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Abstract 
 

In yeast, the selective autophagy of intracellular lipid droplets (LDs) or lipophagy can be induced 

by either nitrogen (N) starvation or carbon limitation (e.g. in the stationary (S) phase). We 

developed the yeast, Komagataella phaffii (formerly Pichia pastoris), as a new lipophagy model 

and compared the N-starvation and S-phase lipophagy in over 30 autophagy-related mutants 

using the Erg6-GFP processing assay. Surprisingly, two lipophagy pathways had hardly 

overlapping stringent molecular requirements. While the N-starvation lipophagy strictly 

depended on the core autophagic machinery (Atg1-Atg9, Atg18 and Vps15), vacuole fusion 

machinery (Vam7 and Ypt7) and vacuolar proteolysis (proteinases A and B), only Atg6 and 

proteinases A and B were essential for the S-phase lipophagy. The rest of the proteins were 

only partially required in the S-phase. Moreover, we isolated the prl1 (for positive regulator of 

lipophagy 1) mutant affected in the S-phase lipophagy but not N-starvation lipophagy. The prl1 

defect was at a stage of delivery of the LDs from the cytoplasm to the vacuole further supporting 

mechanistically different nature of the two lipophagy pathways. Taken together, our results 

suggest that N-starvation and S-phase lipophagy have distinct molecular mechanisms. 

 

Abbreviations: Atg: autophagy-related; C: carbon; DIC: differential interference contrast; 

ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; LD: 

lipid droplet; MDH: monodansylpentane; N: nitrogen; Prl1: positive regulator of lipophagy 1; 

prA,B: proteinases A and B; S: stationary; WT: wild-type. 
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Introduction 
 

Autophagy is a highly conserved degradation process in which proteins, protein aggregates and 

even entire organelles can be sequestered from the cytoplasm by the vacuoles/lysosomes 

either directly at the vacuolar/lysosomal membrane (microautophagy) or via the double-

membrane vesicular intermediates, autophagosomes (macroautophagy) [1],[2]. Autophagy is 

strongly induced by starvation for nutrients, such as the sources of nitrogen (N), carbon (C) and 

other elements. The lack of several amino acids can also induce autophagy [3],[4]. Therefore, 

this process acts as an internal supply of building blocks for cells when the external nutrients 

become unavailable and allows cells to survive the prolonged periods of starvation. 

 

Lipophagy is an important autophagic process, which delivers the intracellular lipid droplets 

(LDs) to the vacuoles/lysosomes for degradation and recycling [5]. Lipophagy was initially 

described in hepatocytes, which become a major site of excessive lipid accumulation in obesity 

and metabolic syndrome [6]. However, the intracellular lipid metabolism in most eukaryotic cells 

is also regulated by lipophagy [7], and impaired lipophagy may contribute to the development of 

many liver and non-liver diseases [8],[9]. Thus, understanding the mechanisms of lipophagy is 

very important for the prevention and treatment of various lipid accumulation diseases. 

 

The budding yeast Saccharomyces cerevisiae was used as a simple lipophagy model by 

several groups to study the mechanisms of lipophagy. Precisely, lipophagy was induced by 

either acute N-starvation [10],[11] or C-limitation (either acute [12] or gradual due to the 

prolonged incubation of cells in the same medium and entering them into stationary (S) phase 

[13],[11]). These studies described the morphological features of lipophagy and tested the 

requirements of lipophagy for known autophagy-related (Atg) factors. They suggested that both 

N-starvation and C-limitation induce microlipophagy [10],[13],[11],[12], the selective 

microautophagy of LDs, and that this microlipophagy depends on the same core autophagic 

factors, which are necessary for the formation of autophagic double-membrane in other 

autophagic pathways [10],[13],[12]. However, such autophagic membrane was never reported 

to be associated with LDs in the yeast lipophagy studies questioning the role of autophagic 

machinery in the yeast lipophagy. 

 

Here, we developed the yeast, Komagataella phaffii (formerly Pichia pastoris), as a new simple 

model to study lipophagy. The K. phaffii has proven to be an excellent model organism for the 
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studies of autophagy-related (Atg) pathways and contributed a lot of mechanistic insights to the 

field of autophagy [14]. Then, we run the entire collection of K. phaffii atg-mutants through the 

lipophagy assay under both N-starvation and S-phase conditions. As a result, we found that the 

core autophagic machinery is essential only for the N-starvation lipophagy. The only overlapping 

stringent molecular requirements for two lipophagy pathways were Atg6 and vacuolar 

proteinases A and B. In addition, we isolated a new positive regulator of lipophagy 1 (prl1) 

mutant that was deficient only in the S-phase lipophagy. Therefore, we suggest that the N-

starvation and S-phase lipophagy pathways have distinct molecular mechanisms. 
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Results 
 

K. phaffii is a good model for both N-starvation and S-phase lipophagy 
 

To develop K. phaffii as a new lipophagy model, we used the established LD marker protein, 

Erg6 [10],[12],[11], tagged with the green fluorescent protein (GFP) on the integrative plasmid, 

pRK2. To confirm the localization of Erg6-GFP to LDs, wild-type (WT) PPY12h cells with pRK2 

integrated into the HIS4 locus were grown in YPD medium for 1 d to an early S-phase and 

stained with a blue LD dye, monodansylpentane (MDH) [15]. The Erg6-GFP displayed a 

complete co-localization with MDH (Fig. 1A) suggesting that it is a good LD protein marker for K. 

phaffii under our experimental conditions. The lack of a key Atg protein, Atg8, did not affect the 

localization of Erg6-GFP to LDs in atg8 cells (Fig. 1A) making it possible to use the Erg6-GFP 

as a lipophagy reporter. 

 

Then, we developed two Erg6-GFP processing assays to monitor lipophagy: one after the 

transfer of cells from early S-phase in YPD medium to N-starvation in SD-N medium and 

another one after the prolonged S-phase in YPD medium. When the LDs with Erg6-GFP are 

delivered from the cytoplasm to the vacuole, Erg6, but not GFP moiety, is degraded by vacuolar 

proteases resulting in free GFP, which can be detected by Western blot [16]. The processing of 

Erg6-GFP to GFP in WT (PPY12h) cells culminated after 24 h of N-starvation (Fig. 1B) and after 

2-3 days in YPD medium (Fig. 1C). Therefore, we picked 0 and 24 h, and 1 and 3 d time-points 

for future N-starvation and S-phase lipophagy assays, respectively. 

 

Interestingly, while atg8 cells were completely deficient in the Erg6-GFP processing under N-

starvation conditions (Fig. 1B), they were only partially compromised in it in S-phase (Fig. 1C) 

suggesting that N-starvation and S-phase lipophagy pathways might have differences in their 

molecular requirements. In summary, both N-starvation and S-phase lipophagy pathways were 

readily induced in K. phaffii yeast making it a good model for comparison of their machineries. 

 

Molecular requirements of N-starvation and S-phase lipophagy in K. phaffii 
 

Encouraged by atg8 results under two lipophagy conditions, we introduced Erg6-GFP into the 

collection of K. phaffii strains deficient in genes that were previously implicated in various Atg-

pathways in either K. phaffii or other species (Table 2). The collected mutants belong to 4 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.996082doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.996082


6 
 

different WT backgrounds: GS115, GS200, PPY12h and PPY12m. Therefore, we grouped 

mutants by genetic background and studied them together with the corresponding WT strain, as 

a control, in both N-starvation and S-phase lipophagy conditions (Figs. 2 and 3, respectively). 

 

We found that most of the mutants were either fully deficient (atg1-atg9, atg18, pep4 prb1, 

vam7, vps15 and ypt7) or fully proficient (ape1, atg11, atg20, atg24-atg26, atg30, atg32, atg35, 

atg37, atg40, pex3, pex19, prl1, vac8, vps17 and uvrag) in the Erg6-GFP processing under N-

starvation conditions. Only 3 strains (atg17, atg11 atg17 and atg28) had an intermediate 

phenotype (Fig. 2 and Table 1). These results suggested that N-starvation lipophagy strictly 

depends on the core autophagic machinery (Atg1-Atg9, Atg18 and Vps15), vacuole fusion 

machinery (Vam7 and Ypt7) and vacuolar proteolysis (proteinases A and B). 

 

In contrast, the Erg6-GFP processing in S-phase was fully deficient in only 3 strains (atg6, pep4 

prb1 and prl1). It was fully proficient in nearly as many strains (ape1, atg11, atg20, atg24, atg25, 

atg30, atg32, atg35, atg37, vac8, vps17 and uvrag), as under N-starvation conditions. However, 

most of the mutants (atg1-atg5, atg7-atg9, atg17, atg11 atg17, atg18, atg26, atg28, atg40, pex3, 

pex19, vam7, vps15 and ypt7) had an intermediate phenotype (Figs. 3 and S1; Table 1). 

Therefore, we concluded that S-phase lipophagy strictly depends only on Atg6, Prl1 and 

vacuolar proteolysis (proteinases A and B). Summarizing, the N-starvation and S-phase 

lipophagy pathways have different molecular requirements. 

 

Prl1 is essential for the delivery of LDs to the vacuole in S-phase 
 

To probe further into the differences between N-starvation and S-phase lipophagy machineries, 

we took advantage of the prl1 mutant. This mutant was obtained by the integration of ZeocinR 

cassette from the pRK6 plasmid into the genome of PPY12h WT strain (Table 2). The prl1 

mutant displayed a unique phenotype in the screening above: it was fully proficient in the N-

starvation lipophagy, but fully deficient in the S-phase lipophagy (Table 1). 

 

To compare the phenotypes of prl1 cells in the same experiment, we split the cultures of WT, 

prl1 and pep4 prb1 cells after 1 d in YPD medium: small aliquots were transferred to SD-N 

medium (for 0 and 24 h time-points), while the rest remained in YPD medium (for 1 and 3 d 

time-points) (Figs. 4A and S2). While N-starvation and S-phase lipophagy pathways were 

equally well induced in WT cells, they were fully blocked in the proteinases A and B-deficient 
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mutant. Despite prl1 cells were indistinguishable from WT cells under N-starvation conditions, 

they were indeed incapable to degrade LDs in S-phase (Fig. 4A). Therefore, we concluded that 

prl1 mutant is specifically deficient in the S-phase lipophagy. 

 

To get insight into the step of S-phase lipophagy affected in prl1 cells, we studied S-phase 

lipophagy by fluorescence microscopy. The WT, prl1 and pep4 prb1 cells with Erg6-GFP 

reporter were incubated in the YPD medium with FM 4-64, the lipophilic dye that stains 

specifically the vacuolar membrane. After 1 d, the cells of all strains had LDs outside the 

vacuole and no GFP fluorescence inside the vacuolar lumen. However, after 3 d, WT and pep4 

prb1 cells developed a diffuse or grainy GFP fluorescence in the vacuolar lumen, respectively 

(Fig. 4B). Those patterns of luminal GFP fluorescence were consistent with disintegration of the 

LD-containing autophagic bodies in WT vacuoles and Brownian movement of intact LD-

containing autophagic bodies in the proteinases A and B-deficient vacuoles. The prl1 cells did 

not gain any GFP fluorescence in the vacuolar lumen after 3 d in YPD suggesting that Prl1 is 

required for the delivery of LDs to the vacuole in S-phase. 
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Discussion 
 

In this study, we introduced K. phaffii yeast as a new lipophagy model and compared the 

lipophagy requirements of K. phaffii cells under two conditions: N-starvation and S-phase, the 

two most popular ways to induce Atg-pathways in yeast. Previous screenings in S. cerevisiae 

done for each of these conditions separately indicated that both of them induced microlipophagy 

that strongly depended on the core autophagic machinery [10],[13]. However, by comparing the 

N-starvation and S-phase conditions in the same study with K. phaffii, we observed a clear 

difference in lipophagy requirements (Table 1).  

 

Both the N-starvation and S-phase lipophagy pathways strictly depended on the proteinases A 

and B consistent with the vacuolar degradation of LDs under the two conditions. While the N-

starvation lipophagy strongly relied on the core autophagic machinery represented by Atg1-

Atg9, Atg18 and Vps15, the S-phase lipophagy was fully deficient only without the Atg6 protein. 

Interestingly, only Atg6 and not the other components of the phosphatidylinositol 3-kinase 

complex I (i.e. Atg14, Atg38, Vps15 and Vps34) stably localized to the vacuolar membrane 

under both acute and gradual (S-phase) C-limitation conditions in S. cerevisiae [12]. Atg6 was 

necessary for the formation of raft-like domains in the vacuolar membrane [12] that are essential 

for microlipophagy [13]. Combined, this and previous studies suggest that Atg6 plays a unique 

role in the S-phase lipophagy, which is different from its established function in the biogenesis of 

autophagic double-membrane under N-starvation conditions [17].  

 

While a reason for the essential role of the core autophagic machinery in the N-starvation 

lipophagy is unclear, there is a plausible explanation for the partial requirement of the core 

autophagic machinery in the S-phase lipophagy. In S-phase, the core autophagic machinery is 

essential for the correct vacuolar localization of Niemann-Pick type C proteins, Ncr1 and Npc2, 

that transport sterol from the vacuolar lumen to the vacuolar membrane for the raft-like domain 

formation [11]. However, the requirements of Ncr1 and Npc2 for (1) raft-like domains formation, 

(2) their internalization as microautophagic bodies and (3) S-phase lipophagy are partial [11]. 

Therefore, the core autophagic machinery has, at the end, a partial role in the S-phase 

lipophagy. Interestingly, it is not required for the correct vacuolar localization of Ncr1 and Npc2 

under the N-starvation conditions. Thus, the mechanistic role of the core autophagic machinery 

in the N-starvation lipophagy is still unknown. 
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Recently, it was reported that the vacuolar membrane protein, Vph1, which is normally excluded 

from the raft-like domains in S-phase [18], is also degraded, like LDs, by microautophagy [19]. 

Interestingly, the S-phase microautophagy of Vph1 was independent of the core autophagic 

machinery, but relied on the machinery of ESCRT, the endosomal sorting complex required for 

transport. The same study also reported that the S-phase microautophagy of LDs was partially 

independent of the core autophagic factor, Atg1, but strongly relied on the ESCRT component, 

Vps27 [19]. Our results are consistent with these lipophagy observations and extend them to the 

entire core autophagic machinery being only partially required specifically in the S-phase. 

However, it is still unclear how LDs and Vph1 can utilize the same microautophagy pathway in 

S-phase, since they are associated with different vacuolar membrane domains, the raft-like 

liquid ordered domain and the liquid disordered domain, respectively. Since the S-phase 

microautophagy of Vph1 does not require Atg6 [19], and the S-phase lipophagy strongly 

depends on it (Fig. 3), we propose that these pathways have both common (Vps27) and unique 

(Atg6) requirements. 

 

Our study has also suggested a unique molecular requirement of the S-phase lipophagy versus 

N-starvation lipophagy, the positive regulator of lipophagy 1 (Prl1). The prl1 mutant isolated in 

this study was deficient in lipophagy only in the S-phase. Moreover, we showed that the prl1’s 

lipophagy block is at a trafficking step, since LDs were not delivered from the cytoplasm to the 

vacuole for degradation in the S-phase. It will be interesting to determine the gene responsible 

for prl1 phenotype, since it can help us to further distinguish the molecular mechanisms of these 

two clearly distinct lipophagy pathways, the N-starvation and S-phase lipophagy. 
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Materials and Methods 
 

Strains and plasmids 
 

The K. phaffii strains used in this study are shown in Table 2. These strains were transformed 

by electroporation [20] with the EcoNI-linearized (R0521S; New England Biolabs) pRK2 

plasmid. This plasmid contained the Erg6-GFP expression cassette (for lipophagy studies) and 

HIS4 marker gene (for integration into his4 mutant allele of the recipient strains and selection of 

His+-transformants). The resulting transformants had the following genotype: his4::pRK2 (PERG6-

ERG6-GFP, HIS4). They were selected on SD+CSM-His plates (1.7 g/L YNB without amino 

acids and ammonium sulfate, 20 g/L dextrose, 5 g/L ammonium sulfate, 0.78 g/L CSM-His and 

20 g/L agar) and screened for expression of Erg6-GFP by Western blot with anti-GFP bodies 

(11814460001; Roche) and for localization of Erg6-GFP to LDs by fluorescence microscopy.  

 

Fluorescence microscopy 
 

Cells were grown for 1 and/or 3 d in culture tubes with 1 mL of YPD medium (10 g/L yeast 

extract, 20 g/L peptone and 20 g/L dextrose; the autoclaved solution of yeast extract and 

peptone was mixed with the filter-sterilized 20x solution of dextrose). LDs were stained with 1 µL 

of 0.1 M MDH solution (SM1000a; Abcepta) during the last 1 h of incubation of cells in YPD 

medium. Vacuolar membranes were stained with 1 µL of 1 mg/mL solution of FM 4-64 (T3166; 

Invitrogen) in DMSO added at the beginning of incubation of cells in YPD medium. Then, cells 

were immobilized on slides using 1% low-melt agarose. For this, the 2 µL drop of cell culture on 

slide was mixed with the 5 µL drop of 1% low-melt agarose (37°C) on coverslip. Microscopy was 

done at the Axioskop 2 MOT microscope equipped with the Plan-Apochromat 100x/1.40 NA oil 

DIC objective and operated by the AxioVision software (all from Carl Zeiss). All the experiments 

were done at least in duplicate. 

 

Biochemical studies 
 

Cells were grown in culture tubes with 1 mL of YPD medium and 1 OD600 of cells was taken at 1 

and 3 d time-points for studies of S-phase lipophagy. For studies of N-starvation lipophagy, 3 

OD600 of cells were taken at 1 d time-point in YPD medium, washed twice with 1 mL of 1x YNB 

solution (1.7 g/L YNB without amino acids and ammonium sulfate) and resuspended in 3 mL of 
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SD-N medium (1.7 g/L YNB without amino acids and ammonium sulfate, and 20 g/L dextrose). 

Then, 1 mL of cell culture was taken at 0 and 24 h time-points in SD-N medium. Both YPD (1 

and 3 d) and SD-N (0 and 24 h) samples were TCA precipitated [21] and analyzed by Western 

blot with anti-GFP bodies (11814460001; Roche). All the experiments were done at least in 

duplicate. 
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Table 1. Lipophagy phenotype of K. phaffii (this study) and S. cerevisiae mutants. 

Strain 
(Kp/Sc) 

Kp (this study) Sc [10] Sc [13] Sc [12] 
SD-N S-phase SD-N SD-N S-phase SD-D (0.4%) 

Erg6-GFP Erg6-
GFP 

Erg6-
GFP 

Faa4-GFP BODIPY Erg6-DsRed 

WT + + + + + + 
ape1 + + ND ND ND ND 
atg1 - +/- - - - - 
atg2 - +/- ND ND - - 
atg3 - +/- - - - - 
atg4 - +/- - - - ND 
atg5 - +/- - - - - 
atg6 - - - - - - 
atg7 - +/- - - - - 
atg8 - +/- - - - - 
atg9 - +/- - - - - 
atg11 + + ND +/- + + 
atg17 +/- +/- ND - - +/- 
atg11 atg17 +/- +/- ND ND ND ND 
atg18 - +/- - - - - 
atg20 + + ND + + + 
atg24 + + ND ND + + 
atg25 + + NA NA NA NA 
atg26 + +/- ND ND + + 
atg28/atg29,31 +/- +/- ND ND -, - +/-, +/- 
atg30/atg36 + + ND ND + + 
atg32 + + ND ND - +/- 
atg35 + + NA NA NA NA 
atg37 + + NA NA NA NA 
atg40 + +/- ND ND ND ND 
pep4 prb1 - - ND ND - ND 
pex3 + +/- ND ND ND ND 
pex19 + +/- ND ND ND ND 
prl1 + - ND ND ND ND 
vac8 + + ND - ND ND 
vam7 - +/- - - ND ND 
vps15 - +/- ND ND ND ND 
vps17 + + ND ND ND ND 
uvrag/vps38 + + +/- +/- ND ND 
ypt7 - +/- - - ND ND 

NA: mutant not available in Sc; ND: phenotype not determined in Sc 
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Table 2. K. phaffii strains used in this study. 

Mutant 
name 

Strain 
name 

Back-
ground 

Genotype and plasmid Source 

WT GS115 GS115 his4 [22] 
WT GS200 GS200 arg4 his4 [23] 
WT PPY12h PPY12h arg4 his4 [24] 
WT PPY12m PPY12m arg4 his4 [24] 
ape1 SJCF434 PPY12m ∆ape1::GeneticinR arg4 his4 [25] 
atg1 R12 GS115 atg1-1::ZeocinR his4 [26] 
atg2 WDK011 GS115 ∆atg2::ZeocinR his4 [26] 
atg3 gsa20 GS115 atg3::ZeocinR his4 [26] 
atg4 PPM408 PPY12h atg4::ZeocinR arg4 his4 [27] 
atg5 SJCF2320 GS115 ∆atg5::ZeocinR his4 SL 
atg6 SRDM006 PPY12m ∆atg6::GeneticinR arg4 his4 [28] 
atg7 WDK07 GS200 ∆atg7::ScARG4 arg4 his4 [29] 
atg8 SJCF925 PPY12h ∆atg8::GeneticinR arg4 his4  [30] 
atg9 R19 GS115 atg9-1::ZeocinR his4 [26] 
atg11 R8 GS115 atg11-2::ZeocinR his4 [31] 
atg17 SJCF929 PPY12h ∆atg17::GeneticinR arg4 his4 [30] 
atg11 atg17 SJCF948 GS115 atg11-2::ZeocinR ∆atg17::GeneticinR his4 [30] 
atg18 R2 GS115 atg18-1::ZeocinR his4 [26] 
atg20 SRDM020 PPY12m ∆atg20::GeneticinR arg4 his4 SL 
atg24 paz16 PPY12h atg24::ZeocinR arg4 his4 [32] 
atg25 SJCF1231 PPY12h ∆atg25::GeneticinR arg4 his4 [28] 
atg26 PDG3D GS200 ∆atg26::ScARG4 arg4 his4 [33] 
atg28 PDG2D GS200 ∆atg28::ScARG4 arg4 his4 [34] 
atg30 SJCF936 PPY12h ∆atg30::ZeocinR arg4 his4 [30] 
atg32 SJCF1715 PPY12h ∆atg32::GeneticinR arg4 his4 [35] 
atg35 SVN1 GS200 ∆atg35::ScARG4 arg4 his4 [36] 
atg37 STN96 PPY12h ∆atg37::GeneticinR arg4 his4 [37] 
atg40 SRK2 PPY12h ∆atg40::ZeocinR (pRK4) arg4 his4 This study 
pep4 prb1 SMD1163 GS115 pep4 prb1 his4 [38] 
pex3 SEW1 PPY12h ∆pex3::PpARG4 arg4 his4  [39] 
pex19 SKF13 PPY12h ∆pex19::ZeocinR arg4 his4 [40] 
prl1 SRK3 PPY12h prl1::ZeocinR (pRK6) arg4 his4 This study 
vac8 WDY53 GS200 ∆vac8::ZeocinR arg4 his4 [41] 
vam7 SRDM050 PPY12m ∆vam7::ZeocinR arg4 his4 [42] 
vps15 OP5 GS200 ∆vps15::ScARG4 arg4 his4 [43] 
vps17 SRDM122 PPY12m ∆vps17::GeneticinR arg4 his4 [28] 
uvrag SRDM083 PPY12m ∆uvrag::ZeocinR arg4 his4 [28] 
ypt7 SRRM197 PPY12h ∆ypt7::GeneticinR arg4 his4 [42] 

SL: Subramani lab  
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Figure 1 
 

 
 

Figure 1. Komagataella phaffii is a good model for both N-starvation and S-phase lipophagy. 

(A) K. phaffii Erg6-GFP co-localizes with MDH-stained LDs in both WT and atg8 cells. DIC: 

differential interference contrast. Scale bar, 5 µm. (B) Atg8 is essential for N-starvation 

lipophagy. Cells were normalized in SD-N at OD600 1 and equal volume of culture (1 mL) was 

processed at all time-points for both strains to nullify the differential growth (Erg6-GFP dilution) 

effects in SD-N medium (loading control is not applicable). (C) Atg8 is only partially required for 

S-phase lipophagy. Since biomass slightly decreased during the time-course in S-phase, equal 

biomass (1 OD600) was taken at all time-points for both strains. Ponceau S staining was used as 

a loading control for S-phase samples. 
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Figure 2 
 

 
 

Figure 2. N-starvation lipophagy strictly depends on the core autophagic machinery (Atg1-Atg9, 

Atg18 and Vps15), vacuole fusion machinery (Vam7 and Ypt7) and vacuolar proteolysis 

(proteinases A and B). Cells were normalized in SD-N at OD600 1 and equal volume of culture (1 

mL) was processed at both time-points for all strains to nullify the differential growth (Erg6-GFP 

dilution) effects in SD-N medium (loading control is not applicable). prA,B: proteinases A and B-

deficient mutant pep4 prb1. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.996082doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.996082


19 
 

Figure 3 
 

 
 

Figure 3. S-phase lipophagy strictly depends only on Atg6, Prl1 (positive regulator of lipophagy 

1) and vacuolar proteolysis (proteinases A and B). Since biomass slightly decreased after 3 

days in S-phase, equal biomass (1 OD600) was taken at both time-points for all strains. Ponceau 

S staining was used as a loading control and displayed in Fig. S1. prA,B: proteinases A and B-

deficient mutant pep4 prb1. 
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Figure 4 
 

 
 

Figure 4. Prl1 is essential for the delivery of LDs to the vacuole in S-phase. (A) S-phase but not 

N-starvation lipophagy depends on Prl1. N-starvation and S-phase cells were processed as 

described in Figs. 2 and 3, respectively. Ponceau S staining (Fig. S2) was used as a loading 

control for S-phase samples. (B) Prl1 is required for the delivery of LDs to the vacuole in S-

phase. Vacuole membranes were stained red with FM 4-64. DIC: differential interference 

contrast; prA,B: proteinases A and B-deficient mutant pep4 prb1; *: GFP-containing vacuole; x: 

dead cell. Scale bar, 5 µm. 
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