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Abstract  

        Consider the functional interaction of gene A to an interaction subject X; for 

instance, it is the gene-gene interaction if X represents for a gene, or gene-tissue 

interaction (expression status) if X for a tissue. In the simplest case, the status of this A-X 

interaction is r=1 if they are interacted, or r=0 otherwise. A fundamental problem in 

molecular evolution is, given two homologous (orthologous or paralogous) genes A and 

B, to what extent their functional overlapping could be by the means of interaction 

networks. Given a set of interaction subjects (X1, … XN), it is straightforward to calculate 

the interaction distance (IAB) between genes A and B, by a Markov-chain model. 

However, since the high throughput interaction data always involve a high level of 

noises, reliable inference of r=1 or r=0 for each gene remains a big challenge. 

Consequently, the estimated interaction distance (IAB) is highly sensitive to the cutoff of 

interaction inference which is subject to some arbitrary. In this paper we will address this 

issue by developing a statistical method for estimating IAB based on the p-values 

(significant levels). Computer simulations are carried out to evaluate the performance of 

different p-value transformations against the uncertainty of interaction networks.   
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Introduction  

               Thanks to the growing amount and quality of omics data, the assembly of 

biological networks has played an important role to unveil the underlying cellular 

processes and evolution. In this scenario, Protein-Protein Interactions (PPIs) (Mosca et al. 

2013; Hao et al .2016) and Gene Regulation Networks (GRN) (Halton 2017) are among 

the most important and widely studied networks. A PPI networks is described in terms of 

proteins (nodes) and their physical/functional interactions (edges) (Nibbe et al. 2010; 

Sharan et al. 2007; Procaccini et al. 2016; Gustafsson et al. 2014), while a GRN network 

described in terms of gene-protein interactions. Note that transcriptome (RNA-seq) can 

be also viewed as the gene-tissue interactions. Both PPI and GRN networks are analyzed 

through the identification of subnetworks, or modules, showing specific topological 

and/or functional characteristics (Barabási et al. 2011; Vella et al. 2017; Hartwell et al 

1999; Gursoy et al. 2008; Fraser 2005). For instance, a PPI module represents a group of 

proteins taking part in specific, separable functions such as protein complexes, metabolic 

pathways or signal transduction systems.  

             Here we focus on the evolution of interaction network. Initiated by an influential, 

but controversial study (Fraser et al. 2002) on the effect of protein-protein interactions on 

protein sequence evolution, interactivity at the DNA, protein and genetic levels has been 

the major topic in the study of systems biology and evolution (von Mering et al. 2002; 

Wagner 2001; 2003; Jordan et al. 2003; Kim WK, Marcotte 2008; Sun and Kim 2011). 

Given the network sizes, typically involving thousands of elements, it often requires in-

silico automated methods (Ma’ayan 2008; Grindrod, P. & Kibble 2004). However, it has 

been shown that the interaction inferences based on large-scale omics data are subject to 

a high level of statistical noises (Benjamini and Hochberg 1995; Shaffer 1995; Benjamini 

and Yekutieli 2001; Efron et al. 2001; Efron 2004; Smyth 2004).  Consider the functional 

interaction of gene A to any other gene X. In the simplest case, the status of this A-X 

interaction is r=1 if these two genes are connected, or r=0 otherwise. For two duplicate 

genes A and B, an important measure for their functional overlapping is the number (n11) 

of other (X) genes that interact with both duplicate genes A and B (A-X and B-X). One 

may utilize a simple Poisson model to estimate the interaction distance (DI) between 

duplicates, i.e., the average number of interaction changes (losses and gains). For a set (n) 
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of genes, each of which interacts with A, or B or both, one can calculate the proportion of 

interaction divergence q=1-n11/n, and estimate the interaction distance by DI=-n ln (1-q). 

However, since the high throughput functional genomic data involve high level noises, 

statistical evaluation of inferred interactions becomes a big challenge in the genomic 

analysis. We shall address this issue, i.e. how to take the statistical uncertainty in the 

evolutionary analysis. 

  

 

New Methods  

Statistical representation for gene-gene interactions 

              p-Value presentation for single gene-query interaction. Many genomic studies 

have adopted a p-value to characterize the statistical significance of any gene-query 

interaction. That is, instead of a binary (r=1 or 0) status of any gene-query (A-X) 

interaction, a p-value is assigned for the interaction between a gene and a query; a small 

p-value, e.g., p=0.001, means that the interaction is highly statistically significant, and 

vice versa.  

           Multiple-test problem. Usually p-values of high throughput gene-gene 

interactions are subject to the sophisticated multiple-test problem (Benjamini and 

Hochberg 1995; Benjamini and Yekutieli 2001). Intuitively speaking, it depends on a pre-

specified cut-off for the p-value, that is, the interaction status is assigned as ‘1’ if the p-

value is less than the cutoff; otherwise the interaction is null. How to determine the cut-

off is controlled by the false positive rate of discovery, usually called the q-value for a 

given set of interactions. A q-value, say 0.1, means that for all gene-gene interactions 

predicted as ‘active’, the proportion of false-positive cases has been set to be 10%. To 

calculate the q-value under a given p-value cut-off, we have to model the p-value 

distributions under the null and the alternative hypotheses, respectively (Efron 2004; 

Erron et al. 2001). 

           Challenge for evolutionary analysis of interactions. While it is widely accepted 

that the evolutionary distance of interactions between homologous genes is important for 

understanding the pattern of genome evolution, the estimation problem has not been well 

addressed. Suppose that we have two genes (A and B) that have p-values to N interaction 
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queries (X1,.., XN), respectively. Apparently, the distance estimation becomes 

straightforward if all states of A-Xi and B-Xi (i=1,…, N) are unambiguously observed. As 

discussed above, statistical inference of interaction status for a set of p-values is 

controlled by the false-positive rate (the q-value). As a result, the estimated interaction 

distance is highly sensitive to the q-value cutoff selected.  

 

A general p-value framework for the interaction evolution  

Our goal is to develop a practically feasible approach to overcome this problem 

by treating these p-values as observations. We use the statistical approach for modeling 

p-values similar to that used in the analysis of multi-test problem. Instead of determining 

the false positive rate for a given set of predictions, we combine the p-value model and 

the underlying evolutionary model to develop a cutoff-free method for estimating the 

interaction distance.     

 

Expression distance defined by transformed p-values 

             For p-value presentation of gene-query interactions, we have to develop an 

explicit model for the interaction evolution (Fig.1). Consider two homologous genes A 

and B with an interaction query X, there are four combined patterns (rA, rB):  (1, 1), (1, 0), 

(0, 1) and (0, 0), respectively. For instance, (1, 1) means that both genes have the 

interaction with the same query X; (1, 0) means gene A has the interaction but gene B 

does not, and so forth. The probability of each pattern is denoted by P(rA, rB), where rA, 

rB=1 or 0, respectively.  

           Let pA and pB be the p-values for interactions A-X and B-X, respectively. Let yA and 

yB be any given transformations of pA and pB, respectively. Two simple forms that are 

practically useful are y=-ln (p+p0) and y=p, respectively (p0 is the small number to avoid 

y tends to be infinite when p approaches 0, usually one may choose p0=1/M; where M is 

the total number of interactions under study). Next, we define the expectation of squared 

y-score differences between genes A and B as follows    

                              (1) 

where E is for taking expectation.  
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While it is straightforward to estimate δ2
AB from the interaction data as long as the 

transformation formula is specified, the challenge is how to connect δ2
AB to the 

evolutionary model of interactions. Our idea is to expand the right hand of Eq.(1) by the 

means of conditional expectations with respect to interaction patterns (rA, rB), which can 

be concisely written by  

γij=E[(yA-yB)2|rA=i, rB=j]           (2) 

where i, j=0 or 1. Let P(rA, rB) be the probability of an interaction pattern (rA, rB). 

According to the probability theory, we have  

 (3) 

In short, according to Eq.(3), δ2
AB can be decomposed into two components: the first 

component is the interaction uncertainty measured by γij , and the second component is 

the evolution of interactions (gain or loss) measured by the probabilities P(rA, rB).  

 

Evolutionary model to determine P(rA, rB)  

           Suppose that gain and loss of interactions are the major mechanisms for the 

interaction evolution of a gene, which are independent of other genes. We then develop a 

simple Markov-chain model as follows. Let π1 be the probability of active interaction 

(r=1), and π0=1-π1 be that of inactive interaction (r=0). Let λ be the evolutionary rate of 

interaction. Under the Markov-chain model, the gain rate and the loss rate of an 

interaction are given by π1λ and π0λ, respectively. It follows that the transition 

probabilities from state i to state j after the t time units, Pij(t), i, j=0, or 1, are given by 

P11(t)= π1+π0e
-λt, and P10(t)= π0(1-e-λt); similarly, we have P00(t)=π0+π1e

-λt, and P01(t)= 

π1(1-e-λt). In the case of two homologous genes, the probability for any observed pattern 

P(rA, rB) can be calculated as follows 

 (4) 
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A general formula for the evolutionary distance of interactions  

   When the probability of an interaction pattern (rA, rB), P(rA, rB), is determined by 

Eq.(4),  we can derive a general formula for the evolutionary distance of interactions by 

combining Eq.(3) by Eq.(4), resulting in  

(5) 

where δ2
∞ and δ2

0 are given by 

(6) 

Eq.(5) shows that, when t=0, δ2
AB=δ2

0, and δ2
AB increases with t and ultimately reaches 

δ2
∞ as t→∞. One may further define the effective proportion of different interactions 

between genes A and B  

(7) 

such that qe satisfies 

      (8) 

Then, given the number (N) of interaction queries, the interaction distance defined by 

IAB=2π1π0λt, is given by  

 (9) 

 

Results and Discussion  

           Based on the theoretical framework formulated above, we develop a 

computational procedure that is suitable to a variety of OMICS data types.  

 

The beta-uniform mixture (BUM) distribution of p-values 

While p-values arising from the null hypothesis are distributed uniformly on the 
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interval (0, 1), those arising from the alternative hypothesis follows a distribution denoted 

by φ(p), which is generally modeled as a beta distribution. Therefore, the distribution of 

the set of p-values can be written as a beta-uniform mixture (BUM) consisting of a 

uniform (0, 1) component for the null hypothesis and the beta component for the 

alternative hypothesis, with the pdf given by 

 (10) 

where π0 is the proportion of null hypothesis (r=0); and the second term for the Beta 

component. Here we implement a special form of beta distribution by setting β0=1, 

resulting in 

φ(p)=βpβ−1                    (11) 

for 0<p≤1, 0<π0<1, and 0<β<1. As shown in Fig.1(c), Eq.(11) provides a reasonable 

model for the distribution of p-values arising from high throughput genomics (Storey and 

Tibshirani 2003). It is a curve that asymptotes at x=0 and monotonically decreases to its 

minimum of π0+(1−π0)β at x=1. This curve approximates the anticipated distribution of 

the p-values arising from a genomic experiment. Under the null hypothesis, the p-values 

will have a uniform density corresponding to a flat horizontal line. Under the alternative 

hypothesis, the p-values will have a distribution that has high density for small p-values 

and the density will decrease as the p-values increase. The overall distribution will be a 

mixture of p-values arising from the two hypotheses.  

 

Parameters of interaction uncertainty under the BUM model 

Suppose that yA and yB are independent, which follow the same distribution 

conditional of r=0 or 1. Then γrA, rB defined by Eq.(2) can be further simplified as follows 

(12) 

To calculate γrA, rB, we have to consider the null hypothesis of r=0 (no interaction) and the 

alternative separately. Under the null hypothesis, the p-value follows a uniform 

distribution. For a given p-value transformation, y=f(p), let 𝑦̅0 and σ0
2 be the mean and 

variance of y under the null r=0, respectively, which are given by 
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(13) 

One may easily show that E[y|r=0]= 𝑦̅0 and E[y2|r=0]=(𝑦̅0)
2+σ0

2. Under the alternative 

hypothesis of r=1, the distribution of p, denoted by φ(p), is usually modeled by a beta 

distribution given by Eq.(11). Similar to above, let 𝑦̅1 and σ1
2 be the mean and variance of 

y under the alternative of r=1, respectively, as given by  

 (14) 

Obviously we have E[y|r=1]= 𝑦̅1 and E[y2|r=1]=(𝑦̅1)
2+σ1

2. Putting together, those 

coefficients of interaction uncertainty (γ11, γ10, γ01 and γ00) defined by Eq.(12) are given 

by  

(15) 

respectively.  

 

Types of p-value transformation 

 We shall implement a statistical procedure to estimate those parameters on the 

right hands of Eq.(15), as long as the p-value transformation is specified. In this study we 

consider two p-value transformations: the p-based, and the –ln(p+1/M)-based, where M is 

the total number of interactions.  

            The p-based method. The simplest one is to use the p-value directly, i.e., y=p. 

Note that under the null of no interaction (r=0), p follows a uniform distribution in [0,1] 

with the mean 1/2 and the variance 1/12. In this case, Eq.(15) can be simplified as 

follows  
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(16) 

where 𝑝̅ = β/(1+ β) and σp
2=𝑝̅/(2+β) are the mean and variance of p-values under the beta 

distribution of Eq.(11).  

 

The -ln(p+1/M)-based method 

  In spite of simplicity, we have realized that y=p transformation may be subject to 

some sampling problems. For instance, an interaction associated with a p-value of 0.001 

is statistically sound, while that with more than 0.05 is usually considered as non-

significance. Consider a hypothetical example that for two duplicate genes A and B. 

Assume pA=0.001 and pB=0.5 for the functional interactions A-X and B-X, respectively, 

so that (pA-pB)2=0.49992. Secondly, for another interaction pair A-X' and B-X', we 

assume that the p-values are p'A=0.30 and p'B=0.8 so that (p'A-p'B)2=0.52. The virtually 

same score between two cases is apparently counter-intuitive, because one may 

statistically infer that gene A interacts with X but not for gene B, whereas both A and B 

are unlikely to interact with gene X'.  

            We try to use a (negative) log-transformation score (y) for the p-value of an 

interaction, i.e., y=-ln p, to avoid this difficulty. In the above case, we observed that (yA-

yB)2=6.222 (for A-X and B-X)  is much higher than (y'A-y'B)2=0.982 (A-X' and B-X'), 

which makes much more sense. While this log-transformation can effectively reduce the 

random effects, one problem is that y=-ln p does not converge when p approaches to 

zero, which may cause a considerable (upward) sampling bias. We thus recommend a 

simple correction by adding a pseudo-count, that is, y=-ln(p+1/M), where M is the total 

number interactions under study.  

Since M is usually large, one can show that under the null hypothesis y 

approximately follows an exponential distribution with the mean 𝑦̅0 and variance σ0
2. 

Together, we have 
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(17) 

where 𝑝̅ and σ2 are the mean and variation of y-values under the alternative hypothesis of 

r=1, respectively.  

 

Computational procedure and implementation 

Under the R-environment, we implement the following computational procedure 

to estimate the evolutionary distance of interactions based on p-values. 

(i) Given high throughput p-values, we use several statistical methods to estimate π0, 

the proportion of null hypotheses of interactions. First, the LOESS-based method 

(Pounds and Cheng 2004) applies LOESS to the p-value spacing to obtain an 

estimate of PDF, and takes the minimum value of the estimated PDF as an 

estimate of π0. Second, the CDF-based method (Cheng et al. 2004) uses an 

estimator for the CDF (Cumulative Distribution Function) of p-values in the form 

of a B-spline series with strategically designed knot sequence to achieve a 

desirable shape for the p-value cumulative distribution. The PDF is simply the 

first derivative of the CDF and the minimum of PDF is taken as an estimate of π0. 

Third, exploiting the fact that p-values from true null hypotheses are uniformly 

distributed, the asymptotic uniform method (Storey and Tibshirani method 2003) 

uses a tunable estimate, that is, π0(c)= #{pi>c;i=1,…M}/M(1-c), with c as the 

tuning parameter. It then fits a natural cubic spline with 3 degrees of freedom to 

the data of π0(c) on a series of values of c such as c=0, 0.05,…, 0.90, and finally 

the value of the fitted spline line at the end point c=1 is taken as the estimate of 

π0. The technical details of these methods can be found in the original 

publications.  

(ii) Treating the estimate of π0 as known, the quasi-maximum likelihood estimate of 

parameter β can be obtained by fitting the beta-uniform mixture (BUM) model in 

Eq.(11) to the observed p-values. 

(iii) Calculation of γ11, γ10, γ01 and γ00 numerically for y=p and y=ln(p+1/M), 
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respectively, leading to the estimation of  δ2
∞ and δ2

0 by Eq.(6). 

(iv) Given the sample size (N) of interaction queries, δ2
AB can be calculated as follows  

(18) 

The effective proportion of different interactions between genes (qe) can be 

estimated according to Eq.(7). Then the evolutionary distance of interactions 

distance can be estimated by Eq.(9). In short, estimation of IAB turns out to 

estimate the effective proportion of different interactions between genes, which 

can be achieved when the transformed p-value (the y-score) is specified. 

 

Simulation study  

Statistical uncertainty of interactions            

            Experimental noises in high throughput genomics data could make any biological 

analysis unreliable. Hence we wish to investigate this effect on the estimation of 

interaction distance. Since the value of parameter β is inversely related to the level of 

experimental noise, we design the following simulation study pipeline. We choose β= 

=0.01, 0.05, 0.1, 0.3, 0.5, and 0.8. Intuitively, a low β value indicates a high number of 

biological replicates, and vice versa. According to Eq.(11), these values correspond to 

type-II error at the 0.05 significance level of 0.03, 0.14, 0.26, 0.59, 0.78, and 0.85, 

respectively, as calculated by 1-∫ 𝜑(𝑝)𝑑𝑝
0.05

0
.   

 

Simulation theme of interaction evolution  

             Under the BUM model of interaction uncertainty, the simulation theme of 

interaction evolution is designed as follows. (i) Given the evolutionary scenario of two 

species with N interaction queries, simulate the interaction pattern according to the 

Markov-chain model. We set the interaction distance IAB=0.1, 0.3, 0.5, 0.8, or 1.0, 

respectively; the number of interaction queries is N=100, 200 or 500, respectively; and 

the proportion of active interaction is set to be π1=0.1, 0.3, 0.5, 0.7 or 0.8, respectively. 

(ii) In each case, we estimate those interaction uncertainty parameters for two p-value 

transformations, y=p, and y=-ln(p+1/M), respectively, as well as the evolutionary 

distance.  And (iii) carry out 1000 simulation replicates and analyze the statistical 
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properties in each case. The goal of our simulation study is to examine the systematic 

bias and sampling variance of IAB under various conditions (Table 1).  

 

Effects of p-value transformation  

         When the simplest y=p transformation is used, our simulation shows a large 

sampling variance and severe underestimation bias, especially in those cases when the 

parameter β is set be large (>0.5). Indeed, a small β value (<0.05) can effectively reduce 

both sampling variance and bias. Note that a low β value indicates a high number of 

biological replicates, our observation suggests that the performance of y=p 

transformation for the estimation of IAB is reasonable acceptable only when the number of 

biological replicates is sufficient. Moreover, for closely related species when the number 

of alternative hypotheses is small, estimation of IAB becomes biologically meaningless 

when the network uncertainty is overwhelming (a large β value) (Table 1). These results, 

together, suggest that, using the p-value directly without any transformation is not 

recommended, because the estimated evolutionary distance of interactions could be 

highly sensitive to the network uncertainty.   

          By contrast, the -ln(p+1/M)-distance shows some nice statistical properties in the 

case of low biological replicates; both sampling variance and estimation bias are 

generally acceptable. We have examined the effect of the pseudo-count (1/M). Indeed, 

the -ln(p)-distance becomes statistically unreliable in the case of small β value (<0.05), 

especially when the number of query genes N is small. This observation can be explained 

as some genes may receive very low p-values (very high significance levels), resulting in 

some extremely high y=-ln(p) values. Fortunately, this defect can be effectively corrected 

by the -ln(p+1/M) distance. While the -ln(p+1/M) distance overall performs satisfactory, 

it tends to underestimate the distance when the number of query genes is small, such as 

less than 200. 

 

Effects of evolutionary parameters 

        First, the interaction distance estimation IAB, as expected, is asymptotically unbiased, 

i.e., the estimate IAB is statistically unbiased for sufficiently large sampling size of 

interaction queries (N). Similarly, the sampling variance of IAB decreases with the 
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sampling size of interaction queries (N). Second, the asymptotic rate is dramatically 

affected by the parameter β in the BUM model. It becomes very slow when β is large, 

suggesting that an accurate estimation of interaction distance becomes difficult when the 

experimental noise is high. Third, the proportion of NA (not applicable) cases increases 

with the increase of β, which makes the distance estimation practically not useful 

particular when the sampling size (N) is small. Forth, as a general tendency, the distance 

estimation usually has nice statistical properties in the cases around π1=π0=0.5.   

 

Outlook for further study  

Our further study will be focused on how to improve the efficiency and 

applicability of the proposed method. Several research lines are considered. For instance, 

we try to find the p-value transformation such that it not only can optimize statistical 

properties but also biologically interpretable. In the case of multiple genes that may 

represent a gene family evolution or species evolution, one may develop a distance-based 

approach to investigating the evolutionary pattern of interactions. Yet, it remains a 

challenge to develop a generalized likelihood function of interactions under a phylogeny 

when the interaction uncertainty is taken into consideration.  
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Table 1. A summary of simulation studies to evaluate the statistical performance of the 

interaction distance.  

 

 Distance (IAB) 

y p -ln p -ln (p+1/M) 

β=0.8    

Itrue= 0.1 0.033±0.503 0.105±0.043 0.106±0.024 

Itrue= 0.5 0.409±0.204 0.477±0.050 0.475±0.053 

Itrue= 1.0 0.845±0.308 0.945±0.102 0.986±0.103 

β=0.5    

Itrue= 0.1 0.087±0.107 0.107±0.023 0.103±0.022 

Itrue= 0.5 0.468±0.103 0.568±0.043 0.511±0.040 

Itrue= 1.0 0.944±0.308 1.544±0.603 0.974±0.407 

β=0.10    

Itrue= 0.1 0.092±0.036 0.122±0.036 0.102±0.017 

Itrue= 0.5 0.485±0.132 0.582±0.315 0.512±0.036 

Itrue= 1.0 0.968±0.167 1.868±0.804 0.968±0.042 

   

Note: In each case, the number of query genes (N) is set to be 500 and π1=π0=0.5.  

Sampling variances are calculated based on 1000 simulation replicates.  
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Fig. 1. Schematic illustration of interaction evolution. Suppose two homologous genes (A 

and B) diverged t time units ago, via either speciation or gene duplication. For a given 

interaction query gene (X), gene A has an active interaction with X (solid line) whereas 

gene B has no interaction with X (dashed line). There are two possibilities for their 

common ancestor (gene O): in the case of active interaction between O and X, there is an 

interaction loss in the B-lineage (panel a), otherwise there is an interaction gain in the A-

lineage (panel b). (c) Schematic illustration of the BUM distribution for p-values. Region 

A corresponds to the occurrence of true positives; region B corresponds to the occurrence 

of false negatives; Region C corresponds to the occurrence of false positives and region 

D corresponds to the occurrence of true negatives.  
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