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 2 

Abstract – Inclusive fitness theory has transformed the study of adaptive evolution since 25 

1964, contributing to significant empirical findings. However, its status as a theory has been 26 

challenged by the proposals of several alternative frameworks. Those challenges have been 27 

countered by analyses that use the Price equation and the regression method. The Price 28 

equation is a universal description of evolutionary change, and the partitioning of the Price 29 

equation using the regression method immediately yields Hamilton’s rule, which embodies 30 

the main tenets of inclusive fitness. Hamilton’s rule captures the intensity and direction of 31 

selection acting on social behaviour and its underlying causal structure. Recent work, 32 

however, has suggested that there is an anomaly in this approach: in some cases, the 33 

regression method fails to estimate the correct values of the variables in Hamilton’s rule and 34 

the causal structure of the behaviour. Here, I address this apparent anomaly. I argue that the 35 

failure of the simple regression method occurs because social players vary in baseline 36 

fecundity. I reformulate the Price equation and regression method to recover Hamilton’s rule 37 

and I show that the method correctly estimates its key variables. I show that games where 38 

baseline fecundity varies among individuals represent a more general set of games that unfold 39 

in class-structured populations. This framework supports the robustness and validity of 40 

inclusive fitness. 41 

 42 

Keywords -- class-structure, kin selection, natural selection, heterogeneity, game theory. 43 
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 3 

Introduction 50 

 51 

Inclusive fitness (Hamilton 1964b, a) is thought by some (e.g. Davies et al. 2012) to be one of 52 

the most significant contributions to evolutionary theory since Darwin’s (1859) work on 53 

Natural Selection. It provides the theoretical foundations for topics that range from sex 54 

allocation (Charnov 1982, West 2010) and the evolution of altruism (Bourke 2011) to parent-55 

offspring conflict (Trivers 1974, Haig 2002) and dispersal evolution (Hamilton and May 56 

1977, Clobert et al. 2012), and it contributes to our understanding of major evolutionary 57 

transitions in individuality (Maynard Smith and Szathmáry 1995, Boomsma 2009, Bourke 58 

2011). Despite its explanatory power, inclusive fitness is a concept that has also been the 59 

subject of a good deal of controversy. Some argue that inclusive fitness fails when games 60 

deviate from additivity (e.g. van Veelen 2009); others claim that it cannot fully explain group 61 

selection and that it requires weak selection or rare mutants (e.g. Wilson and Wilson 2007, 62 

van Veelen 2009); and still others suggest that it fails to provide a causal account of social 63 

behaviour and cannot be empirically tested  (Allen et al. 2013, Nowak et al. 2017).  64 

 65 

The Price equation has been the main mathematical tool used to address these critiques of 66 

inclusive fitness (Queller 1992b, Gardner et al. 2011). It is a universal description of 67 

evolutionary change (Price 1970, 1972, Hamilton 1975, Frank 1997, Queller 2017) that 68 

supports the analysis of evolutionary quantitative genetics (Lande and Arnold 1983), indirect 69 

genetic effects (Moore et al. 1997), and multi-level selection (Okasha 2006). That the Price 70 

equation provides a framework for inclusive fitness was first proposed by Hamilton (1970). It 71 

has been developed by many since then (Grafen 1985, Queller 1992a, b, Frank 1997, Grafen 72 

2000, Gardner 2015, Grafen 2015), including those who deploy it to address critiques 73 

(Queller 1992b, a, Gardner et al. 2011, Rousset 2015). It defines fitness costs and benefits as 74 
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partial regression coefficients that emerge from an analysis of social behaviour (Queller 75 

1992b, a, Gardner et al. 2011, Rousset 2015). The regression approach has been suggested to 76 

demonstrate that inclusive fitness is as general as natural selection and that the actor-centric 77 

interpretation of behaviour remains the most robust paradigm in social evolution, both from 78 

the theoretical and empirical standpoints (Gardner et al. 2011, West and Gardner 2013).  79 

 80 

This view of social evolution, however, has been challenged. In particular, Allen et al. (2013) 81 

and Nowak et al. (2017) identified a set of games where the regression analysis fails to yield 82 

the correct values of the costs and benefits of the games’ social interactions. This failure of 83 

the regression approach called into question the logical status of inclusive fitness within 84 

evolutionary biology, in particular raising the issue of whether inclusive fitness can in 85 

principle provide a correct account of social behaviour (Birch 2014, Birch and Okasha 2015, 86 

Akçay and Van Cleve 2016, Okasha 2016). Some are now starting to question whether 87 

inclusive fitness provides a solid framework for the development of novel hypotheses, the 88 

design of experiments, and the interpretation of empirical data (e.g. Gadagkar 2016, Whiteley 89 

et al. 2017).   90 

 91 

It is thus crucial to understand why specific types of games cause the regressions used in 92 

inclusive fitness models to break down. Here, I ague that variation in the baseline fecundity of 93 

social partners is the underlying cause of the failure of the simple regression method. 94 

Understanding this class of games requires an extended version of the Price equation and the 95 

regression method. I show that the extended version of the Price equation recovers a form of 96 

Hamilton’s rule that while not exactly identical to Hamilton’s original formulation it follows 97 

the same logic. I then show that the games in which individuals vary in baseline fecundity 98 

belongs to a wider set of class-structured games with broad empirical significance. 99 
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 100 

The Price equation 101 

 102 

The Price equation is a mathematical statement about how properties of a population of 103 

entities change over time (Price 1970, 1972). More precisely, it maps the relationship between 104 

two sets of entities and it describes how average quantities change from one set to the other 105 

(Frank 2012). Typically, one set is called the parental generation and the other the offspring 106 

generation. The entities of these two sets are connected by directed acyclic graphs that define 107 

multiple family trees, where the source nodes are the entities in the parental population and 108 

the outgoing nodes are the entities in the offspring population (Fig. 1A; Gardner 2020). The 109 

entities of the sets are assumed to vary in their breeding value, which can be inherited from 110 

parents to offspring with different degrees of fidelity. These assumptions, depicted in diagram 111 

1A, give rise to the Price equation, which describes changes in the breeding value that occur 112 

between the parental and offspring population (see Gardner 2008, Frank 2012 for reviews, 113 

and the appendix for details). Changes in mean breeding value can occur for two main 114 

reasons: natural selection and transmission biases (Frank 1997, Okasha 2006, Gardner 2008). 115 

Here, I focus on changes in breeding value due to the action of natural selection. Under these 116 

conditions, the most general form of the Price equation is given by 117 

 118 

∆!"�̅� =
#
$%
𝑐𝑜𝑣(𝑤&, 𝑔&),                                                                                                             (1) 119 

 120 

where: 𝑤& is the reproductive success of the ith individual in the population; 𝑔& is the breeding 121 

value of the ith individual; 𝑤,  is the average reproductive success in the population; �̅� is the 122 

average breeding value in the population; and ∆!"�̅� denotes the change in the average 123 

breeding value between the parental and offspring generations owing to the action of natural 124 
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selection. This statement does not depend upon any assumption regarding the nature of the 125 

population; it therefore provides a general description of the action of natural selection (Price 126 

1970, Gardner 2008, Frank 2012). The Price equation tells us that the change in the average 127 

breeding value between generations is given by the covariance between the relative 128 

reproductive success of individuals and their breeding value.  129 

 130 

The Price equation extended 131 

 132 

The Price equation in a class-structured world 133 

 134 

The standard derivation of the Price equation assumes that all entities in the population are 135 

identical except for their breeding value, as represented in diagram 1A (e.g. Price 1970, 136 

Gardner 2008, Frank 2012). Conceptually, we can modify this framework in three main ways. 137 

First, rather than two sets of entities, the parental and offspring populations, we can consider 138 

more than two sets of populations. For instance, we can imagine that entities in the first 139 

population give origin to entities in the second population, entities in the second population 140 

give origin to entities in the third population, and so forth. Second, rather than 141 

undifferentiated individuals (or entities), we can consider that individuals differ in a property, 142 

which we can call quality, and which we represent by different shapes in the diagram 1A. 143 

Third, we can allow the quality of individuals to influence both the number of entities they 144 

produce, as well as the quality (or class) of the entities they produce, where quality is any 145 

phenotype of an individual that affects its fitness (see diagram 1A). Although quality often 146 

defines classes (e.g. large and small individuals), classes exist even if there are no obvious 147 

phenotypic differences among individuals, such as when individuals occupy habitats of 148 

different quality (e.g. core and marginal habitats).  149 
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 150 

The aim is to discover how the average breeding value of a population in the future is affected 151 

by natural selection acting on the current generation. To do so, we partition total fitness into a 152 

current and future component. Current fitness, denoted by 𝑤&'→), is the contribution of the ith 153 

individual in the current population to the offspring population, where j is the class of the 154 

focal individual and l is the class the individuals produced by the ith individual. Future 155 

fitness, denoted by 𝑣), is the contribution of a class-l individual in the offspring generation to 156 

a population in the future. Future fitness, or reproductive value, is calculated using the 157 

“counter-factual” method by considering a neutral population from time t0 + 1 onwards 158 

(Frank 1998, Gardner 2015). This enables us to differentiate natural selection acting on the 159 

current generation from natural selection acting on subsequent generations (Frank 1998, 160 

Gardner 2015).  161 

 162 

As in the previous section, the assumptions underlying diagram 1B give rise to a 163 

corresponding “Price equation” (see appendix for details), which is given by 164 

 165 

∆�̅� = #
$%
-∑ 𝑢'∑ 𝑣)𝑐𝑜𝑣*-𝑤&'→), 𝑔&'0!

)+#
!
'+# 012222222222322222222224

within-class	selection

+ #
$%
𝑐𝑜𝑣9-𝑤,∗', 𝑔&'012222322224

between-class	covariance

,                                          (2) 166 

 167 

where: N is the different classes (or qualities) of individuals in the population; uj is the 168 

frequency of individuals in class-j; gij is the breeding value of the ith individual in class-j; and 169 

𝑤,∗' is the mean fitness of individuals in class-j. I use 𝑐𝑜𝑣* and 𝑣𝑎𝑟* to denote covariances 170 

and variances within any given class, and 𝑐𝑜𝑣9 and 𝑣𝑎𝑟9 when covariances and variances are 171 

taken between classes and across all individuals in the population.  172 

 173 
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This formulation of the Price equation isolates two key processes driving evolutionary 174 

change. First, the “within-class selection” terms describes statistical associations between 175 

breeding value and fitness within each class, with each covariance being weighted by the 176 

frequency of individuals within each class and by the reproductive values of the recipient 177 

classes. Note that breeding values may be positively associated with fitness in some classes, 178 

but negatively associated with fitness in others. The overall effect depends both on the 179 

strength of each association and on the frequency of individuals in each class and on the 180 

reproductive values of the recipient classes. The covariance terms within each class can be 181 

written as  𝑐𝑜𝑣*-𝑤&'→), 𝑔&'0 = 𝛽$!"→$,?!"𝑣𝑎𝑟*-𝑔&'0. That is, for selection to operate within each 182 

class, there must be genetic variation within that class (i.e. 𝑣𝑎𝑟*-𝑔&'0 > 0) and there must be 183 

a statistical association between breeding value and fitness (𝛽$!"→$,?!" ≠ 0). If either of these 184 

conditions are not met, then there is no scope for selection to act within that class.  185 

 186 

Second, the last term represents selection that operates between classes and / or class effects, 187 

which is given by the covariance between breeding value and the mean fitness of each class. 188 

If the between-class covariance occurs because of gene action, we call it “selection between 189 

classes”. Otherwise, we call it “class-effects”. The covariance between classes is positive 190 

whenever higher values of breeding value are statistically associated with higher values of 191 

class mean fitness (i.e. higher 𝑤,∗'), and negative whenever higher values of breeding value 192 

are statistically associated with lower values of class mean fitness (i.e. lower 𝑤,∗'). If 193 

individuals are randomly distributed across the different classes, then there is no statistical 194 

association between breeding value and class mean fitness. In that scenario, the selection 195 

between classes and / or class-effects are zero (i.e. 𝑐𝑜𝑣9-𝑤,∗', 𝑔&'0 = 0), and selection within 196 

classes is the only force governing change in average breeding value.  197 

 198 
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Classes and the regression approach 199 

 200 

In the previous section, I did not specify the relationship between fitness (or reproductive 201 

value) and breeding value. In the context of kin selection, the fitness of a focal individual will 202 

depend both on its own breeding value and on the breeding value of its partners. This 203 

relationship between reproductive success (the dependent variable) and breeding values (the 204 

independent or predictor variables) can be described by a statistical model as part of a 205 

regression analysis (Queller 1992b, a).  206 

 207 

The form of the statistical model depends on the covariance expressions in the Price equation. 208 

Covariances in the first term of the Price equation are calculated across the set of individuals 209 

within each class, while the covariance in the second term is calculated across the set of all 210 

individuals in the population. Therefore, the regression analysis is performed within each 211 

class, when considering the first (within-class selection) term, but across all individuals, when 212 

considering the second (between-class covariance) term.  213 

 214 

Within-class selection -- Let us start by focusing on the regression analysis within each class. 215 

For each class, I denote the intercept of the statistical model by 𝛽@', where j represents the 216 

focal class. In addition, the fitness of a focal individual in class-j depends on the breeding 217 

value of the focal individual, on the breeding value of the individuals in the same class, and 218 

on the breeding value of individuals in other classes. Thus, the estimated fitness of the focal 219 

ith individual in class-j can be written as 220 

 221 

𝑤&'→) = 𝛽@'→) + 𝛽&'→)𝑔&' + ∑ 𝛽&A→'→)𝐺&AA∈C + 𝜀' 𝑖 ∈ (1, … , 𝑛')	                                           (3) 222 

 223 
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where: 𝛽&'→) is the partial regression coefficient that gives the effect of the focal individual’s 224 

breeding value on its own fitness when the focal individual produces class-l individuals; 225 

𝛽&A→'→) is the partial regression coefficient that gives the effect of a class-σ social partner on 226 

the fitness of the focal class-j individual when the focal individual produces class-l 227 

individuals; gij is the breeding value of the focal individual; Giσ is the breeding value of the 228 

focal individual’s class-σ social partners; nj is the number of individuals in class-j; and, 229 

finally, 𝜀' is the uncorrelated error between the observed and estimated values.  230 

 231 

Between-class covariance -- I now focus on the “between-class covariance” term in the Price 232 

equation (equation (2)). Let each class be defined by its mean fitness 𝑤,∗', and denote 𝜎&' as the 233 

class phenotype, which is defined in relation to the mean fitness of class-j. Specifically, I 234 

define the class phenotype of the ith individual in class-j as 𝜎&' =235 

E𝑤,∗' −min-𝑤,∗'0J max E𝑤,∗' −min-𝑤,∗'0JM , such that the class phenotype 𝜎&' is bounded 236 

between 0 and 1. This will not affect the calculations because I am simply rescaling the mean 237 

fitness of the class. The mean fitness of an individual in a class-j can then be described by the 238 

following model 239 

 240 

𝑤,&' = 𝛽D,@ + 𝛽D𝜎&' + 𝜀&' 𝑖 ∈ (1, … , 𝑛')	,                                                                                 (4) 241 

 242 

where 𝛽D,@ is the intercept, and 𝛽D is the effect of the class phenotype on mean fitness. I can 243 

now replace this equation in the “between-class covariance” term in the Price equation 244 

(equation (2)) to obtain  245 

 246 

𝑐𝑜𝑣9-𝑤,∗', 𝑔&'0 = 𝑑D𝑟D𝑣𝑎𝑟9-𝑔&'0.                                                                                              (5)         247 
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                                                                                                          248 

where 𝑟D = 𝑐𝑜𝑣9-𝜎&', 𝑔&'0 𝑣𝑎𝑟9-𝑔&'0M  is the regression of breeding value on class phenotype, 249 

𝑑D = 𝛽D is the effect of class phenotype on mean class fitness. The regression of breeding 250 

value on class phenotype, rc, can be seen as a “class coefficient” that contains information 251 

about how breeding value is spread across the different classes. The right-hand side of 252 

equation (5) has a pleasant interpretation. The partial coefficient of correlation 𝛽D gives the 253 

effect of class phenotype on the mean fitness of an individual; the class coefficient 𝑟D gives 254 

the association between breeding value and class; and 𝑣𝑎𝑟9-𝑔&'0 gives the additive genetic 255 

variance in the population. We can now pinpoint the conditions under which the covariance 256 

between classes (i.e. selection between classes and / or class-effects) is zero. First, the 257 

covariance between classes is zero when the genotypes are uniformly distributed among all 258 

classes, and therefore when the mutant and neutral allele occur in the same proportions within 259 

each class (i.e. 𝑟D = 0). Second, the covariance between classes also vanish when class does 260 

not affect mean fitness (i.e. 𝑑D = 0). Third, the covariance between classes is zero in the 261 

absence of additive genetic variance in the population (i.e. 𝑣𝑎𝑟9-𝑔&'0 = 0).  262 

 263 

Hamilton’s rule in a class-structured world 264 

 265 

From the Price equation and the regression analysis, Hamilton’s rule for different forms of 266 

social behaviour can be derived. Here, I will focus on two forms of behaviours: first, 267 

behaviour that affects the fecundity of both actors and recipients (fecundity effects); second, 268 

behaviour that affects the survival of both actors and recipients (survival effects).  269 

 270 
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I start with a general model for the fitness of a focal individual and allow it to derive fitness 271 

from the production of offspring and from its own survival. I define the class-specific fitness 272 

of a focal individual as 273 

 274 

𝑤&E→) = 𝑤&E→)F +𝑤&E→)G ,                                                                                                            (6) 275 

 276 

where 𝑤&E→)G  is the fecundity component, and 𝑤&E→)F  is the survival component of fitness.  277 

 278 

Fecundity effects 279 

 280 

When focusing on fecundity alone, I assume that there is standing additive genetic variance 281 

for fecundity but not for survival. Because fecundity is the trait of interest, I need to define 282 

how fecundity influences the overall reproductive success of a focal individual. Let the 283 

reproductive success of the ith individual in class-k through offspring that become class-l 284 

individuals be given by 𝑤&E→)G = 𝑓&E𝑞), where 𝑓&E is the fecundity of the ith class-k individual 285 

and 𝑞) is the fraction of rank-l offspring produced by a focal mother. Here I assume that 286 

mothers vary in their fecundity, but they produce the same proportions of the different types 287 

of offspring.  288 

 289 

I now need to define how social interactions unfold. Let actors belong to class-α, and 290 

recipients belong to class-ρ, with ρ ∈ Θ, where Θ is the class of all recipients. From equation 291 

(2), I obtain 292 

 293 

𝑤,∆�̅� = 𝑢H -−𝑐Ĥ + ∑ 𝑏UH→I𝑟HII+J 0VWWWWWWXWWWWWWY
Hamilton's	rule

𝑣𝑎𝑟*(𝑔&H)𝑉[

+𝑑D𝑟D𝑣𝑎𝑟9-𝑔&'0𝑉[
.                                                                 (7)        294 
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 295 

where: −�̂� = 𝛽&H, 𝑏UH→I = 𝑢I𝛽&I→H 𝑢H⁄ , 𝑟HI = 𝑐𝑜𝑣*-𝑔&I, 𝑔&H0 𝑣𝑎𝑟*(𝑔&H)⁄ , and 𝑉[ = ∑ 𝑞)𝑉)!
)+#  296 

is the expected reproductive value of offspring (see Appendix for details). Note that the only 297 

assumptions are that additive genetic variation affects fecundity alone, and that there is no 298 

transmission of class from parents to offspring. The interpretation of this form of Hamilton’s 299 

rule is straightforward, closely following the canonical interpretation. The focal actor pays a 300 

cost 𝑐H to provide a benefit to a set of recipients Θ. Each recipient enjoys a benefit 𝑏H→I, 301 

which must be depreciated by the coefficient of relatedness 𝑟HI between actor and recipient.  302 

 303 

Survival effects 304 

 305 

Now consider survival effects. Here I assume that there is standing genetic variation for 306 

survival, but not fecundity, and therefore the fecundity component of fitness does not affect 307 

our calculations. The fitness of a mother can be written as 𝑤&E→NF = 𝑠&E→N, where 𝑠&E→N is a 308 

mother’s survival probability. Performing the regression analysis outlined in the preceding 309 

section, I find that the mean change in breeding value due to the action of natural selection 310 

becomes 311 

 312 

𝑤,∆�̅� = 𝑢H -−𝑐̂𝜐&H +∑ 𝑏UH→I𝜐'I𝑟HII+J 0VWWWWWWWWXWWWWWWWWY
Hamilton's	rule

𝑣𝑎𝑟*(𝑔&H)
+𝑑D𝑟D𝑣𝑎𝑟9-𝑔&'0

.                                                            (8)        313 

 314 

where: 𝜐&H is the future reproductive value of the actor, and 𝜐'I is the future reproductive 315 

value of recipients. Thus, under survival effects, I find that the estimated costs and benefits 316 

must be weighted by the expected reproductive value of actor and recipients, respectively. 317 

Here the little c’s and b’s denote short-term costs and benefits, with reproductive value 318 
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converting short-term costs and benefits into long-term fitness effects. Nevertheless, the 319 

general form of Hamilton’s rule remains identical to more standard forms of Hamilton’s rule.  320 

 321 

Detecting inclusive fitness 322 

 323 

Let me now illustrate how this framework can be used to analyse and understand concrete 324 

evolutionary games. In particular, I will employ the framework to analyse the examples used 325 

by Allen et al. (2013) and Nowak et al. (2017) to identify several types of evolutionary games 326 

in which the simple Price equation-regression approach to social evolution breaks down. I 327 

then discuss examples that explicitly contrast the simple regression analysis with one 328 

enhanced by the class-structured form of the Price equation. I first consider a game where 329 

individuals associate with each other but no real social transactions occur (cf. Fig. 1 and Fig. 330 

2A in Allen et al. 2013). Next, I consider a game in which high-fecundity individuals help 331 

low-fecundity individuals (cf. Fig. 2C in Allen et al. 2013). Then, I consider a game in which 332 

low-fecundity individuals inflict a cost on high-fecundity individuals (cf. Fig. 2B in Allen et 333 

al. 2013). I will focus on selection between consecutive generations. Further, I assume that the 334 

between-class covariance is not due to the action of genes, and therefore I will use the term 335 

“class-effects” to refer to this covariance. I will return to this subject below.  336 

 337 

Anomalies in previous literature 338 

 339 

Most of the anomalies identified by Allen et al. (2013) and Nowak et al. (2017) occur because 340 

they did not take into account the underlying class-structure of the games. When a population 341 

has class-structure, gene frequency change can occur because of within-class selection or 342 

because of a nonzero between-class covariance (due to either selection or class-effects). If one 343 
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does not properly represent the classes in the Price equation, then selection is compressed into 344 

a single regression coefficient that includes both selection within classes and the covariance 345 

between classes; that move affects the estimates of costs and benefits of behaviours.  346 

 347 

Let us consider the game provided in Fig. 1 in Allen et al. (2013). First, because individuals 348 

differ in their baseline fitness, which can take the values 4, 2 and 0, class must be taken into 349 

account. Second, because one class is composed of a single individual – i.e. there is a single 350 

individual with baseline fitness 4 – there is no scope for selection to operate within that class. 351 

Third, because the class of individuals with baseline 2 is composed of genetically identical 352 

individuals, there is no scope for selection to operate within that class as well. Fourth, while 353 

there is scope for selection within the class of individuals with baseline 0, the regression of 354 

breeding value on fitness is zero, and therefore selection within the class of individuals with 355 

baseline 0 is null as well. Thus, all change in gene frequency must occur because of a nonzero 356 

covariance between classes (i.e. class-effects). If our framework is correct, class-effects, as 357 

given by equation (5), must be equal to total selection, as given by the standard Price equation 358 

in equation (1). That is, 𝑤,∆�̅� = 𝑐𝑜𝑣(𝑤&, 𝑔&) = 𝑑D𝑟D𝑣𝑎𝑟9-𝑔&'0. Indeed, we find that 359 

𝑐𝑜𝑣(𝑤&, 𝑔&) = 𝑑D𝑟D𝑣𝑎𝑟9-𝑔&'0 = 0.125 as expected. Here, we find a nonzero covariance 360 

between classes because of a positive effect of class phenotype on baseline fitness (𝑑D = 4) 361 

and because of a positive association between breeding value and class phenotype (𝑟D =362 

0.133). These issues apply to the example of Fig. 2A in Allen et al. (2013), where there is no 363 

selection within classes, either because classes contain a single individual, because classes do 364 

not have genetic variation, or because there is no correlation between breeding value and 365 

fitness.  366 

 367 
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In the examples provided in Fig. 2B and 2C there is both selection within classes and a 368 

nonzero covariance between classes. In Fig. 2B, there is no selection within the classes with 369 

baseline fitness 0 and 5 because they lack genetic variation. However, there is selection within 370 

the class composed of individuals with baseline fitness 1, where the regression analysis within 371 

that class provides the correct estimate of the cost of the behaviour (i.e. 𝑐̂ = 1), given by the 372 

regression of breeding value on class-specific fitness, as defined above. Selection within that 373 

class, however, only captures a fraction of the total selection. The other fraction is given by 374 

class-effects, which is 𝑑D𝑟D𝑣𝑎𝑟9-𝑔&'0 = −0.025. Our calculations correctly recover total 375 

selection, as given by the standard Price equation (i.e. 𝑐𝑜𝑣(𝑤&, 𝑔&) = −0.125), for when we 376 

add together selection within classes and class-effects, we obtain −0.100 − 0.025 = −0.125, 377 

as expected.  378 

 379 

Let us consider the four examples given in Fig. 3 in Nowak et al. (2017). In all four, the 380 

simple method fails because of class structure. In the example of Fig. 3A, there are three 381 

classes: (1) “blue” individuals that interact with other blue individuals; (2) “blue” individuals 382 

that interact with “red” individuals; and (3) “red” individuals that interact with “red” 383 

individuals. Because there is no genetic variation within any of these classes, there is no 384 

selection within classes, and all evolutionary change results from a nonzero covariance 385 

between classes. In the examples of Figs. 4B-4D, there are two classes defined by the baseline 386 

fitness of individuals. In all three cases, there is again no scope for selection within classes, as 387 

classes have no genetic variation, and all evolutionary change is due to a nonzero covariance 388 

between classes.  389 

 390 

 391 

 392 
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Further examples 393 

 394 

Here, I consider cases in which there is scope for selection within classes and a nonzero 395 

covariance between classes.  396 

 397 

No transactions between individuals -- Let us consider a game whereby low-fecundity 398 

individuals tend to associate with high-fecundity social partners, but no social transactions 399 

occur (Fig. 3A; cf. the Hanger-On game in Allen et al. 2013). In other words, social 400 

interactions between social partners carry neither costs (c = 0) nor benefits (i.e. b = 0). I first 401 

estimate costs and benefits using the simple regression method. I find that the simple method 402 

leads to the wrong estimation of costs and benefits. Specifically, it estimates a negative cost 403 

(i.e. �̂� = – 4.0) and a negative benefit (𝑏U = – 4.0), and therefore it incorrectly classifies the 404 

behaviour as a selfish trait, when the behaviour is asocial (i.e. c = 0 and b = 0).   405 

 406 

Now I estimate costs and benefits using the regression analysis based on the extended Price 407 

equation. I find that the extended regression method correctly estimates the costs and benefits 408 

of the social behaviour (i.e. �̂� = 0 and 𝑏U = 0). The extended version of the Price equation also 409 

explains why the simple regression method fails: it detects correlations between breeding 410 

value and class (i.e. 𝑟D = 0.267) and between class and fitness (i.e. 𝑑fD = 8.0). This is because 411 

individuals with higher breeding value have an above-average tendency to be in classes of 412 

higher fitness, and therefore there is either selection between classes or class-effects. Note 413 

that both the simple and the extended regression method correctly predict the intensity and 414 

direction of evolutionary change (i.e. 𝑤,∆�̅� = 0.5), but only the class-based regression method 415 

correctly explains the causes of the behaviour.   416 

 417 
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High-fecundity helpers -- Here I consider a game in which high-fecundity individuals form 418 

one class, and low-fecundity individuals form another, and I assume that high-fecundity 419 

individuals help low-fecundity individuals (Fig. 3B; cf. Fig. 2C in Allen et al. 2013). I assume 420 

that the cost of the behaviour is one (i.e. c = 1) and the benefit is three (i.e. b = 3; Fig. 3B). 421 

Thus, because both the cost and benefit are positive (i.e. c > 0 and b > 0), the behaviour 422 

should be classified as altruistic. I find that the simple regression method incorrectly estimates 423 

costs and benefits: it estimates a positive and incorrect cost (i.e. �̂� = 1.091) and a negative 424 

and incorrect benefit (i.e. 𝑏U =	– 	1.091). Thus, the simple method incorrectly classifies an 425 

altruistic behaviour as spiteful. 426 

 427 

In contrast, the regression method based on the class-structured Price equation accurately  428 

describes the behaviour: it correctly estimates the costs and benefits of the social behaviour 429 

(i.e. �̂� = 1 and 𝑏U = 3, and it explains why the simple regression method fails, for it detects 430 

correlations between breeding value and class (i.e. 𝑟D = −0.296) and between class and mean 431 

fitness (i.e. 𝑑fD = 6.0). That is, individuals with higher breeding value have a tendency to be in 432 

classes of lower mean fitness. As before, both methods correctly predict the direction and 433 

intensity of evolutionary change (𝑤,∆�̅� = −0.375), but only the extended method generates 434 

the correct causal model for the evolution of the behaviour.  435 

 436 

Harm by low-fecundity individuals -- Now consider a game in which a low-fecundity 437 

individual inflicts a cost on a high-fitness social partner at a cost to itself (Fig. 3C; cf. Fig. 2B 438 

in Allen et al. 2013). I assume that the behaviour entails a cost of 0.5 (i.e. c = 0.5), and a 439 

benefit of – 0.5 (i.e. b = – 0.5). Because the cost is positive but the benefit is negative, the 440 

behaviour is classified as spiteful. Here the simple regression method incorrectly estimates the 441 
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costs and benefits ( �̂� = 0.636 and 𝑏U = 3.366). Because both the cost and benefit are positive, 442 

the model incorrectly classifies a spiteful behaviour as altruistic.  443 

 444 

Again, the extended method yields the correct explanation of the behaviour, for it correctly 445 

estimates the costs and benefits of the behaviour (�̂� = 0.5 and 𝑏U = −0.5) and correctly 446 

classifies the behaviour as spiteful. It also clarifies why the simple method fails by detecting 447 

correlations between breeding value and class (i.e. 𝑟D = 0.157) and between class 448 

membership and mean fitness (i.e. 𝑑fD = 7.67). As in the previous examples, both methods 449 

correctly predict the selection differential (i.e. 𝑤,∆�̅� = 0.281), but only the extended method 450 

correctly explains the causal reasons underlying changes in gene frequency.   451 

 452 

A closer look at class-effects 453 

 454 

Above, we saw that the class-based regression method explains why the simple regression 455 

method fails in previous literature and in each of the three examples. In all cases there is a 456 

nonzero covariance between classes (either selection or class-effects). That is, there is a 457 

correlation between breeding value and class membership and between class and mean 458 

fitness. The correlation between breeding value and class is a confounding factor when one 459 

uses the simple regression method to estimate costs and benefits, which breaks down as a 460 

result. The class-based Price equation captures this “confounding” factor. The confounding 461 

factor may be a real biological phenomenon, or an artefact of artificial datasets used to 462 

illustrate a hypothetical game. If one specifies that low-fecundity individuals help high-463 

fecundity individuals, then one ought to take into account the distribution of co-operator and 464 

defector genotypes among the different classes. If one does not, then one is implicitly 465 

assuming that resident and mutant alleles are identically distributed across the different 466 
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classes. However, the datasets presented above do not fulfil this assumption. For instance, if 467 

the dataset is generated at random, then the size of the population and the number of 468 

replicates will influence the distribution of genotypes among the different classes. If the 469 

probabilities of being a high- or low-fecundity individual are both ½, irrespective of their 470 

breeding value, then certain genotypes can be over-represented in high-fecundity classes 471 

when the population size is small.  472 

 473 

We can illustrate this point by generating random datasets as a function of population size 474 

(see Fig. 4). As anticipated, I find that as the size of the population increases, the class 475 

coefficient tends to zero (rc → 0), and therefore class-effects vanish (Fig. 4). This is because if 476 

a population is sufficiently large, the wild-type and mutant allele tend to become equally 477 

distributed among the different classes. In contrast, small population sizes contain sampling 478 

biases, in which the proportions of wild-type and mutant alleles in each class are not 479 

balanced. Alternatively, if the population size is small, but we simulate a sufficiently large 480 

number of replicates, the cumulative effect of selection among classes also vanishes (Fig. 4). 481 

Note that the data sets used in Allen et al. (2013) and Nowak et al. (2017) contain precisely 482 

such sampling bias.  483 

 484 

The elements of the Price equation 485 

 486 

Each element of the Price equation provides a description of the different processes that 487 

contribute to change in average gene frequency. The frequency of individuals in each class 488 

measures the impact of each environment on the intensity of selection. This occurs, for 489 

instance, whenever habitats are subdivided into different types. All else being equal, marginal 490 

environments (sinks), in which individuals occur at lower frequencies, contribute less to 491 
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selection than core environment (sources), in which individuals occur at higher frequencies. 492 

Thus, the frequency of individuals in each environment is crucial when measuring the 493 

influence of each habitat on selection, a classical result (Pulliam 1988). Reproductive value 494 

converts current selective pressures into long-term evolutionary change, for an individual in a 495 

high-fitness class leaves more descendants than average, and therefore high-fitness 496 

individuals are the ancestors of a disproportional number of individuals in future populations. 497 

In contrast, individuals that leave no descendants do not contribute to selection through direct 498 

reproduction and therefore their reproductive value is zero. The covariances within each class 499 

provide a mechanism to standardise the effect of breeding value on fitness by removing class-500 

effects. Variation in weight, size, or body fat, for instance, may be due to environmental 501 

factors, rather than the action of genes. The class-specific regression analysis ensures that 502 

these environmental effects are stripped away from the changes that are due to the action of 503 

natural selection. And the last term in the Price equation captures the statistical association 504 

between breeding value and class. This effectively separates class-effects from selection 505 

within classes (including kin selection), which is captured by the covariances within each 506 

class.  507 

 508 

Further considerations 509 

 510 

In the examples outlined above, I have considered games where individuals vary in their 511 

baseline fecundity and where social interactions affect the fecundity of actor and recipient. I 512 

showed that as long as baseline fecundity is not transmitted from parents to offspring, the 513 

reproductive value of offspring can be neglected in Hamilton’s rule, as only the correlations 514 

between maternal fecundity and breeding value affect the direction of selection acting on 515 

social behaviour. In that scenario, Hamilton’s rule assumes its standard form (Hamilton 1963, 516 
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Charnov 1977), where the key quantities are the costs and benefits of the social behaviour and 517 

the relatedness of the actors and recipients.  518 

 519 

In other types of games, for example where survival may vary with class, the reproductive 520 

values of actors and recipients must be taken into account. In such cases, Hamilton’s rule 521 

deviates from its more common form, in which the costs and benefits of the social behaviour 522 

must be weighted by the future reproductive value of actor and recipient, respectively (e.g. 523 

Rodrigues 2018). This was foreshadow by Hamilton in his use of life-for-life coefficients of 524 

relatedness, which include reproductive values (Hamilton 1972). More generally, the 525 

approach developed here can be applied to many other types of behaviour, including those in 526 

which there are correlations between maternal and offspring quality.   527 

 528 

It is important in evolutionary genetics to separate changes in gene frequency ascribed to 529 

natural selection from changes in gene frequency that are not due to the action of genes. 530 

Fisher pioneered this approach by developing mathematics of gene frequency change that 531 

correct for non-adaptive effects (Fisher 1930). Reproductive value and class frequency are 532 

crucial concepts in the mathematics of adaptive gene frequency change (Fisher 1930, Taylor 533 

1990, Taylor and Frank 1996, Grafen 2006). The Price equation derived above follows the 534 

same principles. Each element of the Price equation corrects gene frequency changes for non-535 

adaptive processes.  536 

 537 

In the illustrative examples, I defined classes according to baseline fecundity. More generally, 538 

classes can be defined by any phenotypic, behavioural, or social marker (Rodrigues and 539 

Gardner 2013). For instance, we may need to classify individuals according to their size, large 540 

and small, and their social status, dominant or subordinate. The structure of the population 541 
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may often require the classification of individuals along multiple dimensions, such as size, 542 

age, and social status.  543 

 544 

As discussed above, reproductive value converts current selective pressures into long-term 545 

adaptive changes (Fisher 1930, Taylor 1990, Grafen 2006, Gardner 2015). But if we are only 546 

interested in short-term evolutionary changes, then we simply set reproductive values to one, 547 

and the contribution to the offspring population is directly given either by the fecundity or 548 

survival of individuals in the current generation.   549 

 550 

Conclusion 551 

 552 

The Price equation and the regression method developed in this article provide a general 553 

framework for analysing social evolution in class-structured populations. This analysis 554 

confirms the pivotal role that Hamilton’s rule plays in explaining social behaviour. The 555 

conditions stated here for the evolution of a social behaviour can be traced back to Hamilton’s 556 

original derivation and his subsequent work on inclusive fitness.   557 

 558 

Acknowledgements 559 

 560 

I thank Andy Gardner and Steve Stearns for comments and helpful discussion.  561 

 562 

References 563 

 564 

Akçay, E., and J. Van Cleve. 2016. There is no fitness but fitness, and the lineage is its bearer. 565 

Philosophical Transactions of the Royal Society B 371:20150085. 566 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.09.982892doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.982892


 24 

Allen, B., M. A. Nowak, and E. O. Wilson. 2013. Limitations of inclusive fitness. 567 

Proceedings of the National Academy of Sciences of the USA 110:20135-20139. 568 

Birch, J. 2014. Hamilton's rule and its discontents. British Journal for the Philosophy of 569 

Science 65:381-411. 570 

Birch, J., and S. Okasha. 2015. Kin selection and its critics. Bioscience 65:22-32. 571 

Boomsma, J. J. 2009. Lifetime monogamy and the evolution of eusociality. Philosophical 572 

Transactions of the Royal Society B 364:3191-3207. 573 

Bourke, A. F. G. 2011. Principles of Social Evolution. Oxford University Press, Oxford, UK. 574 

Charnov, E. L. 1977. An elementary treatment of the genetical theory of kin-selection. Journal 575 

of Theoretical Biology 66:541-550. 576 

Charnov, E. L. 1982. The Theory of Sex Allocation. Princeton University Press, Princeton, 577 

N.J. 578 

Clobert, J., M. Baquette, T. G. Benton, and J. M. Bullock. 2012. Dispersal Ecology and 579 

Evolution. Oxford University Press, Oxford, UK. 580 

Darwin, C. R. 1859. On the Origin of Species by Means of Natural Selection, or, the 581 

Preservation of Favoured Races in the Struggle for Life. John Murray, London, UK. 582 

Davies, N. B., J. R. Krebs, and S. A. West. 2012. An Introduction to Behavioral Ecology. 4th 583 

edition. Blackwell, Oxford, UK. 584 

Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford, UK. 585 

Frank, S. A. 1997. The Price equation, Fisher's fundamental theorem, kin selection, and 586 

causal analysis. Evolution 51:1712-1729. 587 

Frank, S. A. 1998. Foundations of Social Evolution. Princeton University Press, Princeton, 588 

NJ. 589 

Frank, S. A. 2012. Natural selection. IV. The Price equation. Journal of Evolutionary Biology 590 

25:1002-1019. 591 

Gadagkar, R. 2016. Evolution of social behaviour in the primitively eusocial wasp Ropalidia 592 

marginata: do we need to look beyond kin selection? Philosophical Transactions of 593 

the Royal Society B 371:20150094. 594 

Gardner, A. 2008. The Price equation. Current Biology 18:R198-R202. 595 

Gardner, A. 2015. The genetical theory of multilevel selection. Journal of Evolutionary 596 

Biology 28:305-319. 597 

Gardner, A. 2020. Price’s equation made clear. Philosophical Transactions of the Royal 598 

Society B 375:20190361. 599 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.09.982892doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.982892


 25 

Gardner, A., S. A. West, and G. Wild. 2011. The genetical theory of kin selection. Journal of 600 

Evolutionary Biology 24:1020-1043. 601 

Grafen, A. 1985. A geometric view of relatedness. Oxford Surveys in Evolutionary Biology 602 

2:28–90. 603 

Grafen, A. 2000. Developments of the Price equation and natural selection under uncertainty. 604 

Proceedings of the Royal Society B 267:1223-1227. 605 

Grafen, A. 2006. A theory of Fisher's reproductive value. Journal of Mathematical Biology 606 

53:15-60. 607 

Grafen, A. 2015. Biological fitness and the Price Equation in class-structured populations. 608 

Journal of Theoretical Biology 373:62-72. 609 

Haig, D. 2002. Genomic Imprinting and Kinship. Rutgers University Press, New Brunswick, 610 

N.J. 611 

Hamilton, W. D. 1963. Evolution of altruistic behavior. The American Naturalist 97:354-356. 612 

Hamilton, W. D. 1964a. The genetical evolution of social behaviour. I. Journal of Theoretical 613 

Biology 7:1-16. 614 

Hamilton, W. D. 1964b. The genetical evolution of social behaviour. II. Journal of 615 

Theoretical Biology 7:17-52. 616 

Hamilton, W. D. 1970. Selfish and spiteful behaviour in an evolutionary model. Nature 617 

228:1218-1220. 618 

Hamilton, W. D. 1972. Altruism and related phenomena, mainly in social insects. Annual 619 

Review of Ecology and Systematics 3:193-232. 620 

Hamilton, W. D. 1975. Innate social aptitudes of man: an approach from evolutionary 621 

genetics. Pages 133-155 in R. Fox, editor. Biosocial Anthropology, Wiley, New York. 622 

Hamilton, W. D., and R. M. May. 1977. Dispersal in stable habitats. Nature 269:578-581. 623 

Lande, R., and S. J. Arnold. 1983. The measurment of selection on correlated characters. 624 

Evolution 37:1210-1226. 625 

Maynard Smith, J. M., and E. Szathmáry. 1995. The Major Transitions in Evolution. W.H. 626 

Freeman Spektrum, Oxford, UK. 627 

Moore, A. J., E. D. Brodie, and J. B. Wolf. 1997. Interacting phenotypes and the evolutionary 628 

process .1. Direct and indirect genetic effects of social interactions. Evolution 629 

51:1352-1362. 630 

Nowak, M. A., A. McAvoy, B. Allen, and E. O. Wilson. 2017. The general form of 631 

Hamilton's rule makes no predictions and cannot be tested empirically. Proceedings of 632 

the National Academy of Sciences of the USA 114:5665-5670. 633 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.09.982892doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.982892


 26 

Okasha, S. 2006. Evolution and the Levels of Selection. Oxford University Press, Oxford, 634 

UK. 635 

Okasha, S. 2016. On Hamilton's rule and inclusive fitness theory with nonadditive payoffs. 636 

Philosophy of Science 83:873-883. 637 

Price, G. R. 1970. Selection and covariance. Nature 227:520-521. 638 

Price, G. R. 1972. Extension of covariance selection mathematics. Annals of Human Genetics 639 

35:485-490. 640 

Pulliam, H. R. 1988. Sources, sinks, and population regulation. The American Naturalist 641 

132:652-661. 642 

Queller, D. C. 1992a. A general model for kin selection. Evolution 46:376-380. 643 

Queller, D. C. 1992b. Quantitative genetics, inclusive fitness, and group selection. The 644 

American Naturalist 139:540-558. 645 

Queller, D. C. 2017. Fundamental theorems of evolution. The American Naturalist 189:345-646 

353. 647 

Rodrigues, A. M. M. 2018. Demography, life history and the evolution of age-dependent 648 

social behaviour. Journal of Evolutionary Biology 31:1340-1353. 649 

Rodrigues, A. M. M., and A. Gardner. 2013. Evolution of helping and harming in 650 

heterogeneous groups. Evolution 67:2284-2298. 651 

Rousset, F. 2015. Regression, least squares, and the general version of inclusive fitness. 652 

Evolution 69:2963-2970. 653 

Taylor, P. D. 1990. Allele-frequency change in a class-structured population. The American 654 

Naturalist 135:95-106. 655 

Taylor, P. D., and S. A. Frank. 1996. How to make a kin selection model. Journal of 656 

Theoretical Biology 180:27-37. 657 

Trivers, R. L. 1974. Parent-offspring conflict. American Zoologist 14:249-264. 658 

van Veelen, M. 2009. Group selection, kin selection, altruism and cooperation: When 659 

inclusive fitness is right and when it can be wrong. Journal of Theoretical Biology 660 

259:589-600. 661 

West, S. A. 2010. Sex Allocation. Princeton University Press, Princeton, NJ. 662 

West, S. A., and A. Gardner. 2013. Adaptation and inclusive fitness. Current Biology 663 

23:R577-R584. 664 

Whiteley, M., S. P. Diggle, and E. P. Greenberg. 2017. Progress in and promise of bacterial 665 

quorum sensing research. Nature 551:313-320. 666 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.09.982892doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.982892


 27 

Wilson, D. S., and E. O. Wilson. 2007. Rethinking the theoretical foundation of sociobiology. 667 

Quarterly Review of Biology 82:327-348. 668 

 669 

 670 

Figure Legends 671 

 672 

Figure 1. Acyclic direct graph describing the dynamics of the population. The left-most 673 

population is the parental population, while the middle and right-most populations are the 674 

descendant populations. The colour of each entity represents the breeding value of an 675 

individual, while shape represents their class. A. Visual depiction of the standard Price 676 

equation where no variation in quality is considered. B. The dynamics of a population when 677 

individuals vary in quality. The left-most panel represents the current population at time t0, 678 

while the second panel represents the population in the next time step (i.e. t = t0 + 1). The 679 

right-most panel represents a descendant population in the distant future (i.e. t >> t0).  680 

 681 

Figure 2. Path diagram with the causal model describing the association between breeding 682 

value and fitness. Fitness (w) depends on the breeding value of the focal individuals (g), on 683 

the breeding value of the focal’s social partners (G) and on class phenotype (σ). A. Each edge 684 

is weighted by a partial coefficient of correlation. B. Each edge corresponds to a variable in 685 

Hamilton’s rule. For instance, the direct association between fitness and breeding value is the 686 

additive inverse of the behaviour’s cost (– c), the association between breeding values gives 687 

the relatedness coefficient (r), and the association between breeding value and class 688 

phenotype gives the class coefficient (rc).  689 

 690 

Figure 3. Representation of each evolutionary game. Colour represents breeding value, shape 691 

represents baseline fecundity, and numbers represent baseline fecundity with the 692 
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corresponding increments or decrements owing to social interactions. A. Individuals associate 693 

with each other but no actual social transactions occur. B. Intermediate-fecundity individuals 694 

help low-fecundity individuals. C. Low-fecundity individuals harm high-fecundity 695 

individuals.  696 

 697 

Figure 4. Between-class covariance as a function of population size for different replicates. If 698 

population size is relatively small, sampling biases will cause some genotypes to occur at 699 

higher frequency in one of the classes. Sampling biases generate a correlation between 700 

breeding value and mean fitness. When the population is relatively large, however, sampling 701 

biases will become less prominent, and the covariance between breeding value and mean 702 

fitness tends to vanish.  703 
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Figure 2.  710 
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Figure 4.  720 
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