1	
2	Erythropoietin production by the kidney and the liver in response to severe
3	hypoxia evaluated by Western blotting with deglycosylation
4	
5	Yukiko Yasuoka, ¹ , Takashi Fukuyama, ² , Yuichiro Izumi, ³ , Yushi Nakayama,. ³ , Hideki Inoue,
6	³ , Kengo Yanagita, ⁴ , Tomomi Oshima, ¹ , Taiga Yamazaki, ² , Takayuki Uematsu, ² , Noritada
7	Kobayashi, ² , Yoshitaka Shimada, ⁵ , Yasushi Nagaba, ⁵ , Masashi Mukoyama, ³ , Tetsuro
8	Yamashita, ⁶ , Yuichi Sato, ⁴ , Katsumasa Kawahara, ¹ , Hiroshi Nonoguchi, ^{5,*}
9	
10	¹ Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-
11	ku, Sagamihara, Kanagawa 252-0374, Japan
12	² Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto,
13	Saitama 364-8501, Japan
14	³ Department of Nephrology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo,
15	Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
16	⁴ Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, 1-
17	15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
18	⁵ Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto,

- 19 Saitama 364-8501, Japan
- ²⁰ ⁶Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate
- 21 University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- 22
- 23 *Corresponding author
- 24 Hiroshi Nonoguchi, M.D., Ph.D.
- 25 Division of Internal Medicine, Kitasato University Medical Center, 6 -100 Arai, Kitamoto,
- 26 Saitama 364-8501, Japan
- 27 E-mail: nono@insti.kitasato-u.ac.jp
- 28

3

30 Abstract

31	The detection of erythropoietin (Epo) protein by Western blotting has required pre-purification
32	of the sample. We developed a new Western blot method to detect plasma and urinary Epo using
33	deglycosylation. Epo in urine and tissue and erythropoiesis-stimulating agents (ESAs) in urine
34	were directly detected by our Western blotting. Plasma Epo and ESAs were detected by our
35	Western blotting after deglycosylation. The broad bands of Epo and ESAs were shifted to 22
36	kDa by deglycosylation except PEG-bound epoetin β pegol. The 22 kDa band from anemic
37	patient urine was confirmed by Liquid Chromatography/Mass Spectrometry (LC/MS) to contain
38	human Epo.
39	Sever hypoxia (7% O _{2,} 4 hr) caused a 400-fold increase in deglycosylated Epo expression in rat
40	kidneys, which is consistent with the increases in both Epo gene expression and plasma Epo
41	concentration. Immunohistochemistry showed Epo expression in nephrons but not in interstitial
42	cells under control conditions, and hypoxia increased Epo expression in interstitial cells but not
43	in tubules.
44	These data show that intrinsic Epo and all ESAs can be detected by Western blot either directly
45	in urine or after deglycosylation in blood, and that the kidney is the main and sole site of Epo
46	production in control and severe hypoxia. Our method will completely change Epo doping and
47	detection.

4

48

49 Introduction

50	Anemia is one of the most common diseases in humans [1]. Severe anemia and hypoxia
51	stimulate the production of erythropoietin (Epo) by the kidney [2-8]. The increase in Epo
52	production is measured by the increases in serum and urine Epo concentrations and in Epo
53	mRNA expression in the kidney [4-11]. Serum or urine Epo concentrations have been measured
54	by radio immunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA) using antibodies
55	against Epo [4, 9-12]. However, Epo protein expression in the kidney or liver has not been
56	measured accurately, since Western blotting of Epo has not been possible. Serum/urine Epo
57	concentrations, and Epo mRNA and HIF1 $\alpha/2\alpha$ expressions in the kidney and liver have been
58	used as a substitute for Epo protein expression in the kidney and liver [4-13]. However, the
59	increase of kidney-produced Epo has not been shown to increase to the same degree. This
60	suggest the possibility that Epo production by the liver may have some role for the increase of
61	Epo production in response to severe hypoxia [2, 3, 14].
62	The discovery of Epo led to the invention of erythropoiesis stimulating agents (ESAs) to
63	treat anemic patients with chronic kidney disease (CKD) [15-17]. ESAs have also been illegally
64	used by athletes to improve physical activity, leading to tests for doping [18]. The World Anti-
65	Doping Agency (WADA) Technical Documents for Epo (TD2014EPO in TD2019INDEX)

66	recommended the use of isoelectrical focusing (IEF) and/or SAR-PAGE after enrichment for
67	Epo through ultrafiltration, selective protein precipitation or immunopurification to detect Epo in
68	the urine or serum/plasma [19]. ELISA or Liquid Chromatography/Mass Spectrometry (LC/MS)
69	after the pre-purification of urine are also useful. These recommendations clearly show that the
70	detection of Epo by Western blotting is difficult.
71	We have reported a new method of Western blot analysis succeeding in the detection of
72	kidney-produced Epo [20]. We have reported that Epo is produced by the cortical nephrons in
73	control condition using in situ hybridization, immunohistochemistry and real time PCR with
74	microdissected nephron segments. We also showed that Epo production by the intercalated
75	cells of the collecting ducts is regulated by renin-angiotensin-aldosterone system [20]. We
76	modified our method to detect plasma and urinary Epo. We report the new Western blot method
77	for the detection of Epo protein in the plasma or urine. Using our new method, we investigated
78	the role of kidney and liver for Epo production in response to severe hypoxia.
79	
80	Methods
81	
82	Materials and animals
83	Male Sprague Dawley rats (Japan SLC, Hamamatsu, Japan) were used in our study. In

6

84	the severe hypoxia experiments, rats were exposed to 7% O_2 and 93% N_2 for 1-4 hr, which is
85	known to stimulate rapid Epo production and is closer to the conditions at the summit of Mount
86	Everest [9, 21]. For the detection of ESAs in plasma and urine, large doses of ESAs were
87	administered to some rats through the vena cava, and plasma and urine were collected after 30
88	min from the aorta and bladder, respectively. Animal experiments were conducted in accordance
89	with the Kitasato University Guide for the Care and Use of Laboratory Animals and were
90	approved by the Institutional Animal Care and Use Committee (Approval No. 2018-030, 25-2).
91	Blood and urine were collected from patients with CKD who received ESAs and from patients
92	with severe anaemia. Urine was concentrated using a Vivaspin (GE Healthcare Bio-Science AB,
93	Sweden). Our protocols were checked and approved by the above committee and the Ethics
94	Committee at Kitasato University Medical Center (25-2, 2018032, 2019029). Informed consent
95	was obtained from all patients.
96	
97	Real-time PCR in control and hypoxic rats
98	The renal cortex and liver were collected from control and hypoxic rats. RNA was

100 using a Takara PrimeScript[™] II 1st strand cDNA Synthesis Kit (Takara, 6210). Real-time PCR

99

extracted using the RNeasy Mini Kit (Qiagen, 74106) and Qiacube. cDNA was synthesized

101 was performed using probes from Applied Biosystems and Premix Ex Taq (Takara, RR39LR).

102	Probes were obtained from Applied Biosystems (Epo, Rn01481376_m1; HIF2α,
103	Rn00576515_m1; HIF1α, Rn01472831_m1; PHD2, Rn00710295_m1, Thermo Fisher Scientific,
104	USA). β-actin (Rn00667869_m1) was used as an internal standard.
105	
106	Western blot analysis
107	Western blot analysis was performed as described previously [20, 22]. Protein was
108	collected from the renal cortex and liver using CelLytic MT (Sigma-Aldrich, C-3228) plus
109	protease inhibitor (Roche, 05892970001). Urine samples were obtained from rats injected large
110	doses of ESAs 30 min before the collection and from anemic patients. Plasma was obtained from
111	rats injected large amount of ESAs and from patients with iron deficiency anaemia or CKD. An
112	anemic patient was treated by iron supplementation and blood was collected at severe and mild
113	anemia and after complete recovery. Blood was also collected form CKD patients who were
114	treated by the injection of epoetin β pegol and control subject. Informed consent was obtained
115	from all patients. Urine samples were concentrated by Vivaspin (GE Healthcare Bio-Science
116	AB) and used for western blot. Plasma samples were used directly or after deglycosylation as
117	described below. After SDS-PAGE, proteins were transferred to a PVDF membrane
118	(Immobilon-P, Merck Millipore, IPVH00010) with 160 mA for 90 min. The membrane was
119	blocked with 5% skim milk (Morinaga, Japan) for 60 min and incubated with the antibody

8

120	against Epo (Santa Cruz, sc-5290, 1:500-2,000) for 60 min at room temperature. After washing,
121	the membrane was incubated with a secondary antibody (the goat anti-mouse IgG (H+L)
122	(Jackson ImmunoResearch Laboratories, 115-035-166, 1:5,000) for 60 min. Bands were
123	visualized by the ECL Select Western Blotting Detection System (GE Healthcare Bio-Science
124	AB, RPN2235) and LAS 4000 (Fujifilm). The band intensity was normalized against that of β -
125	actin (MBL, M177-3), which was measured after stripping and reprobing the membrane
126	(stripping solution, Wako, RR39LR). In some experiments, another antibody against Epo (clone
127	AE7A5, MAB2871, R & D Systems) was used to compare the specificity of the antibody.
128	
129	Deglycosylation study
130	Since the Epo protein is a glycosylated protein, deglycosylation was performed. N-
131	glycosidase F (PNGase, Takara, 4450) was used as previously reported [22]. In brief, a mixture
132	of 7.5 μ l of plasma, 2.5 μ l of water, and 1 μ l of 10% SDS was boiled for 3 min. Then, 11 μ l of 2x
133	stabilizing buffer was added, and 2 μl of PBS or PNGase was added. The samples were
134	incubated in a water bath at 37°C for 15-20 hr. After incubation, the samples were spun down,
135	and the supernatant was collected. For urine analysis, 7.5 μ l – 30 ml of urine was used either

137 added and boiled for 3min. The subsequent steps were the same as those performed for plasma.

138	In the kidney and liver samples, 10 μ l samples were treated in the same manner as urine. The 2x
139	stabilizing buffer contained 62.5 mM Tris-HCl (pH 8.6), 24 mM EDTA, 2% NP-40 and 4% 2-
140	mercaptoethanol.
141	
142	Plasma Epo concentration measurements
143	Plasma and urine were collected from control and hypoxic rats. Plasma, serum and urine
144	were also collected from patients with renal anaemia treated with ESAs or from patients with
145	iron-deficient anaemia. Plasma, serum and urine Epo concentrations were measured by CLEIA
146	(SRL, Tokyo, Japan, using Access Epo by Beckman Coulter, Brea, USA).
147	
148	Immunohistochemistry of Epo production sites
149	Immunohistochemistry (IHC) of Epo expression was performed in control and severe
150	hypoxic rats as previously reported [20, 23, 24]. A polyclonal antibody against the same
151	sequences as sc-5290 was used, namely, sc-7956. Images were obtained using an optical
152	microscope (Axio Imager. M2, Carl Zeiss, Oberkochen, Germany) with a digital camera
153	(AxioCam 506, Carl Zeiss). Captured images were analysed using an image analysis system
154	(ZEN 2, Carl Zeiss).

10

156 *LC/MS analysis of band from western blot*

157	The 22 kDa band of the western blot was excised and subjected to LC/MS as previously
158	reported [25]. Negative staining was used to detect deglycosylated recombinant Epo. The
159	negatively stained protein bands were excised from the SDS-PAGE gel, and in-gel tryptic
160	digestion was carried out using ProteaseMAX reagent (Promega, WI, USA) according to the
161	manufacturer's protocol. The peptides were separated by L-column2 ODS (3 $\mu m,$ 0.1 x 150 mm,
162	CERI, Tokyo, Japan) at a flow rate of 500 nl/min using a linear gradient of acetonitrile (5% to
163	45%). Nano-LC-MS/MS analyses were performed with an LTQ-Orbitrap XL mass spectrometer
164	(Thermo Fisher Scientific, MA, USA) as previously described [25].

165 Statistical analyses

- 166 Statistical analyses were performed using Excel Statics (BellCurve, Tokyo, Japan). Statistical
- 167 significance was analysed using ANOVA and multiple comparison with Dunnett test, or non-
- 168 parametric analysis by the Kruskal-Wallis test and multiple comparisons by the Shirley-Williams
- 169 test. P<0.05 was considered statistically significant.

170

171 Results

172

- 173 Detection of Epo protein
- 174 We have reported that our western blot recognized hypoxic rat kidney Epo protein and
- the deglycosylated protein at 34-43 and 22 kDa, respectively. The specificity of sc-5290 was
- better than that of AE7A5 (Fig. 1A, B). ESAs were also detected by Western blot, and
- 177 deglycosylation caused a shift of the bands to 22 kDa, except for that of epoetin β pegol (Fig.
- 178 2A1, A2). The deglycosylated band at 22 kDa showed a 10-100 times lower limit of detection
- than the non-deglycosylated band at 34-43 kDa (Fig. 2B1, 2B2).

180

181 Detection of Epo protein and ESAs in urine

182	The direct analysis (green line) and incubation with deglycosylation buffer (blue line) of
183	anemic patient's urine both volume-dependently showed an Epo protein band at 36-40 kDa.
184	Deglycosylation (red line) shifted the bands to 22 kDa (Fig. 2C). Epoetin α (lane 1) and
185	darbepoetin (lane 2) were detected by the direct application of rat urine after bolus injection.
186	Epoetin β pegol (lane 3) was not detected, probably due to its limited excretion into the urine
187	(Fig. 2D).
188	
189	Detection of Epo protein and ESAs in plasma
190	The direct analysis of plasma from control and hypoxic rats by Western blotting showed
191	no band (Fig. 3A, green line). Incubation of the plasma with deglycosylation buffer showed
192	bands at 34-43 kDa in 4-hr hypoxic rats but not in control rats (Fig. 3A, blue line).
193	Deglycosylation shifted the broad band at 34-43 kDa to 22 kDa (Fig. 3A, red line). Next, direct
194	analysis of plasma from anemic patient also showed no band (Fig. 3B, green line). Incubation of
195	the plasma with deglycosylation buffer showed a broad band at 36-40 kDa only in the case of
196	severe anemia (Fig. 3B, lane 1, blue line). The partial recovery of anemia caused a faint band at
197	36-40 kDa, and complete recovery revealed no broad band at approximately 36-40 kDa.
198	Deglycosylation caused an intense band at 22 kDa in anemia, and partial recovery of anemia
199	caused a very faint band at 22 kDa (Fig. 3B, red line). No band was observed at 22 kDa after

13

200 complete recovery.

201	The detection of ESAs in plasma was tested in rats after the intravenous injection of large
202	doses of ESAs. The plasma Epo concentration was more than 100 times higher than under severe
203	hypoxia. In this condition, epoetin α and epoetin β pegol were detected by the direct analysis of
204	plasma (Fig. 3C, green line). The band of darbepoetin overlapped with the non-specific band,
205	which was removed by the incubation of plasma with deglycosylation buffer (Fig. 3C, blue line).
206	The bands of epoetin α and darbepoetin were shifted to 22 kDa by deglycosylation (Fig. 3C, red
207	line). The band of epoetin β pegol shifted from 95-120 to 80-95 kDa. In contrast, no band
208	representing epoetin β pegol was detected by the direct analysis of plasma from anemic CKD
209	patients (Fig. 3D, green line). The incubation of plasma with deglycosylation buffer induced the
210	appearance of a band at 95-120 kDa (Fig. 3D, lane 1 in blue line), which was shifted to 80-95
211	kDa by deglycosylation (Fig. 3D, lane 1 in red line).
212	
213	Detection of Epo protein by LC/MS
214	To confirm that the band at 22 kDa is Epo protein, the 22 kDa band of recombinant

human Epo and anemic patient's urine were excised and analysed by LC/MS (Fig. 4A, B).

- 216 Seven, and three peptide sequences of human Epo protein (sequence coverage 20% and 12%)
- 217 were identified in the sample of recombinant human Epo and anemic patient, respectively

14

218 (Table. 1). Recombinant rat Epo was also identified by LC/MS (Table. 1).

219

220 Epo protein expression in hypoxia

221	Epo mRNA and protein expression in the kidney and liver in hypoxia were examined in
222	rats. HIF1 α , HIF2 α and Epo mRNA expression in the kidney reached a maximum at 2 hr after
223	hypoxia, and PHD2 mRNA expression in the kidney reached its maximum at 4 hr (Fig. 5A-D).
224	Epo mRNA showed a 200-fold increase in the kidney with no changes in the liver. (Fig. 5A).
225	The plasma Epo concentration showed a 600-fold increase at 4 hr compared with zero time (Fig.
226	5E). Epo protein expression in the kidney reached its maximum at 4 hr, while the changes in Epo
227	protein expression in the liver were small (Fig. 6A, B). Ususal Western blot showed an
228	approximately 10-fold increase in Epo protein expressions in the kidney, respectively (Fig. 6A,
229	B). Incubation of the kidney samples with deglycosylation buffer without PNGase made the
230	bands clear and the increase of Epo protein expression reached 20-fold increase (Fig. 6C, D). In
231	contrast, deglycosylated Epo protein expression showed an approximately 400-fold increase
232	(Fig. 6C, F), which is very close to the changes in plasma Epo concentration. A very faint band
233	of deglycosylated Epo was observed in the hypoxic liver (Fig. 6E, F).
234	

235 Immunohistochemical Epo protein expression

236	Immunohistochemistry showed that renal proximal and distal tubules in the cortex were
237	weakly stained under basal conditions (proximal tubules < thick ascending limbs, distal
238	convoluted tubules) (Fig. 7A, C). Severe hypoxia caused increased Epo staining of the interstitial
239	cells around proximal tubules in the deep cortical area but decreased staining in tubular cells, as
240	in our previous report using in situ hybridization (Fig. 7B, D).
241	
242	Discussion
243	We detected Epo protein and ESAs by the combination of usual Western blotting and
244	LS/MS for the first time. Using a new method of Western blotting, we succeeded in the detection
245	of urinary Epo and ESAs. However, intrinsic Epo and ESAs in plasma could not be detected
246	even by our Western blot. The incubation of plasma in deglycosylation buffer resulted in the
247	appearance of bands at 34-43 kDa, and deglycosylation caused a shift of those bands to 22 kDa,
248	except for that of epoetin β pegol (CERA). LC/MS analysis of the 22 kDa band from anemic
249	patient's urine revealed human Epo. The sensitivity of our Western blotting is higher than that of
250	LC/MS.
251	One of the findings of our new method is that detection limit of Epo protein is increased
252	by deglycosylation. Detection limit of glycosylated and deglycosylated recombinant human Epo
253	was 370 and 37 pg, respectively (Fig 2B1). The detection limit of deglycosylaed recombinant rat

254	Epo was 3.7 pg (Fig 2B2). Therefore, the deglycosylation increased the detection limit of Eo by
255	10-100 times. Therefore, accurate quantitative estimates of Epo can be obtained by measuring
256	deglycosylated Epo. Although Epo is detected directly in the urine, the estimation of
257	deglycosylated Epo in the urine would be more accurate.
258	Our new method will change the tests for Epo doping. Currently, Epo doping is detected
259	by IEF and/or SAR-PAGE or LC/MS after pre-purification of the samples [18, 19]. Our method
260	does not require any pre-purification of the samples. Concentrated urine can be used directly for
261	Western blotting. Blood samples should be deglycosylated to reduce non-specific bands.
262	Intrinsic Epo and ESAs are distinguished simply by band size. To completely confirm the
263	presence of ESAs, cut gels should be checked by LC/MS. More than 1-2 ng of Epo was required
264	to detect Epo by LC/MS, while the detection limit of Epo by our Western blotting is 3.7-37 pg.
265	Since plasma or serum contains a lot of proteins, concentrated plasma becomes very high
266	osmolality and is difficult to use for Western blotting. In contrast, urine has usually no protein
267	except patients with CKD, concentrated urine can be used for Western blotting.
268	Our new method allowed conclusions regarding unsolved questions about the sites of Epo
269	production in response to severe hypoxia/anemia. Since the increase in Epo production in the
270	kidney was not high enough compared to the changes in plasma Epo concentration and gene
271	expression in the kidney, liver participation has been suggested [2-5, 14]. The difficulty of Epo

272	protein detection by Western blot was the main reason. We showed that deglycylation increased
273	the sensitivity of Epo detection by 10-100 times. Deglycosylated Epo expression showed a 400-
274	fold increase, which is very close to the change of Epo concentration in plasma. Deglycosylated
275	Epo expression in the hypoxic liver was very low. The increases of HIF1 α and HIF2 α mRNA
276	expression as well as Epo mRNA were observed in the hypoxic kidney but not in the hypoxic
277	liver. The increase of PHD2 mRNA expression and a large decrease of Epo mRNA expression
278	were observed in the kidney 4 hr after hypoxia. HIF2 α has a key role for Epo production and
279	PHD2 has a key role for the degradation of Epo [26-28]. These data clearly show that the kidney
280	is the main and sole site of Epo production in response to severe hypoxia. Although plasma Epo
281	is very low in normal rats and humans, control rat kidneys showed deglycosylated Epo
282	production, and immunohistochemistry showed Epo production in the cortical nephrons. Mujais
283	and colleagues reported Epo mRNA expression in renal tubules using microdissected nephron
284	segments in cobalt chloride-injected rats [29]. We have previously shown that fludrocortisone
285	stimulated Epo production by the intercalated cells of the collecting ducts [20]. Our
286	immunohistochemistry also showed that kidney interstitial cells respond to severe hypoxia by
287	producing Epo. Yamamoto and colleagues showed that the site of Epo production by severe
288	anemia is the interstitial cells using EPO promoter-driven GFP expression [8, 13]. Since 27
289	kDa GFP goes into nucleus, they may have overestimated the role of Epo production by

290	interstitial cells in severe anemia. Since the cytoplasm of interstitial cells is very pale, Epo
291	production by interstitial cells under hypoxia may not be as strong as expected. These data show
292	that kidney nephrons produce Epo under control conditions and that kidney interstitial cells
293	produce Epo in response to severe hypoxia or anaemia.
294	In conclusion, our data showed that Epo protein can be detected in urine and tissue
295	samples by direct Western blot analysis and in blood after deglycosylation. Our data also showed
296	that the kidneys have dual Epo production systems, low production by the nephron under normal
297	conditions and hypoxia or anemia-induced high production by the interstitial fibroblast-like cells,
298	and that the kidney is the main and sole site of Epo production in response to hypoxia or
299	anaemia. Our method will fundamentally change Epo doping and detection.

19

300 References

301 1. Lopez A, Cacoub P, MacDougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet 2016;387: 907-916. Pmid 26314490 3022. Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 303 2013:27: 41-53. Pmid 23291210 304 305 3. Koury MJ, Haase VH. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat. Rev. Nephrol. 2015;11: 394-410. pmid 26055355 306 4. Kobayashi H, Lui Q, Binns TC, et al. Distinct subpopulations of FOXD1 stroma-derived 307 cells regulate renal erythropoietin. J. Clin. Invest. 2016;126: 1926-1938. pmid 27088801 308 5. Koury ST, Bondurant MC. Koury MJ. Localization of erythropoietin synthesizing cells in 309 murine kidneys by in situ hybridization. Blood 1988;71: 524-527. pmid 3337914 310Lacombe C, Da Sliva JL, Bruneval P, et al. Peritubular cells are the site of erythropoietin 3116. 312synthesis in the murine hypoxic kidney. J. Clin. Invest. 1988;81: 620-623. pmid 3339134 Semenza GL, Koury ST, Nejfelt MK, Gearhart JD, Antonarakis SE. Cell-type-specific 3137. and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. 314315Proc. Natl. Acad. Sci. U. S. A. 1991;88: 8725-8729. pmid 1924331 Pan X. Suzuki N, Hirano I, et al. Isolation and characterization of renal erythropoietin-3168. producing cells from genetically produced anemia mice. PLoS One 2011;6: e25839. pmid 317

319	9.	Eckardt KU, Dittmer J, Neumann R, Bauer C, Kurtz A. Decline of erythropoietin
320		formation at continuous hypoxia is not due to feedback inhibition. Am. J. Physiol.
321		1990;258: F1432–F1437. pmid 2337157
322	10.	Tan CC, Eckardt KU, Firth JD, Ratcliffe PJ. Feedback modulation of renal and hepatic
323		erythropoietin mRNA in response to graded anemia and hypoxia. Am. J. Physiol.
324		1992;263: F474–F481. pmid 1415576
325	11.	Lundby AK, Keiser S, Siebenmann C, Schaffer L, Lundby C. Kidney-synthesized
326		erythropoietin is the main source for the hypoxia-induced increase in plasma
327		erythropoietin in adult humans. Eur. J. Appl. Physiol. 2014;114: 1107-1111. pmid
328		24531592
329	12.	Eckardt KU, Kurtz A, Hirth P, Scigalla P, Wieczorek L, Bauer C, et al. Evaluation of the
330		stability of human erythropoietin in samples for radioimmunoassay. Klin. Wochenschr.
331		1988;66: 241–245. pmid 3367616
332	13.	Obara N. Suzuki N, Kim K, et al. Repression via the GATA box is essential for tissue-
333		specific erythropoietin gene expression. Blood 2008;111: 5223-5232. pmid 18202227
334	14.	Fried W. The liver as a source of extrarenal erythropoietin production. Blood 1972;40:
335		671–677. pmid 4637502

21

337	15.	Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J. Biol. Chem.
338		1977;252: 5558–5564. pmid 18467
339	16.	Jacobs K, Shoemaker C, Rudersdorf R, et al. Isolation and characterization of genomic
340		and cDNA clones of human erythropoietin. Nature 1985;313: 806-810. pmid 3838366
341	17.	Kalantar-Zadeh K. History of erythropoiesis-stimulating agents, the development of
342		biosimilars, and the future of anemia treatment in nephrology. Am. J. Nephrol. 2017;45:
343		235–247. pmid 28142147
344	18.	Reichel C. Recent developments in doping testing for erythropoietin. Anal. Bioanal.
345		Chem. 2011;401: 463–481. pmid 21637931
346	19.	Harmonization of analysis and reporting of erythropoiesis stimulating agents (ESAs) by
347		electrophoretic techniques (TD2014ZEPO) in WADA Technical Document
348		(TD2019INDEX), 2019
349	20.	Yasuoka Y, Izumi Y, Nagai T, et al. Fludrocortisone stimulates erythropoietin
350		production in the intercalated cells of the collecting ducts. Biochem. Biophys. Res.
351		Commun. 2018;503: 3121–3127. pmid 30146260
352	21.	Grocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE. Arterial
353		blood gases and oxygen content in climbers on Mount Everest. N. Engl. J. Med.
354		2009;360: 140–149. pmid 19129527

355	22	Nonoguchi H, Owada A, Kobayashi N, et al. Immunohistochemical localization of V2
356		vasopressin receptor along the nephron and functional role of luminal V2 receptor in
357		terminal inner medullary collecting ducts. J. Clin. Invest. 1995;96: 1768-1778. pmid
358		7560068
359	23.	Yasuoka Y, Sato Y, Healy J, Nonoguchi H, Kawahara K. pH-sensitive expression of
360		calcium-sensing receptor (CaSR) in type-B intercalated cells of the cortical collecting
361		ducts (CCD) in mouse kidney. Clin. Exp. Nephrol. 2015;19: 771–782. pmid 25500736
362	24.	Nagai T, Yasuoka Y, Izumi Y, et al. Reevaluation of erythropoietin production by the
363		nephron. Biochem. Biophys. Res. Commun. 2014;449: 222-228. pmid 24832733
364	25.	Takahashi D, Kawamura Y, Yamashita T, Uemura M. Detergent-resistant plasma
365		membrane proteome in Oat and Rye: similarities and dissimilarities between two
366		monocotyledonous plants. J. Proteome Res. 2012;11: 1654–1665. pmid 22191623
367	26.	Rosenberger C. Expression of hypoxia-inducible factor1 and -2 in hypoxic and ischemic
368		rat kidneys. J. Am. Soc. Nephrol. 2002;13: 1721-1732. pmid 12089367
369	27.	Paliege A, Rosenberger C, Bondke A, et al. Hypoxia-inducible factor-2alpha-expressing
370		interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-
371		inducible factor stabilization. Kidney Int. 2010;77: 312–318. pmid 20016470
372	28.	Lee FS, Percy MJ. The HIF pathway and erythrocytosis. Annu. Rev. Pathol. 2011;6:

- 373 165–192. pmid 20939700
- 29. Mujais SK, Beru N, Pullman TN, Goldwasser E. Erythropoietin is produced by tubular
- cells of the rat kidney. Cell Biochem. Biophys. 1999;30: 153–166. pmid 10099826

24

376 Figure Legends

377	Fig. 1. Comparison of AE7A5 and sc-5290. A. Plasma and concentrated urine from anemic
378	patients were used for western blotting with or without deglycosylation. Although both AE7A5
379	and sc-5290 recognize Epo at 34-43 and 22 kDa, the specificity of sc-5290 was better than that
380	of AE7A5 especially after deglycosylation. B. The kidney cortex from hypoxic rats were used
381	for western blotting. Although a 34-43 kDa band by sc-5290 became pale after deglycosylation,
382	same band by AE7A5 remains strong after deglycosylation. hEpo; recombinant human Epo,
383	rEpo; recombinant rat Epo.
384	Fig.2. Detection of Epo and ESAs in urine by western blotting. A1. Expression of
385	recombinant human Epo and ESAs detected by Western blotting. Recombinant human Epo
386	shows a broad band at 34-43 kDa. Epoetin α and β , darbepoetin and epoetin β pegol gradually
387	increased in size. Deglycosylation shifted all human Epo and ESAs to 22 kDa except PEG-bound
388	epoetin β pegol. Lane 1: recombinant human Epo; Lane 2, epoetin α ; lane 3, epoetin β ; lane 4,
389	darbepoetin; and lane 5, epoetin β pegol. The left and right lanes of each peptide are without and
390	with deglycosylation, respectively. A2. Expression of rat (lane 6), mouse (lane 7) and human
391	Epo (lane 8). Rat, mouse and human Epo showed the same expression at 34-43 kDa, and
392	deglycosylation shifted all bands to 22 kDa. B1. Expression of recombinant human Epo in
393	glycosylated (blue line) and deglycosylated forms (red line). The detection limits of glycosylated

394	and deglycosylated human Epo were 370 and 37 pg, respectively. B2. The detection limit of
395	glycosylated and deglycosylaed recombinant rat Epo was 370 and 3.7 pg, respectively. C.
396	Detection of intrinsic Epo in human urine. Urine from anemic patient was applied to the western
397	blot: 2.3, 29 and 86 μ l samples of urine (Epo concentration 152 mIU/ml) were concentrated by
398	Vivaspin and used in lanes 1, 2 and 3, respectively. Deglycosylated Epo was observed in more
399	than 29 μ l of urine. A, B: glycosylated and deglycosylated recombinant human Epo,
400	respectively. Green lien, direct application; blue line, incubation with deglycosylation buffer; and
401	red line, after deglycosylation. D. Detection of ESAs in rat urine. Male SD rats (200 g) were
402	injected with epoetin α (600 µg), darbepoetin (4.5 µg) and epoetin β pegol (3.8 µg), and urine
403	was obtained after 30 min. The plasma Epo concentrations of each rat were 37,800, 29,400 and
404	527 mIU/ml for epoetin α , darbepoetin and epoetin β pegol, respectively. The direct analysis of
405	urine (5 μ l) showed a clear and broad band of epoetin α (sample 1) at 34-43 kDa. The band of
406	darbepoetin (sample 2) was pale and that of epoetin β pegol (sample 3) was not observed. The
407	band of darbepoetin became slightly clearer after the incubation of urine with deglycosylation
408	buffer (blue line). The bands of epoetin α and darbepoetin were shifted to 22 kDa. The
409	deglycosylated band of darbepoetin (sample 2 in red line) was clearer than the glycosylated
410	band. Since the rat urine samples were very small, the urine Epo concentration was not
411	measured. A and B: glycosylated and deglycosylated rat Epo, respectively.

412	Fig.3. Detection of Epo and ESAs in plasma. A. Detection of intrinsic rat Epo in control and
413	hypoxic rats. Although no bands were observed by in the direct analysis of plasma (2 μ l) (green
414	line), the incubation of plasma from hypoxic rats (7 μ l) with deglycosylation buffer (blue line)
415	resulted in the appearance of Epo bands at 34-43 kDa, which were shifted to 22 kDa by
416	deglycosylation (red line). Lanes 1-2, control rats. Lanes 3-4, hypoxic rats. The plasma Epo
417	concentrations in each rat were 0.7, 3.2, 356 and 645 mIU/ml, respectively. The green, blue and
418	red lines show direct application and incubation with deglycosylation buffer without and with
419	PNGase, respectively. B. Detection of intrinsic human Epo in the plasma of a patient with severe
420	anemia. Plasma was obtained under severe and mild anaemia and after recovery (plasma
421	haemoglobin levels were 5.5, 9.0, and 13.1 g/dl, respectively). No bands were observed with the
422	direct analysis of plasma (2 μ l). Incubation of plasma (5 μ l) with deglycosylation buffer revealed
423	the band at 36-40 kDa only under anemic conditions, and the bands were shifted to 22 kDa.
424	Plasma Epo concentrations were 1,200, 180, and 8.4 mIU/ml, respectively. A, B; glycosylated
425	and deglycosylated recombinant human Epo, respectively. C. Detection of ESAs in rats injected
426	with a large doses of ESAs. Male SD rats were injected with epoetin $\boldsymbol{\alpha}$, darbepoetin and epoetin
427	β pegol as described in Fig. 2D, and blood was obtained after 30 min. The bands of epoetin α
428	and epoetin β pegol were observed by the direct analysis of plasma (2 µl), while the band of
429	darbepoetin was obscured by a non-specific band (green line). Incubation of plasma (5 μ l) with

430	deglycosylation buffer reduced the non-specific band, and the band of darbepoetin became clear
431	(blue line). The bands of epoetin α and darbepoetin shifted to 22 kDa, while the band of epoetin
432	β pegol was slightly reduced in size (red line). A, B; glycosylated and deglycosylated
433	recombinant rat Epo, respectively. D. Detection of plasma ESA in patients. Plasma samples from
434	patients treated with epoetin β pegol and control subjects were subjected to western blotting. No
435	bands were observed by the direct analysis of plasma (2 μ l) (green line). The incubation of
436	plasma (3.5 μ l) with deglycosylated buffer revealed the band corresponding to epoetin β pegol in
437	patient 1 at 95-130 kDa (blue line). The band was shifted to 80-95 kDa by deglycosylation (red
438	line). The plasma Epo concentrations of each subject were 202, 13, and 7.5 mIU/ml,
439	respectively. Patient 1: serum creatinine 11.93 mg/dl, Hb 8.2, epoetin β pegol injection 3 days
440	before. Patient 2: serum creatinine 3.15 mg/dl, Hb 10.8 g/dl, epoetin β pegol injection 28 days
441	before. Patient 3: serum creatinine 0.73 mg/dl, Hb 15.1 g/dl, no injection. A, B: glycosylated and
442	deglycosylated recombinant human Epo, respectively. C, D: glycosylated and deglycosylated
443	epoetin β pegol, respectively.
444	Fig. 4. LC/MS detection of recombinant and intrinsic Epo. A,B. Deglycosylated
445	recombinant human Epo and urine samples of anemic patients were subjected to SDS-PAGE and
446	negative staining. The 22 kDa bands were excised and subjected to LC/MS. Although the
447	recombinant human Epo (8.3 ng) was analysed by negative staining (lane 3), no 22 kDa band

448	was observed in the human urine samples (concentrated from 3.1 ml of urine, lanes 1, 2, 4 and
449	5). C. Western blotting of urine sample used for LC/MS analysis. 12.5 μ l of concentrated urine
450	was used in Fig.C and 15μ l of concentrated urine was used for Fig. A. D. MS/MS spectra of
451	recombinant human Epo peptides: ⁷³ VNFYAWK ⁷⁹ . The red line shows the expected peptides,
452	and the black line shows the observed peptides.
453	Fig. 5. Effects of hypoxia on Epo mRNA expression in the kidney and liver. A-D. Effects of
454	severe hypoxia on the mRNA expression of Epo (A), HIF1 α (B), HIF2 α (C) and PHD2 (D) in
455	the kidney and liver. Severe hypoxia increased HIF1 α , HIF2 α and PHD2 mRNA expression
456	after 1 hr in the kidney, which was followed by an increase in Epo mRNA expression at 2 hr. All
457	of the above expressions levels decreased thereafter. In contrast, Epo mRNA expression in the
458	liver increased up to 4 hr, which was not related to the changes in HIF1 α , HIF2 α and PHD2
459	mRNA expression. n=3-4, K0, K1, K2 and K4; zero time, 1, 2 and 4 hr after the induction of
460	hypoxia in the kidney. L0, L1, L2 and L4: same time course in the liver. E. Changes in plasma
461	Epo concentration during severe hypoxia. The plasma Epo concentration significantly increased
462	after 3 hr. n=3-7. * p<0.05, **p<0.001 using ANOVA and multiple comparison with Dunnett's
463	test.
464	Fig. 6. Effects of hypoxia on Epo protein expression in the kidney and liver. A, C, E.

465 Western blot analysis of Epo expression in the kidney and liver. A typical gel is shown in Fig. A,

466	C and E, and the analysed data are shown in Fig. B, D and F. Severe hypoxia increased Epo
467	protein expression in the kidney at 4 hr by 10-fold but did not increase Epo protein expression in
468	the liver (A, B). n=4, * p<0.05. Western blot analysis of Epo protein expression after
469	deglycosylation in the kidney (C) and the liver (E). Glycosylated Epo protein expression
470	increased by 20-fold after 4 hr (D). Deglycosylated Epo expression was observed from zero time
471	to 4 hr. The expression increased by 400-fold after 4 hr (F), which was close to the changes in
472	the plasma Epo concentration (Fig. 5E). In contrast, Epo protein expression in liver did not
473	increase under hypoxia (E, F). n=4-6, * p<0.05 using the Kruskal-Wallis test and multiple
474	comparisons by the Shirley-Williams test.
475	Fig. 7. Immunohistochemical analysis of Epo protein expression in the kidney. Epo protein
475 476	Fig. 7. Immunohistochemical analysis of Epo protein expression in the kidney. Epo protein was observed in proximal and distal tubules at 21% O_2 (A, C). Severe hypoxia (7% O_2 , 4 hr)
476	was observed in proximal and distal tubules at 21% O_2 (A, C). Severe hypoxia (7% O_2 , 4 hr)
476 477	was observed in proximal and distal tubules at 21% O_2 (A, C). Severe hypoxia (7% O_2 , 4 hr) increased Epo protein expression in the interstitial cells (arrowhead) while slightly decreasing the
476 477 478	was observed in proximal and distal tubules at 21% O_2 (A, C). Severe hypoxia (7% O_2 , 4 hr) increased Epo protein expression in the interstitial cells (arrowhead) while slightly decreasing the
476 477 478 479	was observed in proximal and distal tubules at 21% O_2 (A, C). Severe hypoxia (7% O_2 , 4 hr) increased Epo protein expression in the interstitial cells (arrowhead) while slightly decreasing the expression in the tubules (B, D).
476 477 478 479 480	 was observed in proximal and distal tubules at 21% O₂ (A, C). Severe hypoxia (7% O₂, 4 hr) increased Epo protein expression in the interstitial cells (arrowhead) while slightly decreasing the expression in the tubules (B, D). Table. 1. A-C. LC/MS analysis of the 22 kDa band of recombinant human Epo (8.3 ng),

31

485 Acknowledgements

- 486 Our manuscript was edited for proper English language by NPG Language Editing Service
- 487 (4221-D9DA-8D07-E1B1-3D9P).
- 488 Funding
- 489 This study was supported by a Grant-in Aid for Scientific Research from the Ministry of
- 490 Education, Culture, Sports, Sciences and Technology of Japan (24591244, 26461259, 26893202,
- 16K19493, 16K08505, 17K16578 and 19K09226) and by the Science Research Promotion Fund
- 492 from the Promotion and Mutual Aid Corporation for Private Schools of Japan.

493

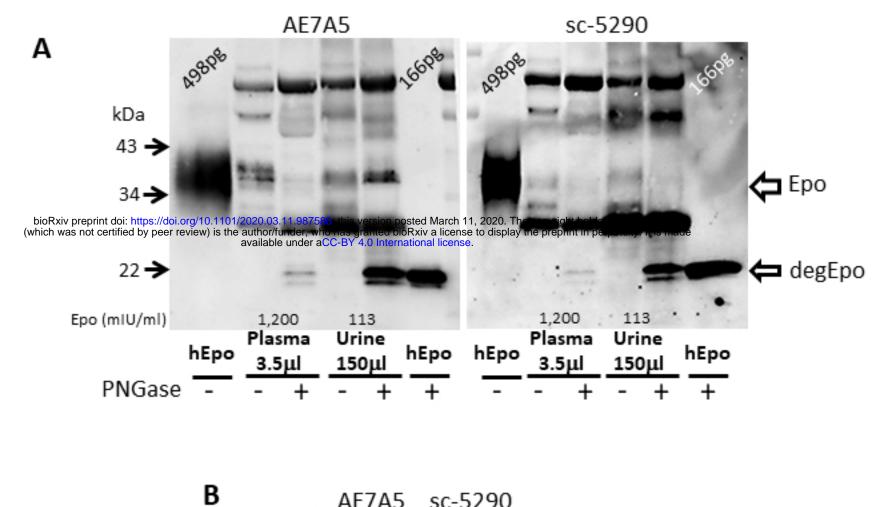
494 Author contributions

- 495 YY, YI, KK and HN designed the research; YY, YN, HI, YoS, YN, and HN performed the
- animal research; YI, TF, KY, TU, and HN performed western blot analysis; YY, TO, YuS, and
- 497 KK performed IHC, TF, TaY, NK and HN performed RNA extraction and PCR; YI and HN
- 498 performed the statistical analyses; and TeY performed LC/MS. MM and YuS advised on the
- 499 experimental design and data interpretation.

500

501 Competing interests

502 The authors have no financial conflicts to declare.

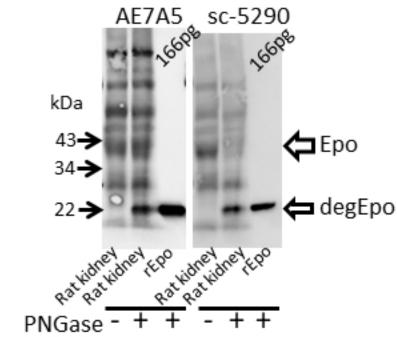
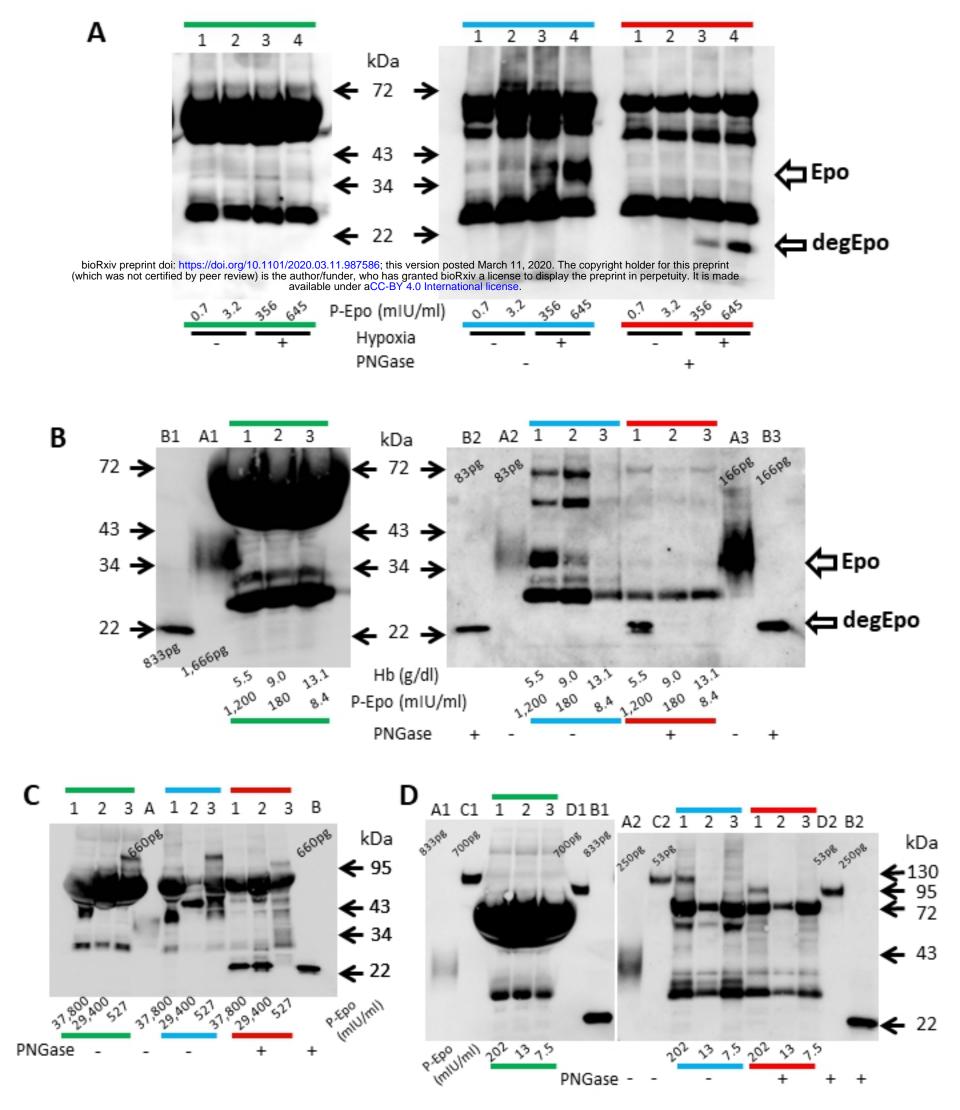

32

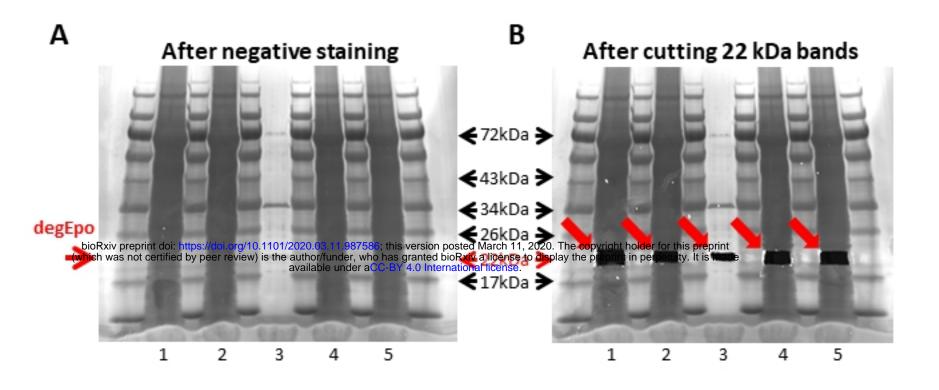
503

504 Additional information

- 505 Correspondence and requests for materials should be addressed to E-mail: nono@insti.kitasato-
- 506 u.ac.jp.

Figure.1


Figure.2

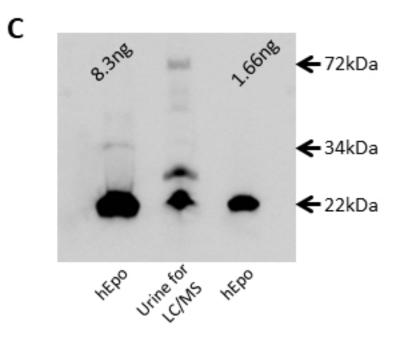


Figure 3

Figure 4

MS/MS spectrum of ⁷³VNFYAWK⁷⁹

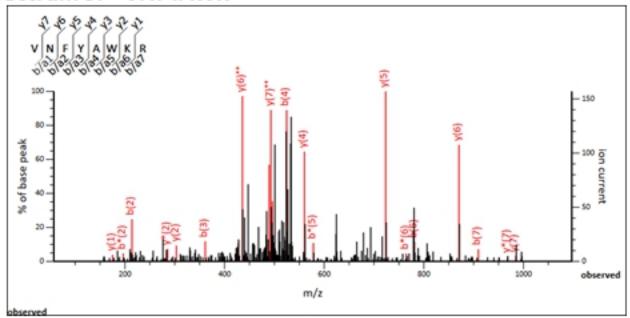


Fig.4

Figure.6

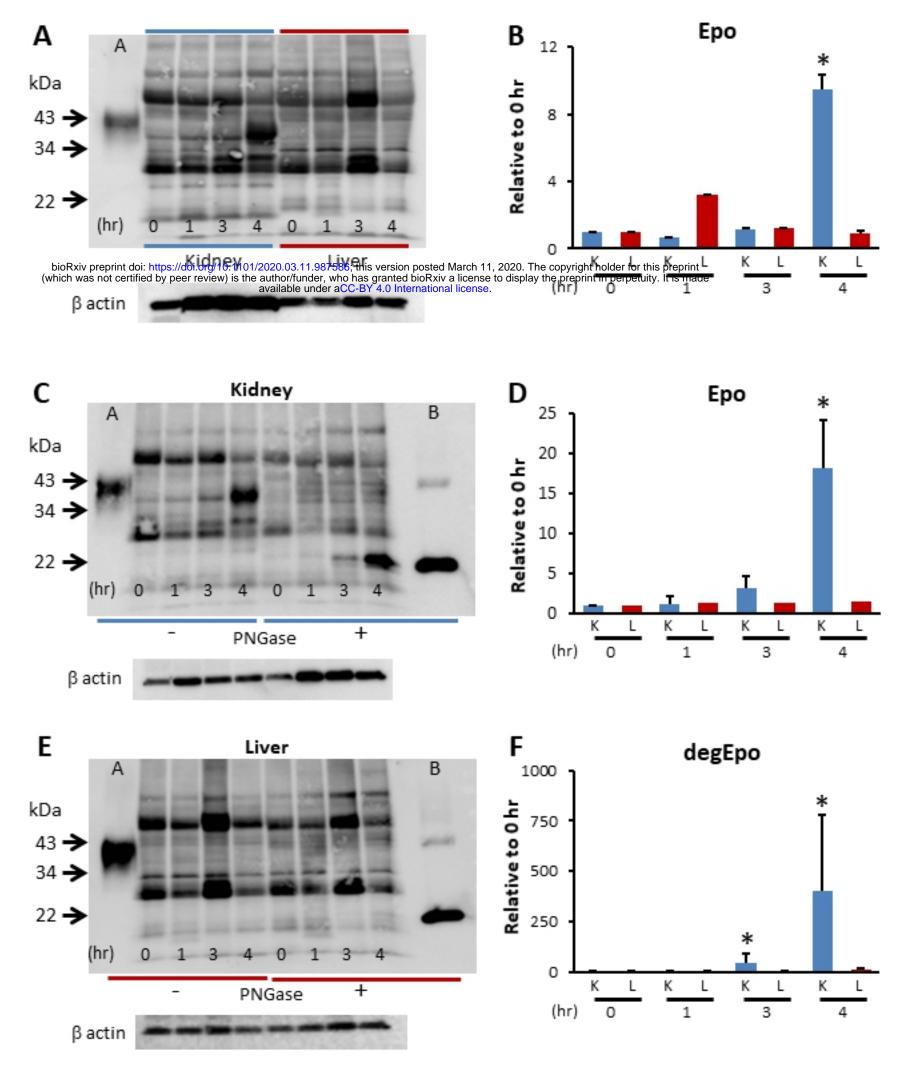
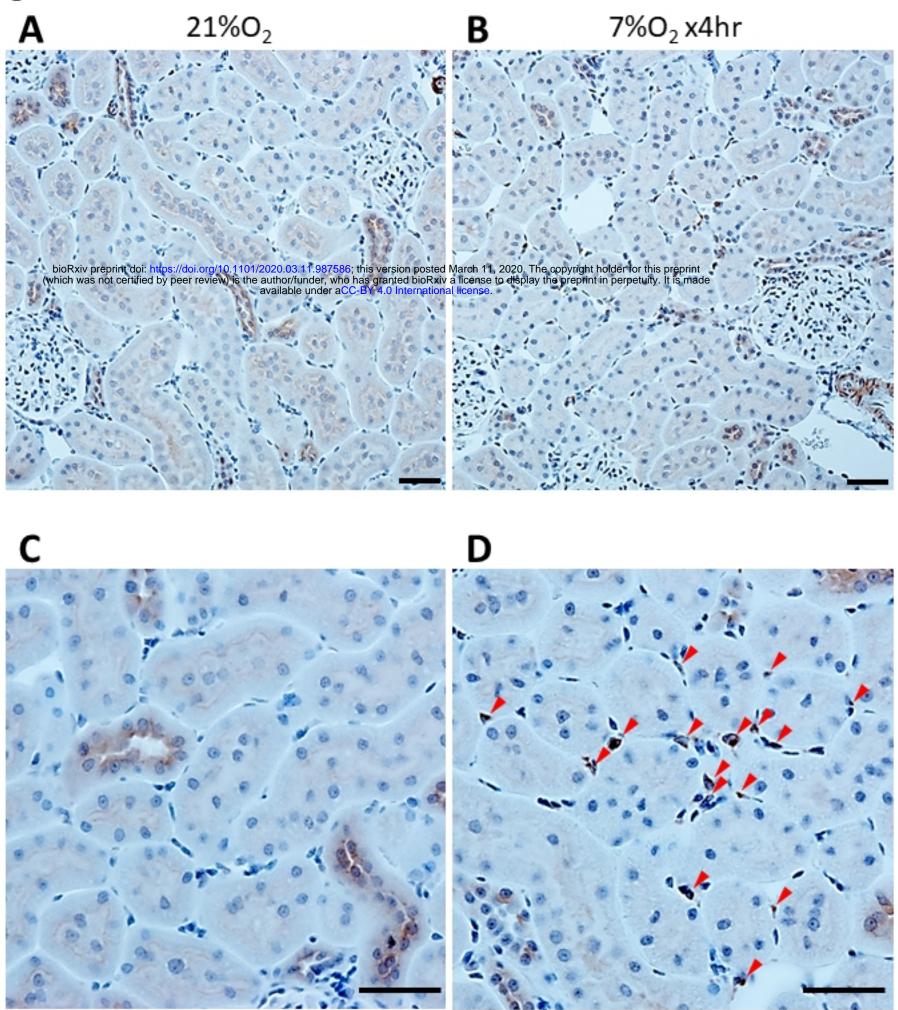



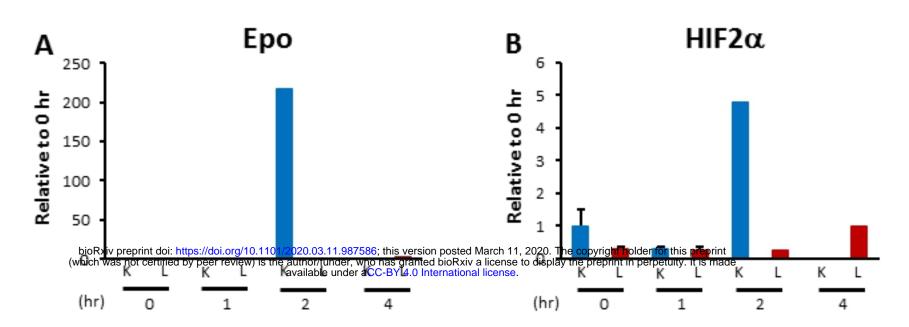
Fig. 6

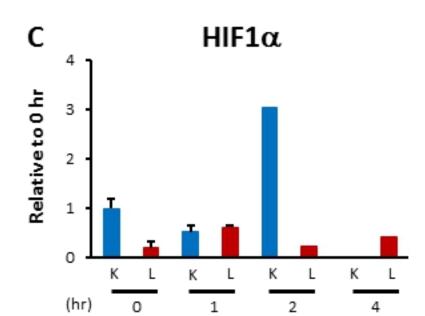
Figure.7

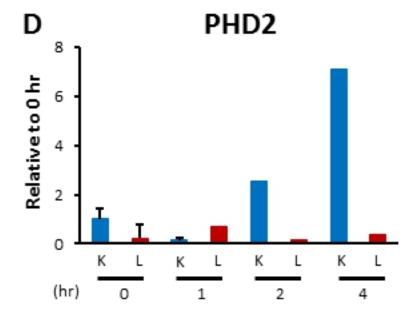
Bars, 40µm

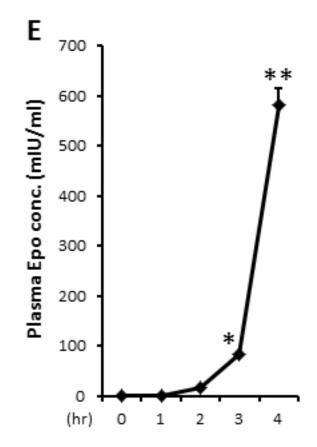
A Human (Recombinant): Coverage 20%

1	MGVHECPAWL	WLLLSLLSLP	LGLPVLGAPP	RLICDSRVLE	RYLLEAKEAE
51	NITTGCAEHC	SLNENITVPD	TKVNFYAWKR	MEVGQQAVEV	WQGLALLSEA
101	VLRGQALLVN	SSQPWEPLQL	HVDKAVSGLR	SLTTLLRALG	AQKEAISPPD
151	AASAAPLR <mark>T I</mark>	TADTFRKLFR	VYSNFLRGKL	KLYTGEACRT	GDR


B Human u	rine: Coverage	12%	arch 11, 2020. The convride	nt holder for this preprint	
(which was not certified by	y peer review) is the author/funder, available under	who has granted bioRxiv a r aCC-BY 4.0 International I	license to display the prepri license.	ntimperpetuity it is made	RYLLEAKEAE
51	NITTGCAEHC	SLNENITVPD	TKVNFYAWKR	MEVGQQAVEV	WQGLALLSEA
101	VLRGQALLVN	SSQPWEPLQL	HVDKAVSGLR	SLTTLLRALG	AQKEAISPPD
151	AASAAPLR <mark>T I</mark>	TADTFRKLFR	VYSNFLRGKL	KLYTGEACRT	GDR


C Rat (recombinant): Coverage 16%


1	MGVPERPTLL	LLLSLLLIPL	GLPVLCAPPR	LICDSRVLER	YILEAKEAEN
51	VTMGCAEGPR	LSENITVPDT	KVNFYAWKRM	KVEEQAVEVW	QGLSLLSEAI
101	LQAQALQANS	SQPPESLQLH	IDKAISGLRS	LTSLLRVLGA	QKELMSPPDA
151	TQAAPLR <mark>TLT</mark>	ADTFCKLFRV	YSNFLRGKLK	LYTGEACRRG	DR


D	Peptide	Observed	Mr(expt)	Mr(calc)	ppm
	⁷³ VNFYAWK ⁷⁹	464.2393	926.4640	926.4650	-1.14
	⁷³ VNFYAWKR ⁸⁰	542.2902	1082.5659	1082.5661	-0.23
	¹³¹ SLTTLLR ¹³⁷	402.2527	802.4909	802.4912	-0.37
	¹⁵⁹ TITADTFR ¹⁶⁶	462.7429	923.4712	923.4713	-0.09
	¹⁵⁹ TITADTFRK ¹⁶⁷	526.7903	1051.5660	1051.5662	-0.19
	¹⁷¹ VYSNFLR ¹⁷⁷	449.7426	897.4706	897.4708	-0.26
	¹⁸² LYTGEACR ¹⁸⁹	485.2262	968.4378	968.4386	-0.73
E	Peptide	Observed	Mr(expt)	Mr(calc)	ppm
	¹⁵⁹ TITADTFRK ¹⁶⁷	526.7901	1051.5656	1051.5662	-0.53
	¹⁷¹ VYSNFLR ¹⁷⁷	449.7425	897.4705	897.4708	-0.39
	¹⁸² LYTGEACR ¹⁸⁹	485.2267	968.4387	968.4386	0.20
F	Peptide	Observed	Mr(expt)	Mr(calc)	ppm
	⁷² VNFYAWKR ⁷⁹	542.2902	1082.5658	1082.5661	-0.34
	¹⁵⁸ TLTADTFCK ¹⁶⁶	528.7545	1055.4945	1055.4958	-1.20
	¹⁷⁰ VYSNFLR ¹⁷⁶	449.7427	897.4709	897.4708	0.031
	¹⁸¹ LYTGEACR ¹⁸⁸	485.2262	968.4378	968.4386	-0.73

Figure