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Abstract

Brain networks can be defined and explored using different types of connectivity. Here, we studied
P=48 healthy participants with neuroimaging state-of-the-art techniques and analyzed the relationship
between the actual structural connectivity (SC) networks (between 2514 regions of interest covering
the entire brain and brainstem) and the dynamical functional connectivity (DFC) among the same
regions. To do so, we focused on a combination of two metrics: the first one measures the degree of
SC-DFC similarity –i.e. how much functional correlations can be explained by structural pathways–
and the second one, the intrinsic variability of DFC networks across time. Overall, we found that
cerebellar networks have smaller DFC variability than other networks in the cerebrum. Moreover, our
results clearly evidence the internal structure of the cerebellum, which is divided in two differentiated
networks, the posterior and anterior parts, the latter also being connected to the brain stem. The
mechanism for keeping the DFC variability low in the posterior part of the cerebellum is consistent
with another finding, namely, it exhibits the highest SC-DFC similarity among all other sub-networks,
i.e. its structure constrains very strongly its dynamics. On the other hand, the anterior part of the
cerebellum, which also exhibits a low level of DFC variability, has the lowest SC-DFC similarity,
suggesting very different dynamical mechanisms. It is likely that its connections with the brain stem
–which regulates sleep cycles, cardiac and respiratory functioning– might have a critical role in DFC
variations in the anterior part. A lot is known about cerebellar networks, such as having extremely
rich and complex anatomy and functionality, connecting to the brainstem, and cerebral hemispheres,
and participating in a large variety of cognitive functions, such as movement control and coordination,
executive function, visual-spatial cognition, language processing, and emotional regulation. However,
as far as we know, our findings of low variability in the dynamical functional connectivity of cerebellar
networks and its possible relation with the above functions, have not been reported so far. Further
research is still needed to shed light on these findings.

Introduction
Understanding the relationship between different classes

of connectivities is pivotal in network neuroscience [1]. In
particular, structural and functional connectivities are ob-
tained from different raw data and using different pipeline
analyses. Magnetic resonance imaging (MRI) provides us
with structural connectivity (SC) matrices in a non-invasive
manner. The entries of such matrices are given by the number
of white-matter streamlines between pairs of brain regions ob-
tained from diffusion-weighted images (DWI) combined with
tractography algorithms for the reconstruction of streamlines.

MRI is also suited to construct functional connectivity
(FC) matrices, that measure the similarity in the dynamics
of given pairs of brain regions obtained from a sequence of
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functional images (accounting for the blood oxygen level
dependent signals), by employing diverse metrics to charac-
terize pairwise dynamical similarity, such as e.g. pairwise
Pearson correlations or synchronization measures [2]. Here,
FC networks are calculated during the resting state, a con-
dition that is widely used for understanding the dynamics
and organization of the brain basal activity in health and dis-
ease, and that is defined by the absence of any goal-directed
behavior or salient stimuli [3–8].

Although SC networks and FC networks can refer to the
connectivity of the same regions within the same brain, a
fundamental difference between them is that both types of
networks vary at very different time scales. While SC is prac-
tically invariant during the time over which FC is calculated
(typically lasting for a maximum of 10 minutes), FC is well-
known to vary in very short time scales, even within periods
of a few seconds, exhibiting a rich dynamical repertoire (see
[9] and references therein). When considering short time
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scales, the simplest manner to assess and quantify the tem-
poral variations of the "dynamical functional connectivity"
(DFC) is by considering a sliding window analysis. Time
is divided in non-overlapping intervals of a fixed duration,
and for each time window one FC is calculated; in this way
the DFC is represented as a time ordered sequence of FC
matrices.

Importantly, Park and Friston showed that the SC can be
inferred from the DFC when the time window to calculate it
is infinitely large [10]. In other words, pairwise correlations
–when averaged over sufficiently long time periods–merely re-
flect the underlying matrix of SC (see also [11]). This fact has
become evenmore clear with the relatively recent observation
that functional networks in the resting state can be derived
from the spectrum of eigenmodes –or harmonics– of the SC
matrix (actually, from its associated Laplacian matrix [12]).
On the other hand, for practical situations in which functional
networks are obtained for much shorter time windows, how
the underlying dynamics of the brain operating on a fixed SC
network does generate a large repertoire of different varying
functional networks, and how such dynamical patterns are
related to the brain’s functionality and disease, still remain
problems to be fully understood despite substantial advances
achieved in the last years [10, 13–17].

The relationship between the temporally-invariant SC
and the highly temporal-sensitive DFC can be assessed by
comparing the two graphs at the level of individual links, a
strategy which requires for symmetrical matricesN2∕2 com-
parisons (where N is the number of nodes in the network).
Alternatively, we follow here another and more efficient strat-
egy that consists in establishing a comparison at a modular
or community level. [18]. In particular, using a standard
algorithm [19, 20], modules are identified for either struc-
tural and/or functional matrices, and this is followed by a
comparison of two types of networks by using the obtained
partition into modules. Our hypothesis is that, if we assume
that segregated functions are associated with distinct struc-
tural modules, visualizing the functional modules in terms
of the structural ones should help define and highlight how
strongly structure constraints function.

In the present work, we study how SC constraints and
affects DFC at the module level and find that DFC in a blindly
found modules –which turns out to lie within the cerebellum–
are much less variable than other networks in the cerebrum.
We show two different mechanisms underlying the small
variability found in cerebellar DFC, one mediated by the
constraints imposed by the structural connectivity and the
other one possibly related to external influences to its function.
As far as we know, the small variability in cerebellar DFC
networks, as observed in this study, has not been reported
before and is deeply rooted in the different manner in which
the cerebellum and the cerebral cortex have to deal with
information processing.

Materials and methods
Participants

P = 48 healthy participants were recruited in the vicinity
of Leuven and Hasselt (Belgium) from the general population
by advertisements on websites, announcements at meetings
and provision of flyers at visits of organizations, and public
gatherings (PI: Stephan Swinnen). Participant’s age ranged
between 20 and 50 years (mean age 33.9 years). None of the
participants had a history of ophthalmological, neurological,
psychiatric, or cardiovascular diseases potentially influencing
imaging or clinical measures. All the participants provided
informed consent before participation in the study, in agree-
ment with the local ethics committee for biomedical research.

Imaging acquisition
Anatomical data: A high-resolution T1 image was ac-

quired with a 3D magnetization prepared rapid acquisition
gradient echo (MPRAGE): repetition time (TR)= 2, 300 ms,
echo time (TE)= 2.98ms, voxel size = 1×1×1.1mm3, slice
thickness = 1.1 mm, field of view (FOV)= 256 × 240 mm2,
160 contiguous sagittal slices covering the entire brain and
brainstem.

Diffusion weighted imaging: A DWI SE-EPI (diffusion
weighted single shot spin-echo echo-planar imaging [EPI])
sequence was acquired with the following parameters: TR
= 8, 000 ms, TE= 91 ms, voxel size = 2.2 × 2.2 × 2.2 mm3,
slice thickness = 2.2 mm, FOV = 212 × 212 mm2, 60 con-
tiguous sagittal slices covering the entire brain and brainstem.
A diffusion gradient was applied along 64 non-collinear di-
rections with a b value of 1, 000 s/mm2. Additionally, one set
of images was acquired without diffusion weighting (b = 0
s/mm2).

Resting state functional data: Acquired with a gradient
EPI sequence over a 10 min session using the following pa-
rameters: 200 whole-brain volumes with TR/TE= 3, 000∕30
ms, flip angle = 90◦, inter-slice gap = 0.28 mm, voxel size
= 2.5 × 3 × 2.5 mm3, 80 × 80 matrix, slice thickness = 2.8
mm, 50 oblique axial slices, interleaved in descending order.

Imaging preprocessing
Diffusion images: We applied a pre-processing pipeline

similar to previous work [21–28] using FSL (FMRIB Soft-
ware Library v5.0) and the Diffusion Toolkit. First, an eddy
current correction was applied to overcome the artifacts pro-
duced by variation in the direction of the gradient fields of
the MR scanner, together with the artifacts produced by head
motion. In particular, the participant’s head motion was ex-
tracted from the transformation applied at the step of eddy
current correction. The motion information was also used
to correct the gradient directions prior to the tensor estima-
tion. Next, using the corrected data, a local fitting of the
diffusion tensor per voxel was obtained using the dtifit tool
incorporated in FSL. Next, a fiber assignment by a continu-
ous tracking algorithm was applied [29]. We then computed
the transformation from the Montreal Neurological Institute
(MNI) space to the individual-participant diffusion space and

Fernandez-Iriondo et al.: Preprint submitted to Elsevier Page 2 of 14

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.16.989590doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.16.989590
http://creativecommons.org/licenses/by-nc-nd/4.0/


Low variability of dynamical functional connectivity in cerebellar networks

chose the network nodes for the calculation of SC by using a
functional partition (see below).

Functional images: We applied a pre-processing pipeline
similar to previous work [21–24, 30, 31] using FSL and AFNI
(http://afni.nimh.nih.gov/afni/). First, the slice-time correc-
tion was applied to the fMRI data set. Next, each volume
was aligned to the middle volume to correct for head motion
artifacts. After intensity normalization, we regressed out the
motion time courses, the average cerebrospinal fluid (CSF)
signal and the average white matter signal. Next, a bandpass
filter was applied between 0.01 and 0.08 Hz [32]. Next, the
preprocessed functional data were spatially normalized to the
MNI152 brain template, with a voxel size of 3 × 3 × 3 mm3.
Next, all voxels were spatially smoothed with a 6 mm full
width at half maximum isotropic Gaussian kernel. Finally, in
addition to head motion correction, we performed scrubbing,
by which time points with frame-wise displacement > 0.5
were interpolated by a cubic spline [33]. We finally removed
the effect of head motion using the global frame displacement
as a covariate.

Network nodes
Both SC and DFC were built usingN = 2514 regions of

interest, thus generating networks of size N2. These 2514
regions were identified after running a method for unsuper-
vised clustering to the functional data at the voxel level [34].
On average, each cluster –that in our study coincides with
one node in the network– contained about 20 voxels of size
3×3×3mm3. The algorithm takes as the input the number of
desired (2514 in this case) clusters, and finds the optimal clus-
tering solution by maximizing both within-cluster similarity
and between-cluster differences while spatially constraining
contiguous voxels to belong to the same cluster [34].

Calculation of SC and DFC matrices
One SC matrix of dimension 2514 × 2514 was obtained

for each participant by counting the number of white matter
streamlines connecting all possible 2514 × 2514 pairs of
nodes. Thus, the element matrix (i, j) of SC is given by
the streamlines number between nodes i and j, with i, j =
1,… , N and, given the lack of directionality of streamlines,
the SC is a symmetric matrix. To calculate an averaged SC
matrix at the population level, we first binarized individual SC
matrices and then took the overall average over participants.

With respect to functional networks, after averaging over
all voxel time series within each network node, we extracted
a single time series for each of the 2514 nodes. Then, DFCw
matrices were calculated by assessing the pairwise Pearson
correlation coefficient between all-node time series within a
time window w. When dividing the total time series length
T inW non-overlapping windows of length �, we obtained
P ×W matrices, where P is the number of participants and
W the number of time windows. Population DFCw matrices
were built by averaging over all participants.

Remark the following considerations: DFC is a tensor,
composed of a temporal sequence of squared matrices DFCw,
each one with dimensionN ×N and calculated over a fixed

window w. But we also can refer the two objects DFC and
DFCw at the module level, simply extracting from them the
within module contributions, that we will denote respectively
as DFCm and DFCmw, the former being another tensor com-
posed of a sequence of matrices of dimensionsNm×Nm, and
the latter being a squared matrix with dimensionNm ×Nm.
For both cases, it holds that

∑M
m=1Nm = N .

Adapting high-pass filtering for very short time
windows

Conventional FC approaches typically work with long-
time series. However, for relatively short time windows, the
calculation of the matrix DFCw requires an adaptation of the
lowest bound of (LB) used for bandpass filtering of the time
series by using the equation LB−1 = � × TR, where � is the
window length [35]. For example, for � = 10 and TR=3
seconds (used here), the high-pass filter has to be adapted by
taking LB ≈ 0.03, rather than 0.01 (which was the one used
here in the pipeline for the pre-processing of functional data).

Structural modules used as a template for
reordering DFC

By maximizing the modularity Q of the population SC
matrix by employing the algorithm described in [36], we
obtained a subdivision of the structural network intoM non-
overlapping modules in a way that maximizes the number of
within-module links and minimizes the number of between-
module links [20]. Next, we used such a partition to reorder
the elements of the functional matrices and assess the link-to-
link –or pairwise– similarity between SC and DFCw matrices.
This comparison was repeated for all functional matrices ob-
tained at different windows. In this way, we have a common
structural organization of modules, and this is used as a tem-
plate for reordering all functional matrices1. As we found
before [18], this is a very convenient strategy to highlight
similarities and differences between both types of networks
at a "mesoscopic" or community level.

Assessment of SC-DFC similarity module by
module

After reordering all functional networks using the struc-
tural modules, the SC-DFC similarity was assessed module
by module, by looking at within-module links. Therefore,
from the original SC and DFCw matrices with dimensions
N×N , we extractedm = 1,… ,M squaredmatrices SCm and
DFCmw with dimensionsNm ×Nm, such that

∑M
m=1Nm = N .

Next, for each module and windoww, we calculated as a sim-
ilarity measure the Pearson correlation rmw = �(⃖⃖⃖⃖⃖⃖⃖⃗SCm, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗DFCmw),
where ⃖⃖⃖⃖⃖⃖⃖⃗SCm and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗DFCmw represent respectively the vector-wise
representation of matrices SCm and DFCmw. We finally av-
eraged over windows of same size to represent the average
similarity, ie., rm =< rmw >w.

1The alternative strategy, consisting in maximizing modularity in func-
tional networks and using it to reorder the SC matrix was not used here.
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Assessment of DFC variations module by module
For each given window length, we obtained a series of

consecutive DFCw matrices and reordered all of them using
the M structural modules. For each of the m = 1,… ,M
modules and window w = 1,… ,W , we calculated the ma-
trices DFCmw, representing the within-module m of matrix
DFCw, and assessed their variability along different time
windows by calculating their pairwise spectral distance [37]:

Δmw,w′ =
Nm
∑

u=1

|

|

|

�u(DFC
m
w) − �u(DFC

m
w′ )

|

|

|

, (1)

where w,w′ = 1,… ,W are two generic windows, �1(G) ≤
�2(G) ≤ �3(G) ≤ ... ≤ �Nm

(G) are sets of the eigenvalues of
the two graphs G = {DFCmw, DFC

m
w′}, andNm is the number

of network nodes contained in the module m.

Results
A population of young P = 48 healthy participants was

used for the study. Diffusion and resting-state images were
acquired and analyzed for each participant following the
pipeline shown in figure 1.

First, we performed a division of the population SCmatrix
through modularity maximization. This resulted in M=14
non-overlapping modules (illustrated in Figure 2), with a
modularity index equal to Q = 0.7324. Next, after calcu-
lating one DFCw matrix per time window w we reordered
all of them according to the optimal SC partition and cal-
culated, for all modules separately, rmw , i.e. the link-to-link
correlation as a measure for the similarity between SCm and
the different DFCmw, one per time window (figure 2). In par-
ticular, we first considered � = 8 and averaged the measure-
ment across all the DFCw for the different time windows (see
caption of Fig.3). Moreover, we also studied, the variabil-
ity in DFCw matrices across time windows; to this aim we
measured the pairwise spectral distance Δmw,w′ within each
module m and time windows w and w′, and this was aver-
aged over all pairs (w,w′). As illustrated in Figure 3 the
analysis of SC-DFC similarity across the different modules
revealed the existence of an outlier, module 1, which had a
similarity value of rm > 0.7, in contrast to the rest of modules
whose similarity was lower than 0.55. The anatomy of mod-
ule 1 is shown in table 1; remarkably, it is formed majorly
by posterior cerebellar structures. On the other extreme, the
lowest SC-DFC similarity was reported for module 14, with
rm < 0.4 for all time-window lengths. Importantly, as shown
in Table 1, this module is also formed by another part of the
cerebellum (its anterior part), together with other structures
such as the brain stem, the fusiform and part of the lingual
cortex.

In addition to the SC-DFC similarity, we quantified the
amount of DFC variability and found that module 11 –that
is composed of several cortical structures, including the cal-
carine, middle and inferior temporal, lingual and precuneus
(table 1)– exhibited the highest variability across time.

Figure 3A shows that, by looking to both metrics simulta-
neously, rm and Δm, both modules 1 and 14 had considerably
smaller values ofΔm than module 11, indicating that the cere-
bellar structures, as compared to others in the cerebrum, show
much less DFC variability across time. Figure 3A represents
mean values across windows and the histograms of possible
values are shown in Figure 3B. The brain localization of these
three modules is explicitly shown in Figure 3C.

Next, we asked whether our findings of the three modules
obtained for a window length of � = 8 were robust when
varying the window over which DFCw was calculated. In
particular, we performed again all measurements for the fol-
lowing values of window lengths: � = {4, 5, 7, 8, 10, 25}.
Results are represented in Figure 4.

Overall, the finding of three different outlier modules was
preserved. In particular, modules 1 and 14, maintained their
roles independently of the window length.

On the other hand, when looking along different window
lengths at module 11 –that in figure 3 had the highest DFC
variability– we noticed that this behavior was more variable
across time windows, and modules 2 and 11 can interchange
their position.

Finally, in addition to assess DFC by calculating the pair-
wise Pearson’s correlation between node time series, we
also assessed DFC by taking into consideration synchro-
nization metrics. In particular, by obtaining the Hilbert
transform of the node time series x(t), and denoting it as
x̂(t) ≡ {x}(t), we calculated the complex analytical sig-
nal as x(t) + ix̂(t) ≡ A(t) exp (i�(t)), where A(t) and �(t)
are, respectively the instantaneous amplitude and the instan-
taneous phase of the analytical signal. Then, we obtained
DFCw matrices in two more different forms: (1) By cal-
culating the pairwise Pearson’s correlation between time
series of the instantaneous amplitude along different time
windows, and (2) by calculating the pairwise Kuramoto or-
der parameter, that for a window w of size � is defined as
�w(i, j) = |

|

|

1
�
∑

t∈w e
i(�i(t)−�j (t))|

|

|

, with | ⋅ | representing the
modulus of a complex number. Our results using these met-
rics from the analytical signal (not shown here) are almost
identical to those obtained in the main text relying on the
Pearson’s correlation, measured directly from the time series;
a similar equivalence between different ways to construct
functional matrices has been also reported by other authors
[38].

Discussion
We have assessed the relation between SC and DFC at

the level of structure-function modular organization using
brain networks at a high spatial resolution, covering the entire
brain with 2514 nodes of size equal of –on average– 20 voxels.
Through modularity maximization of the SC population ma-
trix, we obtained 14 non-overlapping structural modules that
were used to reorder all functional matrices. This was done
under the assumption that if segregated functions are associ-
ated with distinct structural modules, visualizing the DFCw
matrices in an ordering dictated by the structural one, might
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help to underline how SC constraints DFCw, a fundamental
question that remains not fully understood.

Next, we analyzed the level of SC-DFC similarity in
combination with the amount of DFC variability across time
for all the previously identified modules, and characterized
each module by the values of these two metrics. This allowed
us to identify three extreme (or outlier) cases: 1. The presence
of a fully cortical module that had the highest DFC variability;
2. The presence of a module at the posterior cerebellum
which had the highest SC-DFC similarity while keeping low
the DFC variability; 3. The presence of a module at the
anterior cerebellum connected to the brain stem, which had
the lowest SC-DFC similarity but also kept low the values of
DFC variability.

Therefore, a common finding is that cerebellar networks
have low variability in the DFC. The case of module 1, lo-
cated at the posterior cerebellum, is fully consistent with
another finding, namely, it has about twice more similarity
between SC and DFC as compared to the rest of the modules,
enabling the structure to constrain the dynamical connectivity.
However, how module 14 with such a low value of SC-DFC
similarity can keep the DFC variability low is more challeng-
ing to understand. On one side, in addition to the anterior
part of the cerebellum, module 14 is composed of the brain
stem which has vast connectivity to many other parts of the
brain and body through major tracts such as the corticospinal,
lemniscus, spinothalamic tracts [39]. Thus, by looking at
the intra-module similarities between SC and DFCw, as we
have done here, it is very possible that we ignored relevant
connectivity aspects from this module to the rest of the brain,
and for this reason, the measured value of intra-module SC-
DFC similarity might be underestimated. Moreover, it is well
known that the brain stem has a critical role in regulating
sleep cycles, cardiac and respiratory functioning. Perhaps,
such critical functions are not compatible with large DFC
variability, as occurs in cortical networks, but to fully clarify
this finding future research is needed.

It is important to emphasize that, in relation to the level of
SC-DFC similarity, our unsupervised method has identified
two distinct divisions within the cerebellum, the posterior
and the anterior parts. This turns out to be a well-known and
standard division of the cerebellum’s anatomy and functional-
ity, shown in humans and animals [40]. Moreover, although
the classical cerebellum division has grouped the lobules
from 1 to 5 into the anterior part [41], our results include the
lobule 6 in both the anterior and the posterior parts of the
cerebellum, in agreement with task functional MRI studies,
that found that cerebellar lobules 4-6 participated together in
sensorimotor tasks [42].

When scrutinizing the brain areas to which modules 1
and 14 connect both structurally and functionally (figure 5),
we found strong mutual connectivity between the anterior
and posterior parts of the cerebellum (table 2), which is in
agreement with previous work [40, 43]. Moreover, the ante-
rior part projects also to the motor cortex among other areas
as is also well established [41, 44, 45].

To further understand the functional roles of modules

1 and 14, we projected both modules to a highly detailed
cerebellar template [46, 47] and calculated their overlapping
with the highly popular resting-state networks [48]. We
found that module 1 overlapped with the default mode net-
work (22.8%) and the frontoparietal network (19.2%), while
module 14 did it with the somatomotor network (17.7%).
Moreover, both modules overlapped similarly with the ven-
tral attention network, with 13.3% of overlapping for module
1 and 10.5% for module 14. Thus, these results also show,
in another way, that both cerebellar modules are differenti-
ated but complementary, with the module 1 participating in
high order cognitive networks and the module 14 in senso-
rial networks, but both of them sharing their participation
in multimodal integration networks such as the ventral at-
tention [49]. The overlapping between the module 1 and
the frontoparietal network is also consistent with the fact
that the cerebellum areas Crus 1 and 2 – included in mod-
ule 1 – connect to the thalamus, and from here to prefrontal
areas. This might explain why when a motor task is more
difficult to perform, or simply it is a new task for the par-
ticipant, posterior cerebellar activation shows up together
with prefrontal activity to enhance cognitive monitoring of
participant’s performance [42, 50–53].

Finally, what makes the cerebellar module 1 to have the
dynamical functional connectivity constrained by the struc-
tural connectivity in such an extraordinary manner might
indicate distinct operational and computational principles oc-
curring in the cerebellum. Classically, cerebellar architecture
has been modeled in a feedforward manner, in contrast with
the highly recurrent circuits found in the cerebral cortices
(see [54] and references therein), enabling the cerebellum
to linearly integrate different inputs from other systems to
generate outputs according to previously learned information
patterns, following feedforward error-correction computa-
tions [55, 56]. Perhaps, such computational machinery
makes the cerebellum’s information processing more reli-
able, in agreement with our results of low variability in its
dynamical functional connectivity, but further research is
needed to shed light on these findings.

In summary, our findings show that cerebellar networks
have low variability of DFC as compared to other cerebrum
networks. Cerebellar networks have extremely rich and com-
plex anatomy and functionality [57], connecting to the brain-
stem and cerebral hemispheres, and participating in a large va-
riety of cognitive functions, such as movement coordination,
bimanual coordination performance [58], executive function,
visual-spatial cognition, language processing, and emotional
regulation [59, 60]. But, as far as we know, the statement
of low variability of the dynamical functional connectivity
together with the strong similarity between their correspond-
ing structural and functional networks of cerebellar networks
has not been reported before.
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List of Tables and Figures

Table 1
Brain anatomy for the three most relevant modules. Module 1, formed by posterior cerebellar structures, had the
highest SC-DFC similarity independently of windows lengths. Module 11 was one of the modules with higher DFC
variability along different windows, formed by several cortical regions. Module 14, with a relative DFC variability
across time windows, provided the lowest SC-DFC similarity independently of window lengths and included anterior
cerebellar structures, brain stem and cortical regions. For the three modules, we only reported overlapping indices
bigger than 5%.

Module 1 Module 11 Module 14

Cerebelum_Crus1 (%21.879) Calcarine_L (%19.2356) BrainStem (% 15.718)
Cerebelum_8 (%19.1888) Temporal_Mid_R (%15.601) Cerebelum_6 (%15.2804)
Cerebelum_Crus2 (%15.4499) Lingual (%14.3722) Fusiform (%14.2614)
Cerebelum_9 (%7.8111) Temporal_Inf_R (%10.07) Cerebelum_4_5 (%14.031)
Cerebelum_6 (%7.0914) Precuneus (%8.6727) Lingual (%10.1075)

Cuneus (%6.1875)

Table 2
Functional and structural connectivity of modules 1 and 14 to rest of the brain. Notice that the two modules
connect both functionally and structurally to one another. Module 14 also connected bilaterally to the anterior part of
the paracentral lobule (2.65% of overlapping index), which is part of the supplementary motor cortex (see figure 5).

FC (Module 1) SC (Module 1)

Temporal_Inf (% 14.1851) Temporal_Inf (% 12.9084)
Fusiform (% 12.2463) Fusiform (% 11.7059)
Lingual (% 10.1058) Lingual (% 9.4173)
Occipital_Mid (% 8.9656) Cerebelum_6 (% 8.6846)
Cerebelum_6 (% 8.4921) BrainStem (% 7.8873)
Cerebelum_4_5 (% 6.1129) Cerebelum_4_5 (% 7.3657)
BrainStem (% 5.9853) Temporal_Mid (% 6.8572)
Occipital_Inf (% 5.6888) Occipital_Inf (% 5.5512)

FC (Module 14) SC (Module 14)

Cerebelum_8 (% 7.0071) Cerebelum_8 (% 7.5645)
Cerebelum_Crus1 (% 6.6914) Cerebelum_Crus1 ( % 7.3713 )
Temporal_Inf (% 5.8074) Cerebelum_Crus2 (% 6.0049)
Calcarine (% 5.6633) Temporal_Inf (% 5.3522)
Cerebelum_Crus2 (% 5.5094) Temporal_Sup (% 5.08981)
Lingual (% 5.0259)
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Figure 1: Neuroimage preprocessing pipeline. Triple acquisitions were performed per each participant: High-resolution anatomical
images (T1), functional images at rest (fMRI) and diffusion tensor imaging (DTI). Following a state-of-the-art pipeline of
neuroimaging preprocessing, we obtained time series of the blood oxygenation level-dependent (BOLD) signal for each network
node and number of streamlines between pairs of nodes. Finally, for the comparison of SC and DFC, we re-ordered DFC according
to the results after modularizing SC. Here, DFC refers to any generic window length.
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Figure 2: Sketch for assessing SC-DFC similarity and DFC variability module by module. Per each participant p, we obtained
one SC matrix and a sequence of W matrices of DFCw. After maximization of modularity in the SC, we obtained M=14 modules,
marked with squares at different colors and represented in the brain with the most representative slice for each one. All DFCw
matrices were reordered using the structural modules. Next, the SC-DFC similarity was approached within each module m
separately, by calculating the Pearson correlation between vectorwise representations of matrices SCm and DFCmw. The DFC
variability along different time windows was assessed by calculating the pairwise spectral distance between matrices DFCmw and
DFCmw′ . Modules 1, 5, 7, 9, 11 and 14 were bilateral; Modules 2, 4, 6, 8 and 13 were mainly located in the right hemisphere;
Modules 3, 10 and 12 were mainly located in the left hemisphere. The sizes of the modules Nm, measured in number of network
nodes per module, were respectively, 176, 404, 197, 168, 180, 2, 171, 191, 251, 191, 262, 189, 1 and 131.
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Figure 3: The amount of DFC variability and SC-DFC similarity define three outlier modules. A: For all SC structural modules,
we plotted their representation in the plane (rm,Δm), from which we detected three outlier cases: Module 1 (with the highest
rm value, red arrow), module 11 (with the highest Δm value, green arrow) and module 14 (with the lowest rm, blue arrow). The
points represent the averaged values of rm and Δm over all FC matrices corresponding to different time windows. B: Probability
distribution of all values of rm and Δm, obtained at different windows. C: Anatomical representation of three modules. A,B,C:
Results for a window length of �=8, that for non-overlapping windows and a total number of 200 time points, it resulted in 25
different windows over which DFCmw was calculated.
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Figure 4: Robustness of the three relevant scenarios for different window lengths. The characteristics of modules 1 and 14,
namely, to have respectively the highest and lowest value of rm whilst keeping a low value of Δm, preserved independently on the
value of window length �. However, the module 11, that in figure 3 had the highest value of Δm, now this role switches between
the module 2 and 11 when changing �. Importantly, the two invariant modules 1 and 14 are both parts of the cerebellum.
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Figure 5: Structural and functional connections from the cerebellar networks to the rest of the brain. A: Structural (top row)
and functional (bottom row) projections from module 1 (posterior part of the cerebellum, marked here with a black thick line
surrounding the module) to the rest of the brain. B: Similar to panel A, but for module 14, formed by the anterior cerebellum and
brain stem. A,B: Notice that both modules 1 and 14 strongly connect to one another (functionally and structurally), but module
14 also projects to motor cortex. Normalized strength accounts for the strength value of all connections arriving to a given node
from all the nodes belonging respectively to the module 1 (red, panel A) and to the module 14 (blue, panel B). For FC, we only
plotted values such that |FC| > 0.3.
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