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Abstract 
High-throughput sequencing technologies have rapidly developed during the past years and became an 

essential tool in plant sciences. However, the analysis of genomic data remains challenging and relies 

mostly on the performance of automatic pipelines. Frequently applied pipelines involve the alignment 

of sequence reads against a reference sequence and the identification of sequence variants. Since most 

benchmarking studies of bioinformatics tools for this purpose have been conducted on human datasets, 

there is a lack of benchmarking studies in plant sciences. 

In this study we evaluated the performance of 50 different variant calling pipelines, including five read 

mappers and ten variant callers, on six real plant datasets of the model organism Arabidopsis thaliana. 

Sets of variants were evaluated based on various parameters including sensitivity and specificity. We 

found that all investigated tools are suitable for analysis of NGS data in plant research. When looking at 

different performance metrices, BWA-MEM and Novoalign were the best mappers and GATK returned 

the best results in the variant calling step. 

 

Introduction 

As the basis of biological properties and heredity, the genome of a species is a valuable resource for 

numerous studies. However, there are subtle differences between individuals of the same species, 

which are of academic and economic interest as these determine phenotypic differences. Dropping 

sequencing costs boosted high-throughput sequencing projects, thus facilitating the analysis of this 

genetic diversity. Variations within the A. thaliana population were studied in the 1001 genomes 

project1. As the number of high-quality reference genome sequences rises continuously, the number of 

re-sequencing projects increases as well2. There are pan-genome projects for various species focusing 

on the genome evolution3–5 and mapping-by-sequencing projects which focus on agronomically 

important traits of crops6–9. 

An accurate and comprehensive identification of sequence variants between a sample and the 

reference sequence is the major challenge in many re-sequencing projects10. The large amount and 

diverse nature of NGS-data types (as reviewed in11), the diversity of bioinformatics algorithms, and the 

quality of the reference genome sequence render the choice of the best approach challenging. 

Variant calling pipelines often start with (1) the preprocessing of sequence reads, followed by (2) the 

alignment (mapping) of these reads to a reference sequence. Finally, the (3) identification (calling) of 

sequence variants is performed based on alignments. Each of these three steps can be carried out by 

various alternative programs using different algorithms, which influence the accuracy and sensitivity of 

the resulting variant set. 

First, read processing can be required if the read quality is at least partially low. Some downstream tools 

require that sequence reads come with quality scores in a certain system, namely phred33 or phred64. 

The conversion between different systems is allowed by some read processing tools. Popular read 

processing tools are FastQC12, htSeqTools13, NGSQC14, SAMStat15, and Trimmomatic16. 

As the read mapping determines the quality of the alignment, it is arguably the most important step10. 

Sequence reads are aligned to a suitable, but not necessarily the best place in the genome sequence. 

Often, there is a trade-off between mapping speed and the quality of the resulting alignment17. 
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Numerous mappers are available, which utilize different algorithms and criteria to generate 

alignments18,10. Consequently, the choice of tool and parameters can have a large influence on the 

outcome of the mapping19,20. Reads originating from PCR duplicates should be remove from the 

mapping prior to the variant calling to improve reliability of the results20. Moreover, the quality of the 

reference genome sequence plays an important role for the performance of the mapper. Particular 

challenges are low-complexity sequences, repetitive regions, collapsed copies of sequences, 

contaminations, or gaps in the reference genome sequence10. Frequently applied read mapper are 

Bowtie221, BWA-MEM22, CLC Genomics Workbench (Quiagen), GEM323, Novoalign 

(http://novocraft.com/), and SOAP224. While most of these tools are freely available for academic use 

as command line versions, CLC Genomics Workbench is a proprietary software suit for genomics with a 

graphical user interface. Detailed characteristics and algorithms of each mapper have been described 

elsewhere25,26,20,18. 

Finally, genomic variants like single nucleotide variants (SNVs) or small insertions/deletions (InDels) can 

be inferred by variant callers based on sequence read alignment. Popular variant callers like 

SAMtools/BCFtools27, CLC Genomics Workbench (Quiagen), FreeBayes28, GATK29–32, LoFreq33, SNVer34, 

VarDict35, and VarScan36 use a variety of different approaches to call variants. Consequently, resulting 

variant sets differ depending on the employed methods (e.g. Bayesian), which come with strengths and 

weaknesses concerning the identification of specific variant types (37, Table 19.5; 10, Table 4). Several 

factors that contribute to high accuracy of variant callings are: (I) a high coverage of the variant position 

resulting in support for SNVs by several overlapping reads38, (II) a careful study design20, (III) joint variant 

calling for multiple samples to allow mutual support of genotypes39. 

The initial set of putative sequence variants is usually filtered to remove unreliable variant calls. Possible 

reasons for the identification of these variants in the first place are incorrect alignments, sequencing 

errors, or low-quality scores10. Read depth, mapping quality, and bias in the alignment to both strands 

are central criteria used in the filtering step. While this filter step aims to reduce the number of false 

positives, it simultaneously increases the number of false negatives. The best trade-off between 

sensitivity and specificity depends on the purpose of the respective study. 

Many underlying algorithms of variant calling pipelines were developed for the analysis of variants in 

the human genome, e.g. to investigate genetic disorders or to study tumor samples20,40–43. Although the 

applications in biomedical research and plant sciences differ substantially, plant scientists have largely 

followed benchmarking studies derived from research on human samples assuming similar 

performances. Therefore, no comprehensive benchmarking study of read mapping and variant calling 

tools for plant genome sequences is described in the literature. Due to substantial differences in the 

nucleotide composition, a dedicated benchmarking on plant genomes sequences is advised. A recent 

study compared the performance of BWA-MEM22, SOAP224, and Bowtie221 with the two variant callers 

GATK29–32 and SAMtools/BCFtools27 on simulated and real tomato datasets44. To expand the sparse 

knowledge about the performance of other read mapping and variant calling tools on plant data, we set 

out to perform a systematic comparison. Our study evaluated the performance of 50 variant calling 

pipelines, testing combinations of five read mappers (Bowtie2, BWA-MEM, CLC-mapper, GEM3, 
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Novoalign) and eight different variant callers (SAMtools/BCFtools, CLC-caller, FreeBayes, GATK 

v3.8/v4.0/v4.1, LoFreq, SNVer, VarDict, VarScan) that are frequently applied in re-sequencing studies. 

Many combinations perform almost equally well on numerous data sets of the plant model organism A. 

thaliana. Illumina sequence reads were used for the detection of variants and provide the foundation 

for the comparison of these pipelines. Independent PacBio long reads were harnessed for the validation 

of identified variants based on an orthogonal sequencing technology. 

 
Material and Methods 

 

Sequence read data sets 

We used paired-end Illumina reads from two different A. thaliana accessions, namely Columbia-0 (Col-

0) and Niederzenz-1 (Nd-1) (Supplementary Table 1). The read quality was checked via FastQC12 

(Supplementary Table 1). Trimmomatic16 was applied for light trimming and quality conversion to a 

Phred score of 33 if applicable. These data sets cover different Illumina sequencing platforms including 

GAIIX, MiSeq, and HiSeq 1500. While two data sets are the paired-end proportions of mate pair 

sequencing libraries (SRR2919288 and SRR3340911), these samples are 2×250 nt paired-end libraries. 

 

Sequence read mapping 

We chose five popular read mappers, namely Bowtie2 v2.3.4.321, BWA-MEM v0.7.1722, CLC v11 

Genomics Workbench (Quiagen), GEM3 v3.623, and Novoalign v3.09.01 (http://novocraft.com/) for this 

analysis. While most of these mappers are freely available for academic use, CLC is a proprietary 

software suit for genomic analyses. Paired-end reads were mapped against the TAIR10 reference 

genome sequence45. The executed commands for each tool can be found in Supplementary Table 2. 

Samtools v.1.827 was deployed for sorting of the BAM files. Reads originating from PCR duplicates where 

removed via MarkDuplicates in Picard-bf40841 (https://broadinstitute.github.io/picard/). Read groups 

or InDel qualities were assigned as these are required by some tools for downstream processing. While 

the plastome and chondrome sequences were included during the mapping step, variant caller 

performance was only assessed for the five nucleome sequences. 

 

Variant calling 

All mapping results were subjected to variant calling via CLC v11 Genomics Workbench (Quiagen), 

FreeBayes v1.2.028, Genome Analysis Tool Kit v3.8/v4.0/v4.1 HaplotypeCaller (GATK-HC)29–32, LoFreq 

v2.1.3.133, Samtools v1.927 in combination with BCFtools v1.9 (alias BCFtools in the following), SNVer34, 

VarDict35, and VarScan36. We evaluated three different versions of GATK in order to analyze whether the 

applied version has a high impact on the variant calling pipeline performance. The executed commands 

for each tool can be found in Supplementary Table 2. 

 

Performance measure of variant calling pipelines 

The overall workflow of our benchmarking study is presented in Figure 1. We applied a previously 

described pipeline to validate sequence variants against the Nd-1 de novo assembly based on PacBio 
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reads (https://github.com/bpucker/variant_calling)46, which is crucial in order to assess the 

performance of each variant calling pipeline. A gold standard was generated from all validated variants 

by combining them into a single VCF file (https://docs.cebitec.uni-bielefeld.de/s/GG4CYJ7PcEwMFAF). 

Afterwards, the numbers of true positives, true negatives, false positives, and false negatives were 

calculated based on the gold standard and the initial VCF files for each variant calling pipeline and data 

set. Next, performance statistics including sensitivity, specificity, precision, accuracy, and F1 score were 

calculated per combination of mapper, variant caller, and data set (Table 1). 

 

 

Figure 1: Workflow for the performance analysis of variant calling pipelines. First, reads within supplied FASTQ 
files were mapped against the TAIR10 A. thaliana reference genome sequence. Next, variants were called and 
saved in VCF files. All variants were subjected to a previously described validation process based on the Nd-1 
genome sequence46. A gold standard was generated based on all validated variants. The initial variants called by 
each combination of mapper and variant caller were evaluated by analyzing whether they are present or absent 
in the gold standard. The numbers of SNVs, MNVs, and InDels were retrieved from the validated and from the 
initial VCF files (Supplementary Table 3, Supplementary Table 4). Next, true positives (TP), false positives (FP), false 
negatives (FN), and true negatives (TN) were calculated for SNVs, MNVs, and InDels identified by each 
combination of mapper and variant caller. Finally, performance statistics, such as F1 score, sensitivity, specificity, 
precision, and accuracy were calculated. 
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Results 

 

General stats about mapping of reads 

Six Illumina paired-end sequence read datasets47,48 from A. thaliana Nd-1 and one control sample of 

Col-0 47 were processed using all combinations of five read mapping and eight different variant calling 

tools (including three different versions of one tool) to evaluate the mapping percentage as well as 

precision, sensitivity, and specificity of each variant calling pipeline. Due to these combinations 

(7×5×10), 350 variant calling sets were generated in this study. Overall, the sequence read quality of the 

processed data sets was high ranging from an average Phred score of 35 to 38 (Supplementary Table 1). 

We observed only minor differences between the different sequence read datasets with respect to 

percentage of properly aligned read pairs (Supplementary Figure 1). In general, a higher proportion of 

the 2×300 nt paired-end reads was mapped ranging from 94.8% to 99.5%, while the 2×250 nt and the 

2×100 nt paired-end reads resulted in mapping proportions ranging from 92.7% to 99.6% and 90.0% to 

99.1%, respectively. 

The comparison of mapping performance revealed that GEM3 had the highest average percentage of 

aligned read pairs (99.6%), followed by Novoalign (99.4%), Bowtie2 (99.0%), BWA-MEM (98.7%), and 

the read mapping function within CLC Genomics Workbench (CLC-mapper) (95.2%) (Figure 2). 

 

Figure 2: Ratio of mapped sequence read pairs per mapper. Sequence reads of six A. thaliana Nd-1 data sets were 
mapped to the Col-0 reference genome sequence TAIR10. The average ratio of aligned read pairs was calculated 
for Bowtie2, BWA-MEM, the mapping function in CLC Genomics Workbench (CLC), GEM3, and Novoalign based 
on all six data sets through the flagstats function of samtools. The width of the violin plots is proportional to the 
density of the data points. The boxplots inside the violin plots indicate quantiles and the white dot indicates the 
median. 
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Initial variant calling results & validation results 

The initial variant calling revealed between 32,939 (Bowtie2 / CLC-caller) and 1,009,163 (BWA-MEM  / 

VarDict) unfiltered SNVs, while the number of unfiltered InDels ranged from 2,559 (BWA-MEM / VarScan) 

to 240,879 (GEM3 / VarDict) (Supplementary Table 3). Based on the three variant callers, which were 

able to call and classify MNVs (CLC-caller, VarDict, and FreeBayes), MNVs ranged from 1,394 

(Bowtie2/CLC-caller) to 168,100 (CLC-mapper/FreeBayes) (Supplementary Table 3). 

The quality of a variant call set is determined by the transition/transversion ratio, as a worse variant call 

set tends to have a lower transition/transversion ratio49. While most variant callers showed a similar 

transition/transversion ratio with a median ranging from 1.256 (LoFreq) to 1.288 (VarDict), SNVer 

revealed a lower median of 1.2 and especially FreeBayes performed worst, showing a median of 1.15 

(Figure 3). In addition, FreeBayes revealed the greatest variation ranging from 0.92 to 1.31. 

 

 

Figure 3: Ratio of transitions/transversions in the variant call sets per variant caller. Evaluation of call set quality 
was harnessed by analyzing the transition/transversion ratio. The orange line represents the median, the green 
triangle represents the mean. 

 

In order to analyze whether a variant caller identifies relatively more SNVs than InDels, the ratio of SNVs 

to SNVs and InDels was calculated per variant caller (Figure 4). BCFtools identified the highest 

proportion of SNVs (median = 0.90), while VarDict and GATK 4.1 called the lowest proportion of SNVs 

(median = 0.824). Moreover, all GATK versions performed similar and revealed low variance when 
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compared to the other variant callers. Interestingly, BWA-MEM / VarScan using the SRR3340910 data set 

yielded the highest SNVs/InDels ratio with almost 1 (0.996). 

 

Figure 4: Proportion of SNVs to all variants per variant caller. Performance of each variant caller was assessed 
based on 30 mappings of A. thaliana Nd-1 reads against the Col-0 reference genome sequence TAIR10. Evaluation 
of the proportion of SNVs to all variants in the results of each applied variant caller was analyzed. MNPs were 
excluded because not all variant callers identified MNPs. The orange line represents the median, the green triangle 
the mean. 

 

To infer whether a variant caller is more prone to call small or large InDels, the distribution of InDel 

lengths was inspected (Figure 5). Especially VarDict called very large insertions (up to 981 bp) and very 

large deletions (up to 998 bp), which are likely to be artifacts since they are filtered out in the 

corresponding validated call set (Supplementary Figure 4). VarScan (134 to -93), SNVer (134 to -95), CLC-

caller (156 to -95), LoFreq (168 to -109), and BCFtools (216 to -108) showed a narrower range of InDel 

lengths. 
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Figure 5: Distribution of InDel lengths per variant caller. Performance of variant callers was assessed based on 30 
mappings of A. thaliana Nd-1 reads against the Col-0 reference genome sequence TAIR10. The length distribution 
of all InDels identified by each applied variant caller was analyzed. The orange line represents the median, the 
green triangle represents the mean. 

 

In order to compare the performance of different variant calling pipelines, we calculated the sensitivity, 

specificity, accuracy, precision, and F1-Score (Table 1, Supplementary Table 3). GATK revealed the 

highest accuracy in combination with most mappers. The only exception is the combination of GEM3 

and VarScan, which performed better than any GATK version (Figure 6). GATK worked best on alignments 

produced by BWA-MEM and Novoalign. All three evaluated GATK versions (v3.8, v4.0, and v4.1) showed 

an almost identical performance. In general, Novoalign reached the best (median) results with respect 

to accuracy. The only exceptions are CLC-caller and VarScan based on alignments produced by CLC-

mapper and GEM3, respectively. While Bowtie2 was identified to yield high specificity with most variant 

callers, it showed a low accuracy with most variant callers except for FreeBayes and VarDict. 
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Figure 6: Accuracy of variant calling pipelines. The accuracy for each variant calling pipeline is shown with mean 
(dashed line) and median (straight line) calculated based on the results of the six analyzed data sets. 

 

In general, the sensitivity of the variant caller pipelines ranged from 0.0219 (Bowtie2 / CLC-caller) to 

0.6038 (BWA-MEM / VarDict) and the specificity from 0.99450 (CLC-mapper / FreeBayes) to 0.999961 

(Bowtie2  / CLC-caller) (Supplementary Figure 2, Supplementary Figure 3). Moreover, we observed a 

negative correlation of -0.8 between specificity and sensitivity, indicating that a pipeline with a high 

sensitivity showed a low specificity and vice versa. Almost every variant caller, except for VarDict, 

showed the lowest specificity when used in combination with CLC-mapper, while in parallel these 

combinations had one of the highest sensitivities. VarDict showed the highest specificity, but lowest 

sensitivity with Bowtie2 and performed inferior to GEM3 in terms of specificity, while BWA-MEM 

reached the best results in sensitivity. 

All tested GATK versions (v3.8, v4.0, and v4.1) showed a very high sensitivity and were only 

outperformed by specific VarDict samples, namely the 2×100 nt paired-end data set independent of the 

choice of the mapper, which reached up to 0.6038 sensitivity (BWA-MEM / VarDict-SRR2919279). 

However, the specificity of GATK was inferior to some other variant callers. Only minor differences were 

observed between the three evaluated GATK versions regarding both sensitivity and specificity. The use 

of different mappers had a substantially higher impact than the applied GATK version. 

Followed by GATK, FreeBayes showed a good performance in terms of sensitivity and robust results 

across all mappers, whereas the other variant callers showed a low performance in combination with 

Bowtie2. CLC-caller, VarScan, and LoFreq revealed a great variation with respect to sensitivity across all 

mappers, while GATK and especially VarDict displayed very low variance in their results. When focusing 

on median sensitivity, the following combinations showed the best results: CLC-mapper / CLC-caller, 

GEM3 / VarScan, CLC-mapper / SNVer, CLC-mapper / LoFreq, CLC-mapper / GATK 3.8, CLC-mapper / GATK 

4.0, CLC-mapper / GATK 4.1, CLC-mapper / BCFtools, GEM3 / FreeBayes, and BWA-MEM / VarDict. However, 

in terms of median specificity all variant callers revealed the best results in combination with Bowtie2, 
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except for FreeBayes, which worked best with Novoalign. Moreover, FreeBayes showed the lowest 

performance and largest variation across all mappers (Supplementary Figure 2). 

Finally, the harmonic mean of precision and sensitivity, namely the F1 score, was analyzed 

(Supplementary Figure 6). Novoalign in combination with GATK revealed the best mean performance 

with respect to the F1 score. Again, different GATK versions showed almost identical performance (Table 

1). 

Table 1: A Performance statistics of variant calling pipelines. For each variant calling pipeline the statistics to infer 
performance are listed. sen = sensitivity, spe = specificity, pre = precision, acc = accuracy, F1 = F1 score. 
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Discussion 

The major challenge in many pangenome and re-sequencing projects is the accurate and comprehensive 

identification of sequence variants. Due to the high diversity and complexity of plant genomes and their 

differences to animal (e.g. human) genomes, variant callings in plant research differ substantially from 

those in human and biomedical research. Large amounts and different NGS data types (as reviewed in 
11), the diversity of bioinformatic algorithms, and the quality of the reference genome sequences render 

the choice of the best approach challenging. Hence, we performed a benchmarking study to provide 

comparable data showing the performance of combinations of frequently applied mappers and variant 

callers (variant calling pipelines) on plant data sets. A previous report44 is extended by providing data 

about the performance of additional tools both for the mapping and variant calling step. 

 

To allow for a consistent comparison of baseline performance, we used default parameters for all tools 

as these parameters are frequently chosen in plant science applications4,5,9. Sequence read data sets 

from different sequencing platforms, with different read lengths, and different sizes were processed to 

ensure a realistic benchmarking of tools. Since all evaluated tools can process a real plant data set within 

a day, we refrained from assessing the computational costs of the analysis. There is usually a trade-off 

between quality of the results and computational costs. In our experience, many plant scientists select 

the workflow leading to the best results independent of computational costs50. 

 

The first step in a variant calling pipeline is the alignment (mapping) of reads to a reference sequence. 

While the mapping of 2×250 nt paired-reads resulted in a higher mapping percentage, the performance 

difference to 2×100 nt reads is only about 10%. As different sequencing platforms were used for the 

data generation, per base quality might contribute to this difference. It is expected that longer reads 

are aligned with higher specificity and hence improve the following variant calling. 

The quality of the variant calling sets was assessed by the transition/transversion (ti/tv) ratio which was 

previously described as a quality indicator49. Overall the quality of almost all analyzed call sets was 

similar. A previous benchmarking study with SAMtools and GATK reported similar ti/tv ratios for all 

pipelines51. A filtering step increased the ti/tv ratios, indicating that the filtering increased the quality 

of the call sets51. This observation is in line with our findings, which revealed an increased ti/tv for the 

filtered call sets reduced to variants present in the gold standard (Supplementary Figure 5, 

Supplementary Table 4). As FreeBayes showed a substantial increase in the quality through filtering, we 

recommend checking the transition/transversion ratio when applying FreeBayes. This effect might be 

dataset specific. 

 

The choice of the variant caller is crucial for the number of called SNVs, MNVs, and InDels. For example, 

only CLC-caller, VarDict and FreeBayes were able to call MNVs, thus being more suitable for the 

identification of structural differences. Furthermore, variant caller results differ with respect to the ratio 

of SNVs to InDels, which should be considered depending on the specific requirements of the respective 

sequencing project. BCFtools called relatively more SNVs than InDels, while GATK revealed relatively 
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more InDels. A unique property of VarDict was the detection of InDels up to almost 1 kb which exceeds 

the read length. Since the accurate identification of such large variants, which are longer than the 

average read length, is still a challenging task52, many of these variants are likely false positives. 

Moreover, the reduced amount of large insertions in the validated call sets of VarDict supports this 

assumption. 

 

Depending on the application, a pipeline with a high sensitivity or high specificity is desired. In terms of 

sensitivity, GATK in combination with CLC-mapper, Novoalign and BWA-MEM yielded the best and most 

consistent results across all evaluated data sets. These results are in line with a recent study showing 

that GATK often outperformed SAMtools in terms of sensitivity, precision, and called raw InDels44. A 

high sensitivity is essential when a high number of true positives variations accelerates the power of 

the analyses, e.g. when looking for a detrimental variation between two samples. In this study, a 

pipeline comprising Bowtie2 and LoFreq resulted in the highest specificity and can thus be 

recommended. In contrast, a high specificity is desired in mapping-by-sequencing (MBS) projects, as a 

high proportion of true positives can keep the signal to noise ratio high. Combining both performance 

metrics by analyzing the accuracy, best results were obtained with Novoalign and GATK. The same 

pipeline yielded the best results regarding the harmonic mean of precision and sensitivity (F1 score). 

Differences observed between the three evaluated GATK versions (v3.8, v4.0, and v4.1) were negligible. 

However, functionalities and computational performance might differ between these versions. 

 

In summary, this benchmarking study provides insights into the strengths and weaknesses of different 

variant calling pipelines when applied on plant NGS data sets. Although the performance of all evaluated 

tools will differ between samples depending on properties of the read datasets and the genome 

sequence, we hope that our findings serve as a helpful guide. 
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