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Integration of unstructured and very diverse data is often
required for a deeper understanding of complex biological
systems. In order to uncover communalities between het-
erogeneous data, the data is often harmonized by construct-
ing a kernel and numerical integration is performed. In this
studywepropose amethod for data integration in the frame-
work of an undirected graphical model, where the nodes
represent individual data sources of varying nature in terms
of complexity and underlying distribution, and where the
edges represent the partial correlation between two blocks
of data. We propose a modified GLASSO for estimation of
the graph, with a combination of cross-validation and ex-
tended Bayes Information Criterion for sparsity tuning. Fur-
thermore, hierarchical clustering on the weighted consen-
sus kernels from a fixed network is used to partitioning the
samples into different classes. Simulations show increasing
ability to uncover true edges with increasing sample size
and signal to noise. Likewise, identification of non existing
edges towards disconnected nodes is feasible. The frame-
work is demonstrated for integration of longitudinal symp-
tom burden data from the 2nd and 3rd year of life with 21
diseases precursors as well as the development of asthma
and eczema at the age of 6 years from 403 children from
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the COPSAC2010mother-child cohort, suggesting thatma-
ternal predisposition as well as being born preterm indi-
rectly lead to higher risk of asthma via increased respiratory
symptom burden.
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1 | INTRODUCTION

Understanding complex biological systems often requires the need to integrate data of very diverse nature, such as
data with variable dimensionality and distribution, with a mixture of longitudinal or cross sectional features. Given
such a set of distributed sources of information pertaining to the same set of samples is often tackled by harmo-
nizing the data heterogeneity by construction of so-called kernels followed by a numerical integration aiming at un-
covering commonality [1]. Kernel transformation resembles the concept of characterizing some information entity
Xm from n individuals into a symmetric kernel Km = KTm = fm (Xm ), where Xm can be anything from univariate ran-
dom variables, multivariate, tables of counts, time-to-event, etc. [2, 3]. After kernel-harmonization (K1,K2, ..,KM ) =
(f1(X1), f2(X2), ..., fM (XM )), these matrices can be integrated by factorization such as INDSCAL [4] to reveal common
structure between theM data layers, as well as uncovering the multivariate distribution of the n samples. While such
factorization models are powerful in estimating patterns of correlation, they do not infer the structural topology re-
lated to the conditional dependency between layers of data. Aben et al 2018 developed a framework for inferring
the conditional dependency between data layers based on the kernel-to-kernel (matrix) correlations, referred to as
the RV coefficient [5, 6], and used this for structure revealing from seven data layers covering genotype to phenotype
information from a cancer study [1].

In this studywe propose amethod for data integration in the framework of an undirected graphical model. Let G(V , E )
be a representation of a graph, whereV and E are the vertices (nodes) and edges between M sources of information.
In particular for this study, the nodes represent individual data sources of varying nature in terms of complexity and
underlying distribution, and the edges represent the partial correlation between two blocks of data (conditioning on
all other data blocks). We propose a modified graphical lasso for estimation of the graph, with a combination of cross-
validation and extended Bayes Information Criterion [7] for sparsity tuning. Naturally, the choice of functions fm for
kernel transformation, inherently affects the upstream results, and depending on the nature of the data there is a vast
source of methods for such transformations (see e.g. [8] for details). For this purpose, we utilize data from a clinical
childhood cohort with information on recurrent periods of specific diagnoses and disease remission (amoung other
sources), we propose kernel transformations for such data. Having established a graph between the layers of data,
we propose a clustering method based on weighted consensus kernels and hierachical clustering for partitioning of
the samples into different classes. The method is demonstrated on simulated as well as real data pertaining to symp-
tom burden of common childhood diseases across the 2nd and 3rd year of life in relation to exposures as well as the
development of asthma at age 6 years from the COPSAC2010 mother-child cohort [9, 8].

The paper is organized with a theoretical derivation of kernel transformation for various data types (in 2.1), graphical
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network modelling (in 2.2) followed by results on simulated (in 3.1) as well as real life data (in 3.2).

2 | THEORY

In this paper, an unspecified source of information is highlighted as X, matrices are in capital bold (X), vectors in lower
case bold (x), and scalars as italic lower case (x ). Indices of matrices and vectors are highlighted as subscripts.

2.1 | Kernel representation

Kernels are useful methods for representing the population distribution as sample similarities. Let K be a symmetric n
by n matrix indicating similarities between any pair of samples from an information source X from a total of n samples.
In the case of a matrix (X = X), then the individual scalar elements of K can be defined as: Ki j = f (xi , xj ) where f
is a transformation function of the input vectors for sample i (xi ) and j (xj ). If a multivariate dataset of continous
variables are assumed Gaussian, then the so called radial basis function kernelization (rbf-kernel) is a natural choice
of transformation:

Ki j = exp
(−| |xi − xj | |2

σ2

)
(1)

Where | |xi − xj | | is the Euclidean distance and σ2 is the bandwidth of the kernel. For more information on kernel
consult [2].

2.1.1 | Data on survival- and recurrent episodes

Longitudinal information such as survival outcomes are characterised by a time-to-disease (t ≥ 0) and a disease sta-
tus (zero if the disease has not occurred and one if it has occurred) within the time period of interest e.g. follow-up
time from intervention or study period. However, in the case of data on recurrent episodes, a survival representa-
tion, merely reflects time to the first event, and thereby omits relevant information on remission and later occurring
episodes. Be aware, that this representation is used for episodes of chronic conditions, such as asthma, where a diag-
nosis span from a few years to a lifetime. This is contrast to episodes of shorter duration such as common childhood
symptoms, which is described in section 3.2 and further detailed in [8].

We propose a flexible kernel representation of longitudinal data defined as the sum of weighted kernels:

K =

tend∑
T =tst ar t +1

αT · KT (2)

For classical survival data, where the disease status is binary, the similarities represented by the binary kernel: KT =t
at time T = t is defined as KT =t (i , j ) = 1 if pat i ent i ∝ pat i ent j (both have disease or both healthy) and K T=t(i , j ) = 0
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if not. This results in a sequence of binary kernels: KT=tstart, . . . ,KT=tend
Theweights of each time kernel (αT ≥ 0) were defined as the change in values between two kernels at two consecutive
time points, defined as the element wise change between two consecutive kernels:

αT =
 ∂KT
∂T

 + ε
where

∂KT =
∑

i ,j ∈(1,...,n)

|KT =t (i , j ) − KT =t−1(i , j ) |

(3)

ε is a small number giving all periods a weight above zero and the first element of the weight vector is set to ε (α1 = ε).
Further, the weights were scaled to a simplex (∑αt = 1).

Traditionally survival analyses have been used for outcomes that are not reversible such as death. Over the years
survival analyses have been applied to other types of data such as time to chronical diseases, time to relapse eg.
Some patients go into remission after getting diagnosed with a disease. In order to capture this we introduce a third
state to the model, the state of remission defined as healthy after a period of disease. Now we have three states:
healthy, ill and remission and we define the similarity between two patients as:

KT=t(i , j ) =



1, if pat i ent i = pat i ent j .

r, if pat i ent i = healthy & pat i ent j = remission.

1-r, if pat i ent i = remission & pat i ent j = ill.

0, if pat i ent i = healthy & pat i ent j = ill.

(4)

Where r is the rate of remission andKT=t ∈ {0, r , 1−r , 1}. The weights and the final kernel were defined as in equation
3 and 2 respectively.

2.1.2 | Repeated measurements of continuous data

The kernelization of data that does not followdata on time to event or recurrent episodes (as in section 2.1.1), butwhen
applied to longitudinal continuous information such as repeated measurements of height or weight, the framework in
equation 2 and 3 can be extended, by using a relevant measure of similarity for each time point (T = (t1, t2, . . . , tend ))
such as:

KT=t(i , j ) = g (xi , xj ) (5)

Where g (xi , xj ) calculates a measure of similarity between xi and xj : E.g. g (xi , xj ) = exp(−(xi − xj )2/s) (with s being
a relevant scaling constant).
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The weights of the time kernels KT =t1 ,KT =t2 , . . . ,KT =tend are defined as in equation 3 and they are combined to K as
in equation 2.

2.2 | Graphical network based on partial correlations

2.2.1 | Correlation coefficients

Kernel to Kernel correlations is defined via the so-called RV coefficient [5, 6], which simply amounts to a scalar correla-
tion coefficient between two vectorized matrices. That is: TheM individual kernels were unfolded, from Km ∼ (n × n)
to vectors where the diagnoal elements are removed km ∼ (n2 − n × 1). Each vectorized kernel was standardized to
mean zero and standard deviation one. The correlation between two kernels can be expressed as in equation 6, which
under centering and scaling (k̄i = k̄j = 0 and σki = σkj = 1) reduces to an inner product. For detail on scaling of kernels
and the definition of RV coefficient see Aben et al 2018 [1].

RV cor r (Ki ,Kj ) =
kT
i
kj − k̄i k̄j
σki σkj

= kTi kj (6)

The correlations can then be combined in a correlation matrix S = ST ∼ (M ×M ).

2.2.2 | Sparse Graphical LASSO

The matrix of unfolded standardized kernels is combined into a data matrix X =
[
k1, k2 . . . kM

]
∼ (n2−n ×M ), which is

considered a manifestation of a multivariate distribution on what we term a similarity manifold. We use the GLASSO
proposed by Friedmann et al 2009 [10] to estimate the partial correlations as the inverse covariance matrix on these
standardized kernels, given the assumption that such a data representation can be subjected to a regularized maxi-
mum likelihood correlation estimation procedures as in [10].

The objective of the graphical lasso is.

Θ̂ = argmin
Θ

(
tr(SΘ) − log det(Θ) + λ

∑
i,j

|Θi j |
)

(7)

Where S = ST ∼ (p, p) is the observed covariance matrix, λ ≥ 0 is a tuning parameter and Θ = ΘT ∼ (p, p) is the
inverse covariance matrix (or precision matrix).

In principal two algorithmic approaches have been suggested for solving this objective, either based on sequential
updating of the covariance matrix or on the inverse of the covariance matrix (Θ) [11]. For the present work we utilize
a dual optimization strategy for updating columns/rows of directly on Θ referred to as DP-GLASSO by [11]. Beyond
superior convergence stability compared to GLASSO, this algorithm focuses directly on Θ which allows for an easy
extension where certain parts of Θ are considered fixed (see section 2.2.3). For details on the derivation of the opti-
mality criterion and the algorithm see Appendix A.
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2.2.3 | Introducing new variables to a fixed inner model

To be able to observe correlations between highly correlated biological data e.g. between different symptoms of
illness (from here on the inner network) and not as highly correlated data such as environmental exposures or later
disease without having to interpret to many ’middle’ edges within the inner network, we propose a two-step approach.
This method where the less influential biological correlations are removed offers simplicity in order to understand the
complex biology. First, fit an inner network (Θi nner ) of the biological data (here between different symptoms), followed
by a model for the outer network conditioning on the inner correlation network, where the graphical structure both
within the outer sources (Θouter ) of information as well as between the inner- and outer layers of data (Θi nner 2outer )
is estimated (see Figure 1 for a schematic representation).
This is achieved by a modification of the algorithm in A, such that the initialization of (Θ) is exchanged with the
estimates from the inner network. Otherwise, the algorithmic procedure follows 1, with the only modification of only
cycling through the columns associated with the new information.

Θi nner

ΘouterΘi nner 2outer

ΘT
i nner 2outer

F IGURE 1 Adding an outer layer of data, and estimating a model (Θouter , and Θi nner 2outer ) conditional on the
fixed inner network (Θi nner ).

2.3 | From graphical network to observation clustering/similarities

For the graphical network (G(V , E )) between with M nodes ( |V | = M ) the edge-set (E ) is set by Θ. This network
partitions information (here the M kernels) into clusters of correlations, however, without any explicit segmentation
of the individual samples. Here, we propose a post-hoc procedure to derive a partition over the samples obeying the
correlation structure in G.

First, for each of theM nodes, a network weight (ωm ) is defined as the sum of the weights of its adjacent edges. That
is:
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ωm =
∑
j,m

|Θi=m,j | (8)

Hence ωm reflect how strongly nodem is connected with the rest of the network. These weights are stored in a vector
ω = (ω1,ω2, . . . ,ωM ). Using these weights, a consensus kernel (KK) can be derived as:

KK =
M∑
j=1

ωmKj ∼ (n, n) (9)

By definition, such a consensus kernel will reflect the population structure for the most connected nodes in the
network, while disconnected nodes (ω = 0) will have no influence. By using hierarchical clustering on this consensus
kernel a partition of the n samples, reflecting the dominating correlation patterns in the data, will be derived.

2.3.1 | Model selection

Penalty sequence

Depending on the problem, the dynamic sequence of penalties λmin , . . . , λmax is not trivial to set, which essentially
results in screening sequences of models for penalty values with no practical change in parameter estimates. For this
reason the dynamic penalty sequence is set such that λmin results in a single off-diagonal element of Θ being 0, and
similarly λmax returns only a single active (, 0) off-diagonal element.

Model section criterion

Cross-validation evaluating the non-regularized maximum-likelihood based on a trained precision matrix (Θ̂) in com-
parison with an independent (left-out) observed covariance matrix St est via: LL = tr(St est Θ̂) − log det(Θ̂) is generally
good for overall control of estimation flexibility. However, this procedure suffers from being unable to correctly iden-
tifying 0 elements in the precision-matrix. This is due to shrinking these parameters to a small non-zero neglect able
entity, that have no practical influence on the cross validation fit, but leads to a false discovery. This phenomena is
previously described byWeijie et al 2017 [12]. For this reason a criterion explicitly weighting the amount of non-zero
elements has been proposed via the extended Bayes Information Criterion [7], which penalizes dense graphs with
increasing γ, following:

eBI Cγ = n(tr(ΘS) − log det(Θ)) + |E |0(log(n) + γ4 log(M )) (10)

where n and M is the number of samples and number of graph nodes (kernels) respectively, |E |0 is the number of
edges. I.e. the number of non-zero of diagonal elements of Θ, and γ is a tuning parameter putting emphasize on
finding the zero elements of Θ.
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3 | RESULTS

3.1 | Simulations

For this part we pertain to the individual data being low rank multivariate data, simulated as bilinear matrices. The
block-wise dependency is constructed by a linear mapping of sample related component scores in one block to an-
other block. On top of the systematic bilinear structure there is added either structured noise or white noise at varying
levels.

For this setup we construct five blocks (X1,X2, . . .X5) of each n samples and p1, p2, . . . p5 variables following the
structure shown in figure 2.

X1X2

X3

X4

X5

F IGURE 2 Structure of a five block network with a disconnected or isolated vertex (deg r ee = 0, X3, also known
as an independent set), a leaf vertex (deg r ee = 1, X1) and cyclic connected vertexes (X2,X4,X5)

We define the scores for the five blocks as in equation 11 and 12:

A1 = Z1 + k1F1

A2 = Z2 + k2F2

A3 = Z3 + k3F3 (11)

A4 = Z1Q1,4 + Z2Q2,4 + k4F4

A5 = Z2Q2,5 + Z4Q4,5 + k5F5

The matrices Qi ,j constitutes the mapping between block i and j , and Fi constitutes the structured noise, where
the levels is set by k i . The matrices Z1 ∼ (n, c1),Z2 ∼ (n, c2),Z3 ∼ (n, c3),Q1,4 ∼ (c1, c4),Q2,4 ∼ (c2, c4),Q2,5 ∼

(c2, c5),Q4,5 ∼ (c4, c5) and F1 ∼ (n, c1), . . . , F5 ∼ (n, c5) all have entries drawn from a Gaussian distribution (∼ N(0, 12)).
The rank (ci ) of the individual data blocks are drawn from a uniform distribution (ci ∼ U(4, 9)).
The five data sets are now given by:

Xi = AiBi + l i Ei [i ∈ {1, 2, 3, 4, 5} (12)

where Bi ∼ (ci , pi ) is the right component loading matrix drawn from a Gaussian distribution (∼ N(0, 12)). The number
of variables (pi ) for each data block is drawn from a uniform distribution (pi ∼ U(21, 150)). The noise level scalars k i
and l i are set to fulfill signal to noise levels for i) structured noise defined as:
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s2n =
tr(AT

i
Ai )

tr(k 2
i
FT
i
Fi )

(13)

as well as for ii) unstructured white noise defined as:

s2n =
tr(BT

i
AT
i
AiBi )

tr(l 2
i
ET
i
Ei )

(14)

The data setsX1,X2, . . . ,X5 are kernelized such thatKi ∼ (n, n) is the kernelization ofXi ∼ (n, pi ) using the exponential
of the negative euclidean distance between pairs of observations.

We investigate the effect of number of samples (n ∈ (20, 50, 100, 200, 500)), type of noise (White or Structured), signal to
noise (s2n ∈ (1/8, 1/4, 1/2, 1, 2, 4, 8)) on the ability to recover the underlying structure represented as sensitivity (true
positive rate), specificity (true negative rate) and the combination of the two as the area under the receiver operator
characteristics curve (AUC). For all simulationsmodel selection is done using eBIC.

For each of the 700 design combinations 100 simulations are produced, and model selection is done by eBIC with
γ ∈ (0, 0.5, 1).
Figure 3 shows the performance in terms of true positive- and true negative rate as well as the agglomerated area
under the receiver operator curve (AUC). These quality metrics are shown for models selected using the eBIC with
γ ∈ (0, 0.5, 1). Further, included is also the oracle model, which is the model that most optimally resembles the under-
lying edge set (figure 2) in terms of AUC. The behaviour of the true positive rate follows general statistical estimation
paradigm with higher n and signal to noise yielding more accurate results. However, this is at the cost of the true
negative rate which declines with these data characteristics. In general, the difference between the oraclemodel and
the model selected using eBIC is that λor acl e − λeBI C is biased positively for low signal-to-noise and low sample size,
turning into being biased negatively with high signal-to-noise, reflecting that eBIC is too conservative when dealing
with low-noise data, and too optimistic in the case of small- and noisy data. (see Appendix B for details)

Figure 4 investigates from which parts of the graph the uncertainty derives. Here, node X3 is the single isolated / non-
connected vertex of the graph, and it seems relatively easy for the model to also correctly exclude edges to this node.
The indirect connection between X1 and X2 and X5 (via X4) is causing the observed sub optimal true negative rate.
For the identification of the true connections, generally similar results is observed. There seem to be no discrepancy
in the estimation power depending on whether the edge is in a fully connected part of the network (between X2,X4
and X5), or towards the leaf vertex X1 from X4.

3.2 | COPSAC symptom burden

From a total of n = 403 children, with at least 50% of diary registration each month, the symptom burden was
prospectively registered daily the first three years of life, where the following common childhood symptoms were
registered: cough, breathlessness, wheeze, cold, pneumonia, inflammation of the throat, ear infection, fever, gastric infec-
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tion and eczema. For details on these data including seasonal variation see [8]. For this analysis, the symptoms of the
2nd and 3rd year were investigated, and further were the symptoms breathlessness and wheeze combined in to one
symptom due to their similar nature. This gives nine symptoms over two years resulting in 18 symptom kernels.

Additionally, 21 exposures obtained during or prior to the first year as well as the asthma- and eczema status up to age
6 years were incorporated. Of particular interest is to answerQ1: How early life exposures leads to later development
of asthma? and here; Q2: How the early life symptom burden can be considered as a path towards later disease.

3.2.1 | Kernelization of symptom diaries

To reduce noise, the daily diary registrations were summarised (fractions of days with the symptom out of registered
days) for each calendar month the 2nd and 3rd year of life (January to December, year 2 to year 3), resulting in 24
registrations per symptoms per child. The distance between any two children was constructed using the Euclidean
distance between frequency vectors within each year. By explicitly factoring in calendar month in the construction
of the pairwise differences, results in kernels that allow one to disentangle seasonal symptoms patterns. For instance,
two children with an overall equal prevalence but with distinct seasonal profiles, will be rather dissimilar in the kernel.
The distance measures were transformed to measures of similarities by multiplying by minus one. For details on the
choices related to kernel transformation see Appendix C a well as [8].

3.2.2 | Graphical inner-model

The 18 kernels of symptoms were unfolded, the diagonals were removed and they were standardized with mean zero
and standard deviation one. Model selection were performed using the eBIC with γ = 0 based on a 10 times repeated
5-fold cross-validation. Figure 5 shows the cross-validation results, where a penalty of λ = 0.076was chosen resulting
in 118 edges (out of 153 possible - 77%).

Table 1 shows the number of connections for each symptom-year combination. The node with the most connections
(ten) is fever 2nd year, while eczema 3rd year was only connected to eczema- and cough 2nd year.

3.2.3 | Graphical outer-model

Data on exposure (Cat at birth, Dog at birth, Daycare type, Daycare age, Gestational age, Maternal asthma, Maternal BMI,
Maternal rhinitis, Paternal asthma, Paternal rhinitis, Preeclampsia, Premature delivery andMode of delivery) was kernelized
and treated in the same way as the symptom kernels.
The asthma diagnoses were kernelized as proposed in section 2.1.1. 85 (21%) of the children got a diagnosis of asthma
before the age of six years and 61 (72%) went into remission before the age of six years.

123 (31%) of the children got a diagnosis of eczema before the age of 6 years. Of these, 77% (95 children) went into a
state of remission at the age of 6 years, and had thereby lost this diagnosis. Due to the early debut of eczema peaking
around age 1-2 years, the eczema kernel were constructed based on those having the diagnosis cross sectional at
age 6 years. This in order to avoid correlations by construction as symptoms of eczema is also included in the diary
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registrations.

These information sources, in the form of kernels, were added to the symptom burden data, to establish a model
between risk factors, early life symptoms and chronic diseases. The partial correlations between symptoms found in
section 3.2.2 were fixed in this model.
The outer partial correlation network was found with the customized conditional GLASSO, as proposed in section
2.2.3. The outer model were selected at λ = 0.1 based on 10 times repeated 5-fold cross validation using eBIC with
γ = 0 as criterion. The corresponding network consisted of additional 22 edges of which 5 were between symptoms
and exposures, 8 between symptoms and disease and 9 within exposures (see Table 1 for summary details of the
graph). The resulting model is shown in figure 6.

The airway symptoms: cough, breathlessness-wheeze and cold are clustered together in the center of the graph with
connections to a cluster of eczema (year two, three and cross sectional at age six years) and a cluster of the rest of
the symptoms (ear and throat infections, fever, pneumonia and gastrointestinal infections) on the other side. These
symptoms are generally thought to be driven by bacterial or viral infections [13]. Maternal asthma is connected
to cough and breathlessness-wheeze the second year of life. Pregnancy- and birth circumstances represented by
gestational age and prematurity is connected to cough the third year, and interestingly the well known risk factor
Cesarean section for a wide range of diseases [14], is only related to early life symptom burden through early delivery.
Furthermore, maternal smoking during third trimester of pregnancy is connected to breathlessness-wheeze third year
of life in line with previous findings [15]. These connections suggest an environmental effect on the respiratory health
in early life, where as for the symptoms grossly driven by infections, the connections with risk factors are indirect.

3.2.4 | Clustering children based on the inner-model

The proposed graphical model estimates clusters of associated information. However, it can be fortunate to also group
the children into certain groups based on their symptom burden pattern as a phenotypic characterization. Based on
the inner network between nine symptoms across year 1 and 2 a consensus kernel is calculated using the sum edge-
weights for each node (see table 1). Hierarchical clustering results in a dendrogram as shown in figure 7, which is
cutted to partition the children into 3 clusters with a distribution of ((nr ed = 12, ngr een = 26, nbl ue = 365)), where the
small red cluster corresponds to the most diseased children followed by the green cluster, leaving the large blue cluster
being the overall most healthy.

4 | DISCUSSION

We propose a flexible framework to do explorative analyses of heterogeneous data encompassing longitudinal symp-
tom observation, survival type disease data and various data on exposure. The method is based on kernel transforma-
tion for data harmonization followed by graphical network modelling by the graphical LASSO to uncover direct and
in direct correlations.

Kernels are flexible and can capture differences shifted in time, on different scales and of distributional nature. How-
ever, how the original data is kernelized will have a large impact on which patterns that will be captured. In particular
for this work we have chosen to factor in calendar month in the transformation of data, due to the fact that there
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is a large seasonal component in symptom burden where for instance eczema is more prevalent during the changing
seasons (autumn and spring) and respiratory symptoms are more prevalent during the winter months (for details on
symptom burden seasonal patterns see [8]). In detail, consider two children (A and B) with the same overall symptom
burden prevalence, but where child A have episodes during winter, where as child B have the episodes evenly spread
across the year. By using the proposed kernel transformation, such differences will be conserved, and possibly affect
the GLASSO model.

A dual representation of the well-known GLASSO were used for graph estimation. This dual formulation works di-
rectly on the entity of interest; the precision matrix, as opposed to the standard GLASSO algorithmicly working on
the covariance matrix. Beyond numerical stability, this allows to fix certain parts of the precision matrix via a very
simple modification of the algorithm.

The framework is validated on both simulated and biological data. The simulations show that capturing true edges fol-
lows a normal statistical paradigm with better recovery for larger n and signal-to-noise, and further that unstructured
white noise interfere less with the model estimation than structured noise. However, capturing non-existing edges
behaves oppositely, with a higher false negative rate with larger n and s2. This phenomenon derives from indirect
relations, and not from spurious edges towards disconnected nodes (edges towards X3 in Figure 4). Overall though,
the error-rate in terms of AUC increases with n and s2n .

The integration of the symptom burden data during 2nd and 3rd year of childhood showed that the respiratory symp-
toms are highly correlated, and that the ear infection and the inflammation of the throat are connected which cor-
responds with the bacteria moving from the throat to the ears in line with the coherent airway epithelium in these
communicating organs [13].

Introducing precursors of disease as well as asthma and eczema by age 6 years to the symptom network highlights that
maternal asthma is connected to respiratory symptoms in the 2nd year of life, while maternal rhinitis only associates
to respiratory symptoms indirectly through maternal asthma. Further, maternal asthma is suggested to be a risk factor
for the development of asthma by age 6 years indirectly through an elevated level of respiratory symptoms in early
life. Paternal asthma, rhinitis and eczema do not have any connections to any of the symptoms. This corresponds with
previous research showing maternal asthma increases the risk of childhood asthma to a higher degree than paternal
asthma [16, 17].

Networks behave different based on their correlation structures. When only investigating the correlations between
the symptoms, we observe a network with many well-connected nodes. When exposures/environmental factors are
included in this part of the network has a weaker correlations between symptoms and exposures with fairly many (7)
disconnected nodes. Furthermore, we see that few exposures (4) associate directly with the symptoms. However, the
pertinent challenge here, is to distinguish between associations of symptomswhich are timely matched and are having
overlapping phenotype presentation with those of exposures or disease, which are disparate in time and a-priory of
much less strength. By using the two step estimation procedure with an inner model on symptom data only, followed
by an outermodel on all data conditioning on the inner estimates allows for using a higher penalty on the inner model
(λi nner ) to only include strong connections, while allowing the penalty of the outer model (λout er ) to include everything
that generalizes in terms of cross-validation.
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5 | CONCLUSIONS

A combination of kernel transformation and graphical LASSO is proposed for integration of heterogeneous data layers.
The method is demonstrated on both simulated- and real life data pertaining to early life symptom burden, precursors
and development of disease at age 6 years.

6 | SOFTWARE

All algorithms have been coded in Matlab R©R2019 and is available through github:
(https://github.com/mortenarendt/KerGLASSO), the code depends on the quadprog() function from the optimiza-
tion toolbox (http://www.mathworks.com/products/optimization/). Plotting is conducted using R (ver 3.5.1) with
ggplot2, tidygraph [18], ggraph [19] and igraph [20] for graph handling and plotting.
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A | DERIVATION OF DP-GLASSO

Let f = tr(SΘ)− log det(Θ)+λ∑
i,j |Θi j | be the objective from equation 7. And further, letW = Θ−1 be the population

covariance- and precisionmatrix respectively, and S be the observed covariancematrix. All symmetric and of size (p, p).

The sub-gradient of f with respect to Θ can be formalized as:

S −Θ−1 + λΓ = S −W + λΓ = 0 (15)

Where Γ is the sign matrix of the individual elements of Θ.
Let:

Θ =

[
Θ11 Θ12

ΘT12 Θ22

]
(16)

be a representation of Θ where Θ11 ∼ (p − 1, p − 1), Θ12 ∼ (p − 1, 1) and Θ22 ∼ (1, 1) (with a similar representation for
S andW). Using calculus for matrix inversions reveals the block wise stationary point of equation 15 to be:

W11β + S12 + λγ12 = 0 (17)
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where β = Θ12/Θ22, and γ12 is a sign vector of Θ12. This linear system of equations 17 is the score (or normal-)
equations associated with the LASSO with the following quadratic objective:

βTW11β + β
T S12 + λ |β |1 (18)

The dual representation of this problem (equation 18) is derived by defining a new vector: x = β and extending the
objective to:

βTW11β + β
T S12 + λ |x |1 + zT (β − x) (19)

where z is a vector of (non negative) Lagrangian multipliers.

The stationary points of objective 19 with respect to β , assumingW11 � 0, is:

β = −W−111 (S12 + z) (20)

and with respect to x

− sup
x

zT x − λ |x |1 =

0 |z |∞ ≤ λ

−∞ |z |∞ > λ
(21)

Combining (19), (20) and (21) leads to a dual quadratic minimization problem with a box constraint on the Lagrangian
multipliers:

min
z
= −

1

2
(S12 + z)TΘ11(S12 + z) s.t. |z |∞ ≤ λ (22)

The primal estimates follows from equation 23

Θ12 = −Θ11(S12 + ẑ)/w22

Θ22 = (1 − (S12 + ẑ)TΘ12)/w22
(23)

Without loss of generality, the entire solution can be achieved by rearranging the columns and rows of S,W and Θ to
cycle through all columns of the covariance- and precision matrix with sequential conditional updates. See algorithm
1 for the entire procedure.
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Algorithm 1: DP-GLASSO
input :S, λ > 0
initialization: W = diag(S) + λI, Θ =W−1

while not converged do
for i = p to 1 do

Set Θ11 = Θ,i ,,i and S12 = S,i ,i
Solve the dual QP problem in equation 22 with box-contraint on the parameters (γ)
Update primal (Θ12 and Θ22) via equation 23

end
end

B | MODEL SELECTION - SIMULATION STUDY

The behaviour in the classification accuracy in Figure 3 and 4, especially when contrasting model selection with the
oracle is due to a biased hyper parameter selection (λ) depending on the sample size and level of noise.

Figure 8 show this behavior when comparing the hyper parameter for the oracle model with that selected by eBIC.

C | KERNEL TRANSFORMATION OF SYMPTOM BURDEN DATA

The raw diary symptom burden data represents binary (whether or not) the child had symptoms. This, for each day
across a total of nine symptoms.
In order to investigate the effect of 1) time resolution, 2) distancemetric and 3) distance to similarity function, a design
of experiment were established.

The factors were:

Biological
• Age of child (#2) second year or third year
• Symptom (#9) breathlessness or wheeze, cold, cough, ear infection, eczema, fever, gastric, inflammation and pneu-
monia

Technical
• Time-resolution (#4) The symptom burden is agglomerated over calendar-
– day (1, . . . 365)
– week (1, . . . , 52)
– month (1, . . . , 12)
– year (total prevalence)
into the number of days with symptoms within each bin.
• Distance metric (#4) Euclidean, City block or Manhattan, Hamming and Hamming on presence/absence data
• Distance to similarity transformation (#2) as s = exp−0.5d 2/d̄ or s = −d/d̄ , where s and d aremeasures of similarity
and distance respectively, and d̄ is the average distance over the entire (n, n) kernel of distances: d̄ = 1

n2

∑
[i ,j (di j ).
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This result in a 32 different options for each symptom and year combination, leading to a total of 576 kernel realizations.
These were compressed by tucker3. Figure 9 shows the first two component scores. Within the upper 8 panels (and
the lower 8 panels) only technical choices influence the distribution. In principal, The largest discrepancy between
scores were due biological differences (symptoms and child age) while the choice of distance metric (reflected by
color) and the distance to similarity function only contribute to minor differences. Agglomeration over day, week and
month reveals similar patterns, while truncation of the information into a single yearly prevalence makes the results
less coherent in terms clustering of symptoms.
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F IGURE 3 Area under the receiver operator curve (AUC), True Negative Rate (TNR) and True Positive Rate (TPR)
for simulated data with varying signal to noise (s2n - x-axis), number of samples (n colors) and type of noise (line
type). The best model is selected based on eBIC with γ ∈ (0, 0.5, 1) as well as - the unobserved - oracle (defined as
the model with the best AUC). Each point is the mean of 100 simulations.
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F IGURE 4 For each of the 10 possible connections (4 positive and 6 negative) the frequency of correct
identification is computed, using the model selected by eBIC with γ = 0
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F IGURE 5 10 repetitions of 5-fold cross validated GLASSO models with eBIC as model selection criterion. Color
refers to γ value of eBIC (red: γ = 0, blue: γ = 0.5, green: γ = 1). Panels relates to the inner and outer models
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TABLE 1 Node characteristics for the network model in terms of number of edges in total (Edges) as well as
towards symptoms (E2symptom), exposures (E2exposure) and disease (E2disease). Only connected nodes are listed

Year Symptom Edges E2symptom E2exposure E2disease

2 BW 10 8 1 1

2 Cold 7 6 0 1

2 Cough 9 7 1 1

2 Ear 8 8 0 0

2 Eczema 8 7 0 1

2 Fever 10 10 0 0

2 Gastric 6 6 0 0

2 Pneumonia 6 6 0 0

2 Throat 5 5 0 0

3 BW 8 6 1 1

3 Cold 10 9 0 1

3 Cough 12 9 2 1

3 Ear 4 4 0 0

3 Eczema 3 2 0 1

3 Fever 8 8 0 0

3 Gastric 4 4 0 0

3 Pneumonia 9 9 0 0

3 Throat 4 4 0 0

exposure Cat birth 1 0 1 0

exposure Daycare type 1 0 1 0

exposure Daycare age 1 0 1 0

exposure Dog birth 1 0 1 0

exposure Gestational age 3 1 2 0

exposure Maternal asthma 3 2 1 0

exposure Maternal BMI 2 0 2 0

exposure Maternal rhinitis 1 0 1 0

exposure Paternal asthma 1 0 1 0

exposure Paternal rhinitis 1 0 1 0

exposure Preeclampsia 1 0 1 0

exposure Premature 4 1 3 0

exposure C-section 2 0 2 0

exposure Smoking 3rd trimester 1 1 0 0

disease Asthma 6yrs 6 6 0 0

disease Eczema 6yrs 2 2 0 0
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F IGURE 6 Partial network of symptoms in the 2nd- (red circles) and 3rd (green squares) year of life in relation to
exposures (blue diamonds) and diseases at age of six years (yellow triangles). The edge thickness and opacity
indicates strength of relation, and the node size indicates the network centrality for the individual node
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F IGURE 7 Dendrogram of consensus kernel based on symptom network splitted into 3 clusters with a
distribution of (nr ed = 12, ngr een = 26, nbl ue = 365)
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F IGURE 8 Hyper parameter difference between oracle model and model based on eBIC, as function of signal to
noise (s2n - x-axis), number of samples (n colors) and type of noise (line type). Each point is the mean of 100
simulations.
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F IGURE 9 Component 1 and 2 from a tucker3 decomposition of 576 different representations of the 9 by 2
(symptoms by age). The panels are row wise: age of child and distance to similarity transformation and column wise:
time resolution into comparing calendar- day, week, month and year. Colors reflects symptoms, while label reflects
distance metric (euc = Euclidian, city = city block, Ham = Hamming and bin = Hamming on binarized data)


