN, TCM, Treg, TEM, Th1, and TRM), CD8+ T cell (TN, TCM, TEM, TEFF, TRM, IEL, and MAIT), 
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γδ T cell, B cell (naive and memory B cell), NK cell, plasma cell, myeloid cell (monocyte: Mon, 

macrophage: Mac, and dendritic cell: DC), endothelial cell (BEC and LEC), fibroblast (Fib), 

smooth muscle cell (Smo), and FibSmo cell (FibSmo). We did not merge subpopulations of 

epithelial cells because of their high degree of heterogeneity in each tissue. Considering the 

test efficiency and computational burden, we focused on cell types with more than 30 cells 

and only randomly selected 250 cells of each cell type for analysis in each tissue. The 

significant ligand-receptor pairs were filtered with a P value of less than 0.05 and an average 

expression of interacting pairs larger than 0. All the analyses above were performed as tissue 

independent. For the analysis of interaction across organs, we only calculated between any 

one of the immune cells in a tissue and its interacting cells from a different organ. Visualization 

of interaction network was done using Cytoscape (version 3.7.0).  

 

Single-cell regulatory network inference and clustering (SCENIC) analysis 

We conducted SCENIC analysis on cells passing the quality controls for each major cell types, 

using R package SCENIC (version 1.1.3) as previously described[85]. Regions for TFs 

searching were restricted to 10k distance centered the transcriptional start site (TSS) or 500bp 

upstream of the TSSs. Transcription factor binding motifs (TFBS) over-represented on a gene 

list and networks inferring were done using R package RcisTarget (version 1.6.0) and GENIE3 

(version 1.8.0), respectively, with the 20-thousand motifs database. We randomly selected no 

more than 250 cells for each cell cluster. The input matrix was the normalized expression 

matrix from Seurat. The cluster-specific TFs of one cluster were defined as the top 10 or 15 

highly enriched TFs according to a decrease in fold change compared with all the other cell 

clusters using a Wilcoxon rank-sum test. 

 

Validation analysis in existing datasets 

For B and epithelial cells in the HCL dataset[20], we applied similar procedures for cell 

clustering and differential gene expression analyses as described above. We only extracted 

adult B and epithelial cell clusters identified by the HCL dataset, considering high sequencing 

coverage and with less potential cross-cell contamination compared with the other cell types. 

Genes encoding immunoglobulin were removed in the epithelial cells from raw counts data 
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before further analysis. We set the “mean.cutoff” and “dispersion.cutoff“ as 0.05 and 0.2 in 

“FindVariableFeatures” step for both B and epithelial cells analysis. 

For validation of COCH+ fibroblasts[86-88], sweat gland cells[86, 87], and FibSmo cells[20, 

89], cells from each individual dataset were merged and batch effect was removed using the 

“FindIntegrationAnchors” and “IntegrateData” functions in the Seurat package. The 

downstream analyses followed the same pipeline of our AHCA dataset. 

 

Calculation of dissociation scores 

For each organ, principal component analysis was performed on a subset of 140 human 

homologous dissociation-related genes as described previously[81]. The first principal 

component was used as the ‘dissociation score’ as it corresponds to the variance within these 

genes. 

 

Analysis of differential pathway 

Gene set variation analysis (GSVA) or gene set enrichment analysis (GSEA) was performed 

to identify significantly enriched genes in each transcriptional dataset, using R package GSVA 

(version 1.34.0) or GSEA software (version 4.0.3) (https://www.gsea-

msigdb.org/gsea/index.jsp) on the 50 hallmark pathways with default parameters, respectively. 

For epithelial cells in AHCA and HCL datasets, GSVA analysis was performed on the 50 

hallmark pathways and additional curated metabolic pathway dataset[90]. 

 

Immunofluorescence staining assay 

For immunofluorescence staining assay, tissue samples were collected within 20 min, washed 

with 1 x DPBS, fixed in 4% paraformaldehyde (pH 7.0), and embedded in paraffin according 

to routine methods. These paraffin blocks were cut into 4-μm slides and adhered on the slides 

glass. The sections were deparaffinized, rehydrated, and subjected to blockade of 

endogenous peroxidase activity with 3% H2O2, and high-temperature antigen retrieval. The 

tissues were incubated with 3% BSA at room temperature for 30 min, and then incubated 

overnight at 4 °C with the primary detection antibodies for different organs (Additional file 11: 

Table S59). The slides were then incubated with the secondary antibody (HRP polymer, anti-
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rabbit IgG) at room temperature for 50 min. Subsequently, fluorophore (tyramide signal 

amplification, TSA plus working solution; Servicebio, Cat. no. G1222/3/4) was applied to the 

tissues. The slides were microwave heat-treated after each TSA treatment and the primary 

antibodies were applied sequentially for different organs, followed by incubation with the 

secondary antibody and TSA treatment. Nuclei were stained with 4′-6′-diamidino-2-

phenylindole (DAPI; Invitrogen, Cat. no. D1306) after all the antigens had been labeled. 

Negative controls were performed using similar procedure above, expect for replacing the 

primary antibody with 1x DPBS. To obtain multispectral images, slides were scanned using 

the Pannoramic MIDI II system (3DHISTECH, Hungary).  
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cell cluster in each organ tissue (continued). Figure S3. The expression of marker genes and 

distribution of sweat gland epithelial cells and a novel fibroblast subtype, related to Figure 1. 

Figure S4. Expression of DCD, SCGB2A2, PIP, KRT19, and MUCL1 genes in skin cells 

derived from public datasets, related to Figure 1. Figure S5. Expression of COCH and MMP2 

in cells from multiple human samples from public datasets, related to Figure 1. Figure S6. 

Gene signature of COCH+ fibroblasts in skin, related to Figure 1. Figure S7. Expression of 

marker genes in cells from bladder samples derived from public datasets, related to Figure 1.  

Figure S8. Representative images of immunofluorescence staining of sweat gland epithelial 

cells in skin samples. Figure S9. Representative images of immunofluorescence staining of 

COCH+ fibroblasts in the skin and heart tissues. Figure S10. Representative images of 

immunofluorescence staining of FibSmo cells in the bladder, rectum, and heart tissues.  

Figure S11. Distribution of cell clusters in different organs, related to Figure 1. Figure S12. 

Comparisons of cell-type determinations by whole single-cell transcriptome dataset and 

manual annotation of each organ, related to Figure 1. Figure S13. The heterogeneity and 

developmental trajectory analysis of T cells, related to Figure 2. Figure S14. The 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.03.18.996975doi: bioRxiv preprint 

https://figshare.com/articles/HCL_DGE_Data/7235471
https://www.ncbi.nlm.nih.gov/geo/
https://figshare.com/articles/Single-cell_transcriptomic_map_of_the_human%20_and_mouse_bladders/8942663/
https://figshare.com/articles/Single-cell_transcriptomic_map_of_the_human%20_and_mouse_bladders/8942663/
https://db.cngb.org/HCL
https://doi.org/10.1101/2020.03.18.996975


 

 36 

heterogeneity and clonalities of T cell clones in human body, related to Figure 2. Figure S15. 

The heterogeneity and clonalities of T cell clones in the human body, related to Figure 2. 

Figure S16. The heterogeneity of B and plasma cells, related to Figure 3. Figure S17. 

Heterogeneity and trajectory analysis of macrophages, related to Figure 4. Figure S18. The 

gene expression heterogeneity of epithelial cells among inter- and intra-organ tissues, related 

to Figure 5. Figure S19. Expression profiles and altered pathways in digestive and non-

digestive epithelial cell clusters. Figure S20. The antigen-presenting heterogeneity and 

regulons of epithelial cells among inter- and intra-organ tissues, related to Figure 5. Figure 

S21. The heterogeneous expression pattern of endothelial cells. Figure S22. The similarity 

and heterogeneity of fibroblasts and smooth muscle cells. Figure S23. Gene expression and 

biological functions of fibroblasts, smooth muscle and FibSmo cells. Figure S24. Overview of 

the ligand-receptor interactions between different cell types, related to Figure 6. Figure S25. 

Overview of the ligand-receptor interactions between epithelial and myeloid cells, related to 

Figure 6. Figure S26. Overview of the ligand-receptor interactions between CD8+ T and 

myeloid cells, related to Figure 6. Figure S27. Overview of the ligand-receptor interactions 

between CD8+ T and stromal cells (fibroblast, smooth muscle cell, and FibSmo cell), related 

to figure 6. Figure S28. Pseudotime trajectory analysis and gene expression profiles of 

TNF_TRM and STMN1_TCM. Figure S29. Overview of the ligand-receptor interactions within 

epithelial cells. Figure S30. Histogram plots of the density of dissociation scores for each 

organ. Figure S31. Representative images of immunofluorescence staining of FOS and CD8A 

human tissue samples. 

 

Additional file 2. Table S1-S20. 

Table S1. Basic information of sequencing, related to Figure 1. Table S2. Cell number, the 

median of UMI and genes detected in each organ, respectively, related to Figure 1. Table S3. 

Marker genes and related references. Table S4-S18. List of markers information (top 50) for 

each cell type in the 15 organs, related to Figure 1. Table S19. List of markers information 

(top 50) for each cell type in the merged dataset, related to Figure 1. Table S20. Cell counts 

in each organ for each cluster indicated in Figure S11. 
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Additional file 3. Supplementary Notes 

This supplementary material includes a detailed description for the validation of sweat gland 

epithelial cells, COCH+ fibroblasts, and FibSmo cells in existing datasets, and the evidence 

showing that the expression of HSPA1A, FOS, and JUN in the CD8+ T cells are unlikely stress-

induced artefacts. 

 

Additional file 4. Table S21-S27. 

Table S21. Distribution of major cell types in each organ, related to Figure 2. Table S22. List 

of marker information (top 50) for each subpopulation of CD4+ T cells, related to Figure 2. 

Table S23. List of marker information (top 50) for each subpopulation of CD8+ T cells, related 

to Figure 2. Table S24. List of TFs information for each subpopulation of CD4+ T cell, related 

to Figure 2. Table S25. List of TFs information for each subpopulation of CD8+ T cells, related 

to Figure 2. Table S26. Detailed information of CD4+ TCR repertoire, related to Figure 2. Table 

S27. Detailed information of CD8+ TCR repertoire, related to Figure 2. 

 

Additional file 5. Table S28-S32. 

Table S28. List of marker information for each subpopulation of B and plasma cells in AHCA 

dataset, related to Figure 3. Table S29. List of TFs information for each B and plasma cells 

subpopulation in AHCA dataset, related to Figure 3. Table S30. List of marker information for 

each subpopulation of B and plasma cells in HCL dataset, related to Figure 3. Table S31. List 

of TFs information for each subpopulation of B and plasma cells in HCL dataset, related to 

Figure 3. Table S32. Detailed information of BCR repertoire, related to Figure 3. 

 

Additional file 6. Table S33-S34. 

Table S33. List of marker information (top 50) for each subpopulation of myeloid cells, related 

to Figure 4. Table S34. List of TFs information for each myeloid cell subpopulation, related to 

Figure 4. 

 

Additional file 7. Table S35-S42. 

Table S35. List of marker information for epithelial cells of each organ in AHCA dataset, related 
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to figure 5. Table S36. Cell counts in each organ for each cluster indicated in Figure 5C in 

AHCA dataset. Table S37. List of marker information (top 50) of each subpopulation of 

epithelial cells in AHCA dataset, related to figure 5. Table S38. Marker genes and related 

references for HCL epithelial cells. Table S39. Cell counts in each organ for each cluster 

indicated in Figure S18E in HCL dataset. Table S40. List of marker information (top 50) of 

each subpopulation of epithelial cells in HCL dataset, related to figure 5. Table S41. List of 

TFs information for each subpopulation of epithelial cells in AHCA dataset, related to Figure 5. 

Table S42. List of TFs information for each subpopulation of epithelial cells in HCL dataset, 

related to Figure 5. 

 

Additional file 8. Table S43-S45. 

Table S43. List of marker information (top 50) for each endothelial cell cluster. Table S44. List 

of marker information (top 50) for each fibroblast, smooth muscle and FibSmo cell cluster. 

Table S45. List of marker information for fibroblast, smooth muscle and FibSmo cell. 

 

Additional file 9. Table S46-S47. 

Table S46. Frequency of potential interacting pairs, related to Figure 6. Table S47. Detailed 

information of interacting pairs in each tissue related to Figure 6.  

 

Additional file 10. Table S48. 

Table S48. Detailed information of interacting pairs across tissues, related to Figure 6. 

 

Additional file 11. Table S49-S59. 

Table S49. The digestion protocols for each organ. Table S50. The PCs and resolution used 

for clustering of each organ or major cell type. Table S51. Optimal pK values for each organ. 

Table S52. Basic information of the top 2% genes with high UMI in each tissue. Table S53. 

List of marker information (top 50) for each subpopulation of NK cells. Table S54. Suspiciously 

contaminated genes removed in each tissue for fibroblast, smooth muscle and FibSmo cell 

clustering. Table S55. Suspiciously contaminated genes removed in each tissue for T and NK 

cell clustering. Table S56. Suspiciously contaminated genes removed in each tissue for B and 
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plasma cell clustering. Table S57. Suspiciously contaminated genes removed in each tissue 

for endothelial cell clustering. Table S58. Suspiciously contaminated genes removed in each 

tissue for myeloid cell clustering. Table S59. Antibodies used for immunostaining. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.03.18.996975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.996975


 

 40 

Reference 

1. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, Sim S, Okamoto J, 

Johnston DM, Qian D, et al: Single-cell dissection of transcriptional heterogeneity in 

human colon tumors. Nat Biotechnol 2011, 29:1120-1127. 

2. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner 

MW: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. 

Cell 2015, 161:1187-1201. 

3. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, 

Sim S, Clarke MF, Quake SR: Quantitative assessment of single-cell RNA-sequencing 

methods. Nat Methods 2014, 11:41-46. 

4. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C: Single-cell mRNA quantification and 

differential analysis with Census. Nat Methods 2017, 14:309-315. 

5. Fabre PJ, Leleu M, Mascrez B, Lo Giudice Q, Cobb J, Duboule D: Heterogeneous 

combinatorial expression of Hoxd genes in single cells during limb development. BMC 

Biol 2018, 16:101. 

6. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R: Integrating single-cell transcriptomic 

data across different conditions, technologies, and species. Nat Biotechnol 2018, 36:411-

420. 

7. Haghverdi L, Lun ATL, Morgan MD, Marioni JC: Batch effects in single-cell RNA-sequencing 

data are corrected by matching mutual nearest neighbors. Nat Biotechnol 2018, 36:421-

427. 

8. Tabula Muris C, Overall c, Logistical c, Organ c, processing, Library p, sequencing, 

Computational data a, Cell type a, Writing g, et al: Single-cell transcriptomics of 20 mouse 

organs creates a Tabula Muris. Nature 2018, 562:367-372. 

9. Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, et al: 

Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 2018, 173:1307. 

10. Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM: Single-cell mapping 

of gene expression landscapes and lineage in the zebrafish embryo. Science 2018, 

360:981-987. 

11. Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L, Kirschner MW, Klein AM: The 

dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. 

Science 2018, 360. 

12. Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Graybuck LT, Peeler DJ, 

Mukherjee S, Chen W, et al: Single-cell profiling of the developing mouse brain and spinal 

cord with split-pool barcoding. Science 2018, 360:176-182. 

13. Young MD, Mitchell TJ, Vieira Braga FA, Tran MGB, Stewart BJ, Ferdinand JR, Collord G, 

Botting RA, Popescu DM, Loudon KW, et al: Single-cell transcriptomes from human kidneys 

reveal the cellular identity of renal tumors. Science 2018, 361:594-599. 

14. Schiller HB, Montoro DT, Simon LM, Rawlins EL, Meyer KB, Strunz M, Vieira Braga FA, Timens 

W, Koppelman GH, Budinger GRS, et al: The Human Lung Cell Atlas: A High-Resolution 

Reference Map of the Human Lung in Health and Disease. Am J Respir Cell Mol Biol 2019, 

61:31-41. 

15. Cheng JB, Sedgewick AJ, Finnegan AI, Harirchian P, Lee J, Kwon S, Fassett MS, Golovato J, 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.03.18.996975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.996975


 

 41 

Gray M, Ghadially R, et al: Transcriptional Programming of Normal and Inflamed Human 

Epidermis at Single-Cell Resolution. Cell Rep 2018, 25:871-883. 

16. Plasschaert LW, Zilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, Klein AM, Jaffe AB: A 

single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. 

Nature 2018, 560:377-381. 

17. Giladi A, Paul F, Herzog Y, Lubling Y, Weiner A, Yofe I, Jaitin D, Cabezas-Wallscheid N, Dress 

R, Ginhoux F, et al: Single-cell characterization of haematopoietic progenitors and their 

trajectories in homeostasis and perturbed haematopoiesis. Nat Cell Biol 2018, 20:836-846. 

18. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, 

Stephenson E, Polanski K, Goncalves A, et al: Single-cell reconstruction of the early 

maternal-fetal interface in humans. Nature 2018, 563:347-353. 

19. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen 

L, Steemers FJ, et al: The single-cell transcriptional landscape of mammalian 

organogenesis. Nature 2019, 566:496-502. 

20. Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, Chen H, Wang J, Tang H, Ge W, et al: 

Construction of a human cell landscape at single-cell level. Nature 2020, 581:303-309. 

21. Mizumoto N, Takashima A: CD1a and langerin: acting as more than Langerhans cell 

markers. J Clin Invest 2004, 113:658-660. 

22. Wong MT, Ong DE, Lim FS, Teng KW, McGovern N, Narayanan S, Ho WQ, Cerny D, Tan HK, 

Anicete R, et al: A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-

Specific Trafficking and Cytokine Signatures. Immunity 2016, 45:442-456. 

23. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY, et al: 

Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 

2018, 564:268-272. 

24. Rothenberg EV: The chromatin landscape and transcription factors in T cell programming. 

Trends Immunol 2014, 35:195-204. 

25. Miragaia RJ, Gomes T, Chomka A, Jardine L, Riedel A, Hegazy AN, Whibley N, Tucci A, Chen 

X, Lindeman I, et al: Single-Cell Transcriptomics of Regulatory T Cells Reveals 

Trajectories of Tissue Adaptation. Immunity 2019, 50:493-504 e497. 

26. Willinger T, Freeman T, Herbert M, Hasegawa H, McMichael AJ, Callan MF: Human naive CD8 

T cells down-regulate expression of the WNT pathway transcription factors lymphoid 

enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen 

encounter in vitro and in vivo. J Immunol 2006, 176:1439-1446. 

27. Sebzda E, Zou Z, Lee JS, Wang T, Kahn ML: Transcription factor KLF2 regulates the 

migration of naive T cells by restricting chemokine receptor expression patterns. Nat 

Immunol 2008, 9:292-300. 

28. Wang D, Diao H, Getzler AJ, Rogal W, Frederick MA, Milner J, Yu B, Crotty S, Goldrath AW, 

Pipkin ME: The Transcription Factor Runx3 Establishes Chromatin Accessibility of cis-

Regulatory Landscapes that Drive Memory Cytotoxic T Lymphocyte Formation. Immunity 

2018, 48:659-674.e656. 

29. Kano S, Sato K, Morishita Y, Vollstedt S, Kim S, Bishop K, Honda K, Kubo M, Taniguchi T: The 

contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 

signaling axis and TH1 versus TH-17 differentiation of CD4+ T cells. Nat Immunol 2008, 

9:34-41. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.03.18.996975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.996975


 

 42 

30. Agematsu K, Hokibara S, Nagumo H, Komiyama A: CD27: a memory B-cell marker. Immunol 

Today 2000, 21:204-206. 

31. Herling M, Patel KA, Weit N, Lilienthal N, Hallek M, Keating MJ, Jones D: High TCL1 levels 

are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic 

lymphocytic leukemia. Blood 2009, 114:4675-4686. 

32. Yoon HS, Scharer CD, Majumder P, Davis CW, Butler R, Zinzow-Kramer W, Skountzou I, 

Koutsonanos DG, Ahmed R, Boss JM: ZBTB32 is an early repressor of the CIITA and MHC 

class II gene expression during B cell differentiation to plasma cells. Journal of 

immunology (Baltimore, Md : 1950) 2012, 189:2393-2403. 

33. Shinnakasu R, Kurosaki T: Regulation of memory B and plasma cell differentiation. Curr 

Opin Immunol 2017, 45:126-131. 

34. Fernandez D, Ortiz M, Rodriguez L, Garcia A, Martinez D, Moreno de Alboran I: The proto-

oncogene c-myc regulates antibody secretion and Ig class switch recombination. J 

Immunol 2013, 190:6135-6144. 

35. Roy K, Mitchell S, Liu Y, Ohta S, Lin YS, Metzig MO, Nutt SL, Hoffmann A: A Regulatory Circuit 

Controlling the Dynamics of NFkappaB cRel Transitions B Cells from Proliferation to 

Plasma Cell Differentiation. Immunity 2019, 50:616-628 e616. 

36. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, 

Lucas D, et al: Tissue-resident macrophages self-maintain locally throughout adult life 

with minimal contribution from circulating monocytes. Immunity 2013, 38:792-804. 

37. Ginhoux F, Guilliams M: Tissue-Resident Macrophage Ontogeny and Homeostasis. 

Immunity 2016, 44:439-449. 

38. Davies LC, Jenkins SJ, Allen JE, Taylor PR: Tissue-resident macrophages. Nat Immunol 

2013, 14:986-995. 

39. Gao S, Yan L, Wang R, Li J, Yong J, Zhou X, Wei Y, Wu X, Wang X, Fan X, et al: Tracing the 

temporal-spatial transcriptome landscapes of the human fetal digestive tract using 

single-cell RNA-sequencing. Nat Cell Biol 2018, 20:721-734. 

40. Valledor AF, Borràs FE, Cullell-Young M, Celada A: Transcription factors that regulate 

monocyte/macrophage differentiation. J Leukoc Biol 1998, 63:405-417. 

41. Kueh HY, Champhekar A, Champhekhar A, Nutt SL, Elowitz MB, Rothenberg EV: Positive 

feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 2013, 

341:670-673. 

42. Roche PA, Furuta K: The ins and outs of MHC class II-mediated antigen processing and 

presentation. Nat Rev Immunol 2015, 15:203-216. 

43. Amatschek S, Kriehuber E, Bauer W, Reininger B, Meraner P, Wolpl A, Schweifer N, Haslinger 

C, Stingl G, Maurer D: Blood and lymphatic endothelial cell-specific differentiation 

programs are stringently controlled by the tissue environment. Blood 2007, 109:4777-

4785. 

44. Mueller SN, Germain RN: Stromal cell contributions to the homeostasis and functionality 

of the immune system. Nat Rev Immunol 2009, 9:618-629. 

45. Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, De Vos R, van den Oord 

JJ, Collen D, Mulligan RC: Physiological consequences of loss of plasminogen activator 

gene function in mice. Nature 1994, 368:419-424. 

46. Volpert OV, Pili R, Sikder HA, Nelius T, Zaichuk T, Morris C, Shiflett CB, Devlin MK, Conant K, 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.03.18.996975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.996975


 

 43 

Alani RM: Id1 regulates angiogenesis through transcriptional repression of 

thrombospondin-1. Cancer Cell 2002, 2:473-483. 

47. Crane NJ, Brown TS, Evans KN, Hawksworth JS, Hussey S, Tadaki DK, Elster EA: Monitoring 

the healing of combat wounds using Raman spectroscopic mapping. Wound Repair 

Regen 2010, 18:409-416. 

48. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R: CellPhoneDB: inferring cell-

cell communication from combined expression of multi-subunit ligand-receptor 

complexes. Nat Protoc 2020, 15:1484-1506. 

49. Orian-Rousseau V: CD44 Acts as a Signaling Platform Controlling Tumor Progression and 

Metastasis. Front Immunol 2015, 6:154. 

50. Calame DG, Mueller-Ortiz SL, Morales JE, Wetsel RA: The C5a anaphylatoxin receptor 

(C5aR1) protects against Listeria monocytogenes infection by inhibiting type 1 IFN 

expression. J Immunol 2014, 193:5099-5107. 

51. Stein R, Mattes MJ, Cardillo TM, Hansen HJ, Chang CH, Burton J, Govindan S, Goldenberg 

DM: CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin 

Cancer Res 2007, 13:5556s-5563s. 

52. Osei-Owusu P, Charlton TM, Kim HK, Missiakas D, Schneewind O: FPR1 is the plague 

receptor on host immune cells. Nature 2019, 574:57-62. 

53. Contento RL, Molon B, Boularan C, Pozzan T, Manes S, Marullo S, Viola A: CXCR4-CCR5: a 

couple modulating T cell functions. Proc Natl Acad Sci U S A 2008, 105:10101-10106. 

54. Thome JJ, Yudanin N, Ohmura Y, Kubota M, Grinshpun B, Sathaliyawala T, Kato T, Lerner H, 

Shen Y, Farber DL: Spatial map of human T cell compartmentalization and maintenance 

over decades of life. Cell 2014, 159:814-828. 

55. Farber DL, Yudanin NA, Restifo NP: Human memory T cells: generation, 

compartmentalization and homeostasis. Nat Rev Immunol 2014, 14:24-35. 

56. Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, Beura LK, Lucas PJ, Artis D, Wherry 

EJ, Hogquist K, et al: Antigen-independent differentiation and maintenance of effector-

like resident memory T cells in tissues. J Immunol 2012, 188:4866-4875. 

57. Cheroutre H: IELs: enforcing law and order in the court of the intestinal epithelium. 

Immunol Rev 2005, 206:114-131. 

58. Lees JR, Farber DL: Generation, persistence and plasticity of CD4 T-cell memories. 

Immunology 2010, 130:463-470. 

59. Behr FM, Chuwonpad A, Stark R, van Gisbergen K: Armed and Ready: Transcriptional 

Regulation of Tissue-Resident Memory CD8 T Cells. Front Immunol 2018, 9:1770. 

60. Kurd NS, He Z, Milner JJ, Omilusik KD, Louis TL, Tsai MS, Widjaja CE, Kanbar JN, Olvera JG, 

Tysl T, et al: Molecular determinants and heterogeneity of tissue-resident memory 

CD8<sup>+</sup> T lymphocytes revealed by single-cell RNA sequencing. bioRxiv 

2020:2020.2003.2002.973578. 

61. Fonseca R, Beura LK, Quarnstrom CF, Ghoneim HE, Fan Y, Zebley CC, Scott MC, Fares-

Frederickson NJ, Wijeyesinghe S, Thompson EA, et al: Developmental plasticity allows 

outside-in immune responses by resident memory T cells. Nat Immunol 2020, 21:412-421. 

62. Schenkel JM, Masopust D: Tissue-resident memory T cells. Immunity 2014, 41:886-897. 

63. Cano-Gamez E, Soskic B, Roumeliotis TI, So E, Smyth DJ, Baldrighi M, Wille D, Nakic N, 

Esparza-Gordillo J, Larminie CGC, et al: Single-cell transcriptomics identifies an 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.03.18.996975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.996975


 

 44 

effectorness gradient shaping the response of CD4(+) T cells to cytokines. Nat Commun 

2020, 11:1801. 

64. Zhang X, Chang Li X, Xiao X, Sun R, Tian Z, Wei H: CD4(+)CD62L(+) central memory T cells 

can be converted to Foxp3(+) T cells. PLoS One 2013, 8:e77322. 

65. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW: 

CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 

2011, 475:222-225. 

66. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, 

Misharin A, et al: Fate mapping reveals origins and dynamics of monocytes and tissue 

macrophages under homeostasis. Immunity 2013, 38:79-91. 

67. Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T: The mononuclear 

phagocyte system revisited. J Leukoc Biol 2002, 72:621-627. 

68. Hume DA: The mononuclear phagocyte system. Curr Opin Immunol 2006, 18:49-53. 

69. Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, Johnson TE, Ivanov S, Duan Q, 

Bala S, Condon T, et al: Minimal differentiation of classical monocytes as they survey 

steady-state tissues and transport antigen to lymph nodes. Immunity 2013, 39:599-610. 

70. Bryant DM, Mostov KE: From cells to organs: building polarized tissue. Nat Rev Mol Cell 

Biol 2008, 9:887-901. 

71. Macara IG, Guyer R, Richardson G, Huo Y, Ahmed SM: Epithelial homeostasis. Curr Biol 

2014, 24:R815-825. 

72. Lynch MD, Watt FM: Fibroblast heterogeneity: implications for human disease. J Clin 

Invest 2018, 128:26-35. 

73. Eckers A, Haendeler J: Endothelial cells in health and disease. Antioxid Redox Signal 2015, 

22:1209-1211. 

74. Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt 

MR, Katz Y, et al: A single-cell survey of the small intestinal epithelium. Nature 2017, 

551:333-339. 

75. Nguyen QH, Pervolarakis N, Blake K, Ma D, Davis RT, James N, Phung AT, Willey E, Kumar R, 

Jabart E, et al: Profiling human breast epithelial cells using single cell RNA sequencing 

identifies cell diversity. Nature Communications 2018, 9:2028. 

76. Dong J, Hu Y, Fan X, Wu X, Mao Y, Hu B, Guo H, Wen L, Tang F: Single-cell RNA-seq analysis 

unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis. 

Genome Biol 2018, 19:31. 

77. Zorn AM, Wells JM: Vertebrate endoderm development and organ formation. Annu Rev 

Cell Dev Biol 2009, 25:221-251. 

78. Gunther J, Seyfert HM: The first line of defence: insights into mechanisms and relevance 

of phagocytosis in epithelial cells. Semin Immunopathol 2018, 40:555-565. 

79. Lee TI, Young RA: Transcriptional regulation and its misregulation in disease. Cell 2013, 

152:1237-1251. 

80. Singh H, Khan AA, Dinner AR: Gene regulatory networks in the immune system. Trends 

Immunol 2014, 35:211-218. 

81. van den Brink SC, Sage F, Vertesy A, Spanjaard B, Peterson-Maduro J, Baron CS, Robin C, 

van Oudenaarden A: Single-cell sequencing reveals dissociation-induced gene 

expression in tissue subpopulations. Nat Methods 2017, 14:935-936. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.03.18.996975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.996975


 

 45 

82. Harris RM, Kao HY, Alarcon JM, Hofmann HA, Fenton AA: Hippocampal transcriptomic 

responses to enzyme-mediated cellular dissociation. Hippocampus 2019, 29:876-882. 

83. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras 

TR: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29:15-21. 

84. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK: 

Metascape provides a biologist-oriented resource for the analysis of systems-level 

datasets. Nat Commun 2019, 10:1523. 

85. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow 

F, Marine JC, Geurts P, Aerts J, et al: SCENIC: single-cell regulatory network inference and 

clustering. Nat Methods 2017, 14:1083-1086. 

86. Solé-Boldo L, Raddatz G, Schütz S, Mallm J-P, Rippe K, Lonsdorf AS, Rodríguez-Paredes M, 

Lyko F: Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast 

priming. Communications Biology 2020, 3:188. 

87. He H, Suryawanshi H, Morozov P, Gay-Mimbrera J, Del Duca E, Kim HJ, Kameyama N, Estrada 

Y, Der E, Krueger JG, et al: Single-cell transcriptome analysis of human skin identifies 

novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. 

Journal of Allergy and Clinical Immunology 2020, 145:1615-1628. 

88. Tucker NR, Chaffin M, Fleming SJ, Hall AW, Parsons VA, Bedi KC, Jr., Akkad AD, Herndon CN, 

Arduini A, Papangeli I, et al: Transcriptional and Cellular Diversity of the Human Heart. 

Circulation 2020. 

89. Yu Z, Liao J, Chen Y, Zou C, Zhang H, Cheng J, Liu D, Li T, Zhang Q, Li J, et al: Single-Cell 

Transcriptomic Map of the Human and Mouse Bladders. J Am Soc Nephrol 2019, 30:2159-

2176. 

90. Gaude E, Frezza C: Tissue-specific and convergent metabolic transformation of cancer 

correlates with metastatic potential and patient survival. Nat Commun 2016, 7:13041. 

91. He S, Wang L-H, Liu Y, Li Y-Q, Chen H-T, Xu J-H, Peng W, Lin G-W, Wei P-P, Li B, Xia X, Wang 

D, Bei J-X, He X, Guo Z. Single-cell transcriptome profiling of an adult human cell atlas 

of 15 major organs. Datasets. Gene Expression Omnibus. 2020. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159929. 

92. He S, Wang L-H, Liu Y, Li Y-Q, Chen H-T, Xu J-H, Peng W, Lin G-W, Wei P-P, Li B, Xia X, Wang 

D, Bei J-X, He X, Guo Z. Single-cell transcriptome profiling of an adult human cell atlas 

of 15 major organs. GitHub. 2020. https://github.com/bei-lab/scRNA-AHCA. 

93. He S, Wang L-H, Liu Y, Li Y-Q, Chen H-T, Xu J-H, Peng W, Lin G-W, Wei P-P, Li B, Xia X, Wang 

D, Bei J-X, He X, Guo Z. Single-cell transcriptome profiling of an adult human cell atlas 

of 15 major organs. Zenodo. 2020. https://doi.org/10.5281/zenodo.4136735. 

 

 

 

 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.03.18.996975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.996975


 

 46 

Figure legends 

Figure 1. Overview of single-cell RNA sequencing of 15 organ tissues from a male adult 

donor.  

A. An experiment schematic diagram highlighting the sites of the organs for tissue collection 

and sample processing. Live cells were collected using flow cytometry sorting (FACS) and 

subjected for cell barcoding. cDNA libraries for TCR, BCR, and 5'-mRNA expression were 

constructed independently, followed by high throughput sequencing and downstream 

analyses. 

B. t-SNE visualization of all cells (84,363) in organs. Each dot represents one cell, with colors 

coded according to the origin of organ. Labeled cell types are the predominant cell types in 

each cluster.  

C. Dot plots showing the most highly expressed marker genes (x axis) of major cell types (y 

axis) in Figure 1B. The depth of the color from white to blue and the size of the dot represents 

the average expression from low to high and the percent of cells expressing the gene. 

 

Figure 2. The heterogeneity, development and clonality of T cells in human organs.  

A, B. t-SNE plots of 7,006 CD4+ (A, 11 clusters) and 11,256 CD8+ (B, 21 clusters) T cells from 

15 organ tissues. Each dot represents one cell. Each color-coded region represents one cell 

cluster, which is indicated on the right.  

C, D. Violin plots showing the normalized expression of marker genes for each CD4+ (C) and 

CD8+ (D) T cell cluster as indicated at the bottom. For each panel, the y-axis shows the 

normalized expression level for a marker gene as indicated on the left. Marker genes were 

also grouped according to functional cell types. 

E. Pseudo-time trajectory analysis of all CD4+ (left panel) and CD8+ T cells (right panel) with 

high variable genes. Each dot represents one cell and is colored according to their cluster 

above: A for CD4+ and B for CD8+. The inlet t-SNE plot shows each cell with a pseudo-time 

score from dark blue to yellow, indicating early and terminal states, respectively. 

F, G. Heat maps of the activation scores of each T cell cluster for expression regulated by 

transcription factors (TFs). T cell clusters are indicated on top, and the scores were estimated 
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using SCENIC analysis. Only shows the top 15 TFs for CD4+ T cells (F) and the top 10 for 

CD8+ T cells (G), with the highest difference in expression regulation estimates between each 

cluster and all other cells, under a Wilcoxon rank-sum test. 

H. Sharing intensity of TCR clones in CD4+ (top panel) and CD8+ (bottom panel) T cells 

between different organ samples. Each line represents a sharing of TCR between two organs 

at the ends and the thickness of the line represents a migration-index score between paired 

organs calculated by STARTRAC. The sizes of the dots are shown according to the logarithm 

to the base 2 of the size of T cell clones in organs with different colors. 

I. Migration- (left panel) and expansion-index (right panel) scores of CD4+ and CD8+ T cells of 

each tissue calculated and compared using STARTRAC with a paired Student’s t-test. 

 

Figure 3. The heterogeneity and clonality of B cells in human organs.  

A. t-SNE plots showing 14 clusters (10,100 cells) of B and plasma cells. Each dot represents 

a cell, colored according to the origin of tissue (top panel) and cell subtype (bottom panel). 

B. Distribution of B and plasma cells in each organ. Pie charts on top illustrate the proportions 

of B and plasma cells in each organ. The stacked bars represent the percentage of each 

cluster in the indicated organ. 

C. Violin plots of the normalized expression of maker genes for B (MS4A1), plasma cells 

(SDC1), naïve B cell (TCL1A), and memory B cells (CD27). For each panel, the y-axis shows 

the normalized expression level for a marker gene as indicated on the title, and the x-axis 

indicates cell clusters.  

D. Gene Ontology enrichment analysis results of B and plasma cell clusters. Cell clusters as 

indicated at the bottom are colored according to their -log10P-values in columns. Only the top 

20 significant GO terms (P-value < 0.05) are shown in rows. 

E. Heat map of the activation scores of each B and plasma cell cluster for expression regulated 

by transcription factors (TFs). Cell clusters are indicated on top, and the scores were estimated 

using SCENIC analysis. It shows the top 10 TFs with the highest difference in expression 

regulation estimates between each cluster and all other cells, tested with a Wilcoxon rank-

sum test. 

F. Sharing intensity of BCR clones between different organs. Each line represents a sharing 
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of BCR between two organs at the ends and the thickness of the line represents a migration-

index score between paired organs calculated using STARTRAC. The size of the dot is shown 

as the logarithm to the base 2 of the size of B and plasma cell clones in each organ. 

G. Expansion- (top panel) and transition-index (bottom panel) scores of each B and plasma 

cell cluster calculated using STARTRAC.  

 

Figure 4. Heterogeneity and developmental stages of myeloid cells. 

A. t-SNE plots of 5,587 myeloid cells. Each dot represents one cell, colored according to their 

tissue origins (top panel) or cell clusters (bottom panel) as indicated on the right. 

B. t-SNE plots of the normalized expression of marker genes for monocytes (S100A8/9/12 

and VCAN) and macrophages (pan-marker: C1QC, C1QB, and VSIG4), cDC1 (CLEC9A), 

cDC2 (FCER1A), Langerhans (CD207) as well as subpopulation-specific genes (CD14 and 

FCGR3A). Each dot represents one cell, with a color from grey to blue representing the 

expression level from low to high. 

C. Dendrogram of 18 clusters based on their normalized mean expression values (correlation 

distance metric, complete linkage). Only genes with ln(fold-change) above 0.25, p.adjust < 

0.05 and pct.1 ≥ 0.2 in each cluster were included in the calculations. 

D. Heat map showing the expression profiles of each myeloid cell cluster as indicated on top. 

The expression of 640 genes in each cell cluster with FC ≥ 2 and p.adjust < 0.05 are shown 

as lines, colored from blue to red according to the expression from low to high. 

E. Pseudo-time trajectory analysis of all myeloid cells with high variable genes. Each dot 

represents one cell and is colored according to their clustering in A. The inlet t-SNE plot shows 

each cell with a pseudo-time score from dark blue to yellow, indicating early and terminal 

states, respectively.  

F. Heat map of the activation scores of each monocyte and macrophage subtype for gene 

expression regulated by transcription factors (TFs). Cell clusters are indicated on top, and the 

scores were estimated using SCENIC analysis. Only the top 10 TFs are shown with the highest 

difference in expression regulation estimates between each cluster and all other cells, tested 

with a Wilcoxon rank-sum test. 

G. Plots showing the normalized expression of representative TFs in F along the pseudo-time 
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trajectory maps corresponding to E. Each dot in one plot shows the expression of the indicated 

gene in the plot, colored from grey to red, indicating low and high expression, respectively. 

SPIP1, HCFC1, ELF2 for classical monocytes; enhanced expression of STAT1 and TCF7L2 

for non-classical monocytes and SDC3_Mac (3); MAF, PRDM1 and EVT5 for most not-

classical monocytes. 

 

Figure 5. The heterogeneity of epithelial cells inter- and intra-organ tissues.  

A. t-SNE plots of 17,436 epithelial cells. Each dot represents one cell, colored according to 

their origins of tissues (top panel) or cell clusters (bottom panel). 

B. Dot plot visualizing the normalized expression of marker genes for each epithelial cluster. 

Cell cluster at y-axis was coded in numbers on the left, corresponding to that in the Figure 5A. 

Maker genes are shown at the x-axis. The size of the dot represents the percentage of cells 

with a cell type, and the color represents the average expression level. 

C. Dendrogram of 34 clusters based on their normalized mean expression values (correlation 

distance metric, complete linkage). Only genes with fold change above 1.5, p.adjust < 0.05 

and pct.1 ≥ 0.2 in each cluster were included in the analysis. 

D. Volcano plot shows the DEGs between the 14 digestive and 20 non-digestive related 

clusters. Labeled genes are markers for each cluster in B. 

E, F. Gene Ontology enrichment analysis results of each epithelial cell cluster in the digestive 

organs (E) and non-digestive organs (F). Cell clusters in columns are coded as numbers at 

the bottom, correspond to that in Figure 5A, and are colored according to their -log10P values, 

with white to red for low to high enrichment of a GO term in a row indicated on the right. Only 

the top 20 significant GO terms (P-value < 0.05) are shown. 

G. Heat map of the activation scores of epithelial cell subtypes for gene expression regulated 

by transcription factors (TFs). Cell clusters are indicated on top, and the scores were estimated 

using SCENIC analysis. Only the top 10 TFs are shown with the highest difference in 

expression regulation estimates between each cluster and all other cells, tested with a 

Wilcoxon rank-sum test. The clusters numbers are in reference to those in Figure 5A. Cell 

clusters are grouped according to the origin of organ and their digestive or non-digestive 

function as indicated on top.  
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Figure 6. Intercellular communication networks among tissues. 

A-C. The top 10 significant ligand-receptor interactions between cells among different organs 

for epithelial and myeloid cell subtypes (A), myeloid and CD8+ T cell subtypes (B), and CD8+ 

T and stromal cell subtypes (C; Fibroblast, Smooth muscle cell, and FibSmo cell). An 

interaction is indicated as color-filled circle at the cross of interacting cell types in a tissue (x-

axis) and a ligand-receptor pair (y-axis), with circle size representing the significance of -

log10(P-values) in a permutation test and colors representing the means of the average 

expression level of the interacting pair. The naming system is as follows, taking an example 

of “EGFR_TGFB1” in “cholang_FXYD2.Mac.Commonbileduct”, the ligand-receptor pair is 

EGFR (red) and TGFB1 (black), and the circle is colored based on the expression levels of 

EGFR in cholang_FXYD2 cluster and TFGB1 in Mac cluster in the tissue Commonbileduct. 

Mon: Monocyte, Mac: Macrophage, DC: Dendritic cell, TRM: Tissue-resident memory T cell, 

TEFF: Effector T cell, TGD: γδ T cell, MAIT: Mucosal associated invariant T cell, TEM: Effector 

memory T cell, TIEL: Intraepithelial T lymphocyte, TN: naïve T cell. Fib: Fibroblast, Smo: 

Smooth muscle cell, FibSmo: Novel cell type named FibSmo cell. Commonbileduct: Common 

bile duct, Lymphnode: Lymph node, Smallintestine: Small intestine. For epithelial cells, the full 

names of each cluster refer to Table S47. 

D. Connection graph showing the intensity of interactions between one organ to another in 

colored circles. Interactions were evaluated between major cell types including CD4+ T cell, 

CD8+ T cell, γδ T cell, B cell, Plasma cell, myeloid cell, NK cell, epithelial cell, fibroblast, smooth 

muscle cell, FibSmo cell, and endothelial cell. Numbers in red show the total counts of ligand-

receptor pairs between the indicated organ and all others, which include only the unique 

significant interacting pairs between them (average expression > 0 and P-value < 0.05). 

E. Connection graph showing the intensity of interactions within a major cell type or between 

two major cell types in colored circles. Numbers in red show the total counts of ligand-receptor 

pairs within or between cell types, which only included the unique significant interacting pairs 

between them (average expression > 0 and P-value < 0.05). CD4, CD4+ T cell; CD8, CD8+ T 

cell; γδ: γδ T cell; B, B cell; Plasma, plasma cell; Myeloid, myeloid cell; NK, NK cell; Epi, 

epithelial cell; Fib, fibroblast; Smo, smooth muscle cell; FibSmo, FibSmo cell; and Endo, 
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endothelial cell. 
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