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Abstract 
RATIONALE: Single cell RNA-sequencing (scRNASeq) has led to multiple recent advances in 
our understanding of lung biology and pathophysiology, but utility is limited by the need for 
fresh samples, loss of cell types due to death or inadequate dissociation, and the induction of 
transcriptional stress responses during tissue digestion. Single nucleus RNASeq (snRNASeq) has 
addressed these deficiencies in some other tissues, but no protocol exists for lung. We sought to 
develop such a protocol and compare its results with scRNA-seq.  
METHODS: Single nucleus suspensions were prepared rapidly (45 min) from two mouse lungs 
in lysis buffer on ice while a single cell suspension from an additional mouse lung was generated 
using a combination of enzymatic and mechanical dissociation (1.5 h). Cells and nuclei were 
processed using the 10x Genomics platform, and following sequencing of cDNA libraries single 
cell data was analyzed by Seurat.   
RESULTS: 16,656 single nucleus and 11,934 single cell transcriptomes were generated. Despite 
reduced mRNA levels in nuclei vs. cells, gene detection rates were equivalent in snRNASeq and 
scRNASeq (~1,750 genes and 3,000 UMI per cell) when mapping intronic and exonic reads. 
snRNASeq identified a much greater proportion of epithelial cells than scRNASeq (46% vs 2% 
of total), including basal and neuroendocrine cells, while reducing immune cells from 54% to 
15%. snRNASeq transcripts are enriched for transcription factors and signaling proteins, with 
reduced detection of housekeeping genes, mitochondrial genes, and artifactual stress response 
genes. Both techniques improved mesenchymal cell detection over previous studies, and analysis 
of fibroblast diversity showed two transcriptionally distinct populations of Col13a1+ cells, 
termed Bmper+ and Brinp1+ fibroblasts. To define homeostatic signaling relationships among 
cell types, receptor-ligand mapping of was performed for alveolar compartment cells using 
snRNASeq data, revealing complex interplay among epithelial, mesenchymal, and capillary 
endothelial cells.  
CONCLUSION: Single nucleus RNASeq can be readily applied to snap frozen, archival murine 
lung samples, improves dissociation bias, eliminates artifactual gene expression and provides 
similar gene detection compared to scRNASeq. 
 
Introduction 
The emergence of single cell RNA sequencing (scRNASeq) technologies in the last decade has 
led to a rapid phase of discovery in lung research, including the identification of ionocytes in 
airway epithelium and characterization of pro-fibrotic macrophages and aberrant basaloid cells in 
idiopathic pulmonary fibrosis1,2,3. An emerging alternative to scRNASeq is single nucleus 
RNASeq (snRNASeq), which generates transcriptomic information from isolated nuclei. This 
approach has previously been reported in brain4,5,6 and kidney7 and unlike scRNASeq can be 
readily applied to cryopreserved, archival samples. 
 
Notably, there are additional potential advantages to snRNASeq. Depending on conditions and 
technique, dissociation protocols used to generate single cell suspensions in adult tissues can 
underrepresent fragile cell types or fail to liberate matrix-embedded mesenchymal cells. Indeed, 
single cell RNASeq data from prior studies in mouse and human lung have shown bias toward 
immune cell types with underrepresentation of airway/alveolar epithelial cells and fibroblasts8,9, 
populations which are key drivers of pathologies including fibrosis10. Additionally, snRNASeq 
reduces sequencing of housekeeping and mitochondrial genes in favor of cell identity relevant 
genes such as transcription factors and long noncoding RNA, which may improve cell type 
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differentiation versus scRNASeq at a given read depth6,7. While mRNA in the nucleus are often 
incompletely processed and gene detection rates in snRNASeq are poor when mapped to exons 
alone, previous studies suggest performance is similar when intronic reads are included during 
alignment6,7.  
 
Here, we modified an existing protocol for isolation of human lung nuclei developed for the 
Human Cell Atlas11 for cryopreserved mouse lung, such that a FACS purification step was 
unnecessary.  In parallel, we generated single cell suspensions from healthy mouse lung. We 
compared results head to head in terms of sensitivity, cell representation, transcriptional stress 
responses and differential gene expression, and characterized fibroblast diversity and 
intercellular receptor-ligand signaling in our data.   
 
Methods 
Single cell preparation from fresh mouse lung 
Single cell suspensions were obtained from the lungs of one wild type adult C57Bl/6J mouse by 
a combination of enzymatic and mechanical dissociation (GentleMacs, Miltenyibiotec), 
essentially as described12. To clear debris, RBCs, and dead cells, the resulting cell suspension 
was applied to an OptiPrep density gradient with 12%, 18%, and 30% layers and centrifuged for 
15 min at 600xg. All cells above the RBC layer were removed, diluted in 50 ml PBS, centrifuged 
again at 1000xg for 20 min, washed in 50 ml PBS + 0.1% BSA, counted, and diluted to 10,000 
cells/µl.  

 
Single nucleus preparation from frozen mouse lung  
Lung tissue from two wild type adult C57Bl/6J mice was isolated at the time of sacrifice and 
snap frozen in liquid nitrogen. Nuclei were prepared from frozen tissue under RNAse-free 
conditions by a method adapted from an existing protocol11. Briefly, samples were cut to ~7 mm 
pieces, injected (26G needle) with 1 mL ice-cold Nuclei EZ Lysis buffer (NUC-101, Sigma-
Aldrich) supplemented with protease (Roche #589279100) and RNAse (Promega #N2615, Life 
Technologies #AM2696) inhibitors, and minced to 1-2 mm pieces with scissors in a weigh boat 
with 1 mL lysis buffer. The sample was then transferred to a GentleMacs C tube and an 
additional 1 mL lysis buffer was added. The GentleMacsTM lung1 and lung2 programs were run 
in sequence and the latter stopped after 20 s. Foam was spun down for 1 min at 750xg. The 
suspension was passed through a 40 µm cell strainer and washed with 4 mL cold PBS with 0.1% 
BSA and 0.1% RNase inhibitor, and then passed through a 5 µm filter (pluriSelect). Nuclei were 
pelleted at 600 x g, resuspended in 1xPBS with 0.1% BSA and 0.1% RNAse inhibitor, counted, 
and diluted to 10,000 nuclei/µl. 

 
Library preparation, sequencing, and bioinformatics  
10x Chromium libraries were prepared according to manufacturer protocol (10x Genomics) and 
submitted for sequencing through the Washington University Genome Technology Access 
Center (GTAC) on a NovaSeq S4 flow cell. Raw sequencing data were processed using the 
zUMIs pipeline13. Briefly, low quality barcodes were removed using an internal zUMIs read 
filtering algorithm, followed by mapping of the remaining barcodes to the mouse genome (mm10) 
using STAR 2.5.3a, and expression matrices containing intronic, exonic, and intronic+exonic 
reads were generated for both scRNASeq and snRNASeq data.  
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Data were further processed using Seurat. For quality control, only genes expressed in >5 cells 
and cells expressing at least 200 genes were retained. No mitochondrial gene expression cutoff 
was used for single nucleus data, while cells expressing >10% mitochondrial genes were 
excluded from single cell analysis. Data were normalized and scaled, and the number of principal 
components estimated using RunPCA followed by ElbowPlot. Dimensionality reduction was 
performed using RunUMAP. Markers for cell clusters were identified using the FindAllMarkers 
function in Seurat, and cell types were annotated using canonical markers. To combine 
independent experiments, datasets were merged using the Harmony package to correct for batch 
effects. To further resolve immune cells, the Subset function in Seurat was used, with subsets of 
cells subjected to a second round of principal components identification and dimensionality 
reduction as above. Clusters of presumed doublets were identified and removed manually 
(relying on the presence of marker genes from multiple clusters and relatively high UMI counts).  
 
Merging of cell and nucleus datasets 
All cells (11,473) and nuclei (16,656) were merged into a single object using the merge function 
followed by batch correction with Harmony. PCA identification, clustering, and cell type 
annotation were then performed by the same workflow as above. Mesenchymal cells were 
isolated using subset for fibroblast, pericyte, and smooth muscle cell clusters. For some analyses, 
AverageExpression was used to compare gene expression in all clusters rather than within 
clusters, otherwise, expression was profiled using the DoHeatmap, Dotplot, Vlnplot, and 
FeaturePlot functions within Seurat.  
 
Receptor-Ligand Analysis 
To identify ligand-receptor interactions, we grouped cell types from the alveolar milieu and 
employed a curated ligand-receptor (LR) list with 2,557 LR pairs, as described7. Receptors and 
ligands were selected on the basis of their differential expression in the selected subgroups of 
alveolar cells. For plotting, ligands and receptors with unique expression (q-val > 0.75) were 
selected. The gplots package function heatmap.2 was used for visualization.  
 
Data Availibility 
The accession number for the RNA sequencing data reported in this paper is NCBI GEO: 
GSE145998 
 
 
Results 
 
snRNASeq and scRNASeq have similar gene detection rates and dissociation bias is reduced in 
snRNASeq 
 
Based on previous experience in kidney nuclear isolation for snRNASeq in which prolonged 
isolation and washing steps resulted in RNA degradation and poor quality cDNA libraries, we 
avoided staining and flow sorting of nuclei which reduced total isolation time to 45 min. Given 
the incomplete processing of nuclear mRNA, we compared gene detection when mapping to 
exons, introns, or both in both snRNASeq and scRNASeq. Gene detection per nucleus in our 
data was similar to detection per cell as long as both intronic and exonic reads were included 
during genome mapping (Fig 1A). Surprisingly, and contrary to previous reports6,7, inclusion of 
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intronic reads also improved gene detection in scRNASeq, though to a lesser extent (Fig 1A). 
Accordingly, we included intronic and exonic reads for all samples during sequence alignment. 
 
16,656 single nucleus libraries were generated from snap frozen lungs of two wild type mice, in 
parallel with 11,934 single cell libraries from one additional mouse. Unsupervised clustering of 
single nucleus data initially resulted in 25 clusters after dimensional reduction using Seurat v3 
(Fig 1B). Alveolar and airway epithelial cell types were represented, including basal cells, 
neuroendocrine cells (in one dataset, Fig S1), and club cells, none of which were seen in our 
scRNASeq data (Fig 1C and Fig S5). Overall, scRNASeq data showed substantial bias toward 
immune populations (54% of cells) with underrepresentation of epithelial cells (2.3%), while 
snRNASeq had robust detection of epithelial cells (46%) and lesser detection of immune cells 
(15%). Comparison to a previous mouse 10x single cell dataset8 showed similar bias toward 
immune cells and reduced detection of mesenchymal cells (Fig 1D). Despite the reduced 
percentage of immune cells in snRNASeq data, clustering of immune cells in isolation resolved 
additional cell types, including classical and nonclassical monocytes, two populations of 
interstitial macrophages, NK cells and rare Il12b/Ccl22+ dendritic cells (Fig S2). Neutrophils 
and basophils were not detected in snRNASeq data. Finally, arterial, venous, capillary, and 
lymphatic endothelial cells were readily differentiated by snRNASeq (Fig S6). 
 
Merging of snRNASeq and scRNASeq data: co-clustering of mesenchymal cell types and 
differences in gene expression profiles  
 
Because our scRNASeq and snRNASeq studies detected mesenchymal populations in similar 
proportion (Fig 1D), we selected these cells for further comparison. Count matrices from all 
snRNASeq and scRNASeq experiments were merged and re-clustered, with minimal batch effect 
after correction with the R package Harmony (Fig S3). Mesenchymal cells were then analyzed as 
a subset, with identification of six clusters, including three populations of matrix fibroblasts, 
myofibroblasts, pericytes, and smooth muscle cells (Fig 2A). All populations contained data 
from nuclei and cells (Fig 2B), further supporting the use of these cell types for gene expression 
comparisons between snRNASeq and scRNASeq. We next asked how gene detection differed 
between cells and nuclei. We found that a large majority of genes (96.5%) had less than 20% 
difference in expression between cells and nuclei. There were 329 genes (1.6%) that were 
detected in 25% more cells than nuclei, and 122 genes (0.6%) that were detected in 25% more 
nuclei than cells. Screening all detected genes (21,033) by log fold-change (>0.5, adjusted P 
value <0.05), revealed that only 3.0% (632) were enriched in cells, versus 1.4% (302) detected 
preferentially in nuclei (Fig 2D). We next performed gene ontology enrichment analysis on the 
cell vs. nucleus enriched genes. Unsurprisingly, genes associated with scRNASeq were related to 
ribosomal assembly and translation, as well as stress responses and apoptotic signaling, the latter 
potentially reflecting cell stress during dissociation (Fig 2E). snRNASeq-predominant genes 
were highly enriched for calcium transport and membrane depolarization, Slit/Robo signaling, 
and cAMP metabolism (Fig 2E).  
 
To further characterize gene detection differences between nuclei and cells, we examined 
expression of specific categories of genes. Among the genes predominantly sequenced in 
scRNASeq were those encoding mitochondrial, ribosomal, and heat shock proteins (Fig 3A). An 
advantage of snRNASeq over scRNASeq in other tissues has been reduced artifactual expression 
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of stress-response genes, which are known to be induced during proteolysis at 37 C14. We could 
detect strong expression of the immediate early gene Fos in all cell types from the scRNA-seq 
dataset, but not from the snRNA-seq dataset (Fig. 3B). A panel of stress-induced genes including 
activator protein-1 (AP1) transcription factor component Jun, immediate early genes Ier2 and 
Ier3, and stress sensor Atf3 showed expression primarily in the single cell dataset (Fig 3C). In 
addition to background expression of stress-response genes, contamination from highly 
expressed genes in abundant cells (e.g. airway and alveolar epithelium) is a well-described 
phenomenon in single cell and single nucleus transcriptomics. While both mesenchymal 
populations from snRNASeq and scRNASeq showed contamination with epithelial genes, likely 
reflecting ambient mRNA, this was more significant in snRNASeq (Fig S3), contrary to previous 
results in kidney7. Genes more readily detected in nuclei included multiple transcription factors, 
as well as ion channels and signaling proteins (Fig 3D).      
 
Defining mesenchymal cell subpopulations 

Previous lung single cell analyses in mice and humans have underrepresented fibroblasts and 
other mesenchymal populations8,9, which are embedded in matrix and less easily liberated during 
enzymatic tissue digestion. Given our robust recovery of mesenchymal cells in both scRNASeq 
and snRNASeq, we sought to further define the transcriptomes of these populations. Six 
populations were identified in our merged dataset (Fig 2A), including three populations of 
Pdgfra+ fibroblasts with distinct transcriptional profiles (Fig 4A and Fig 4B). While prior 
analyses have distinguished Col14a1- and Col13a1-expressing fibroblasts, the Col13a1+ 
population in our data contained two cell subtypes, the first characterized by expression of 
Bmper, Fat3, and Fgfr4, and the second by Brinp1 and Nalcn (Fig 4B and Fig 4C). Col14a1+ 
fibroblasts additionally express Dcn, as well as Lsamp and transcription factor-encoding Ebf2 
(Fig 4C). Pericytes were defined by expression of the marker Pdgfrb, and expressed Notch3, 
Pde5a, and Adcy8 (Fig 4C). Rarer populations of smooth muscle cells and myofibroblasts were 
also detected by snRNASeq and scRNASeq. Myofibroblasts were Aspn, Grem2, and Hhip+, and 
also expressed Mapk4, which encodes the atypical MAP kinase Erk4 and has not previously been 
described as a myofibroblast marker (Fig 4C). Smooth muscle cells were marked by Acta2, 
Myh11, and Myocd (Fig 4C).   
 
Receptor-ligand interactome for the alveolar compartment based on snRNASeq data 
 
Cell type-specific transcriptomic data in a tissue allows mapping of potential receptor-ligand 
interactions among cell types in close anatomic proximity. Because alveolar cell types were well 
represented in our snRNASeq data, we sought to define these signaling interactions in the 
alveolar compartment under control conditions by cross referencing our differentially expressed 
gene lists against an available receptor-ligand interaction database15. In the alveolus, AT1 cells 
encode a variety of signaling proteins, including Vegfa, Bdnf, Wnt3a, and Pdgf, whose 
corresponding receptors are found in endothelial cells, alveolar macrophages, and fibroblasts 
(Fig 5A, B), while additional Pdgf isoforms were produced by alveolar macrophages and 
capillary endothelial cells. Fibroblast interactions with epithelial cells include signaling through 
Wnt5a and Igf1. 
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Discussion 
 
While scRNASeq has led to several important discoveries in lung, the application of this 
technology has practical limitations, perhaps the most important of which is the need for fresh 
tissue. The snRNASeq data in the present study was obtained from small pieces of snap frozen 
mouse lung, and could therefore be applied to existing banked samples. While we did not test 
this approach on tissue stored for months to years, studies evaluating RNA stability in 
cryogenically stored samples suggest that this may be a viable approach even after long-term 
storage16. We adapted our protocol from an existing method available for human lung nuclear 
isolation for snRNASeq11, eliminating the nuclear staining and flow sorting steps, which control 
for poor nuclear RNA quality. While nuclear RNA quality is difficult to assess, our experience in 
kidney suggests that generation of high quality snRNASeq data from cryopreserved samples is 
possible without flow sorting17 which simplifies the workflow substantially. Future efforts will 
focus on applying the current protocol to archived samples of normal and diseased human lung.  
 
Inclusion of intronic and exonic reads when mapping snRNASeq data is known to improve gene 
detection, as confirmed in our data. Less expected was the effect of intron inclusion on 
scRNASeq data, which was still substantial though smaller in magnitude than for snRNASeq. 
Previous snRNASeq/scRNASeq comparisons have not observed this6,7. This phenomenon may 
relate to tissue- or cell type-specific differences in RNA processing, or to proprietary chemistry 
changes in newer 10x Genomics 3’v3 kits (e.g. harsher in-droplet lysis conditions leading to 
greater nuclear membrane disruption and release of nuclear mRNAs).  
 
We observed a substantial bias toward detection of immune cell types in scRNASeq. The cell 
isolation protocol in the present study differs from previously published approaches for 
scRNASeq in its use of mechanical dissociation with GentleMacs and use of an Optiprep 
gradient to exclude RBCs and remove dead cells and degraded nucleotides (in lieu of RBC lysis 
and annexin V-based dead cell removal steps). While this may have contributed to the degree of 
observed dissociation bias, previous scRNASeq studies in mouse have shown similar 
propensities, underrepresenting alveolar and airway epithelial cells8. Notably, though 
mesenchymal cell detection has also been a weak point of prior scRNASeq studies, we observed 
similar numbers and subtypes of mesenchymal cells by snRNASeq and scRNASeq. Many 
epithelial populations including neuroendocrine cells and basal cells were seen only in 
snRNASeq. We did not detect ionocytes in our data, likely due to use of distal tissue samples 
(exclusion of trachea and main bronchi) and overall rarity.  
 
A common issue encountered in single cell transcriptomics is amplification of contaminating 
background genes. In contrast to previous work, we found this problem to be more significant in 
single nucleus data, in which nearly all cells were found to express epithelial marker genes such 
as the club cell marker Scgb1a1. Further nuclear isolation protocol modifications (e.g. additional 
pellet washes) or computational approaches18 may help eliminate this contamination or limit its 
effect on downstream analysis. As previously reported, scRNASeq is also associated with “off-
target” gene detection in the form of stress response/apoptotic genes and 
mitochondrial/ribosomal genes which may not be of interest in defining cell types or states6,7.    
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Previous studies have specifically explored the diversity of lung mesenchymal cells through 
lineage tracing and microarray analysis19, or more recently by scRNASeq20, generally selecting 
cells by flow cytometry prior to expression profiling. Through an unbiased whole-organ 
approach using snRNASeq we observed heterogeneity within Pdgfra+/Col13a1+ fibroblasts that 
had not been previously described. Where Brinp1+/Col13a1+ cells localize in the lung, and 
whether they represent a transition state between Bmper+ and Col14a1+ cells or a unique cell 
type remains to be defined. Additionally, resting myofibroblasts with relatively low Acta2 and 
high Hhip/Lgr5 expression were identified, similar to previous reports20,21. The presence of 
Mapk4 in these cells is of note, given that its gene product Erk4 was recently implicated in cell 
proliferation and survival pathways through noncanonical mTOR signaling in cancer22, and that 
mTOR signaling has a well-described role in pulmonary fibrosis23,24. Defining the response of 
these cell types to injury and their degree of expansion in fibrosis will be a useful future 
application of snRNASeq.  
 
Given the diversity of cell types and sequencing depth in snRNASeq, we interrogated the data 
for ligand-receptor interactions in the alveolar compartment. AT1 cells were identified as a 
robust source of signaling ligands in the alveolus at homeostasis. While best described during 
development, Vegfa signaling has also been associated with protection from acute lung injury25. 
Bdnf-Tkfb signaling has been implicated previously in epithelial-mesenchymal transition 
(EMT)26. While protein level data for cell type-specific expression are lacking, Pdgfa, Vegfa, 
Wnt3a, and Bdnf mRNA are all predominantly expressed in human AT1 cells in a large dataset 
including control, COPD, and IPF patients (IPFcellatlas.com)3. Of note, we also observed 
noncanonical Wnt pathway crosstalk between resting myofibroblasts and AT2 cells via 
Wnt5a/Ror1, and previous data suggest Wnt5a from adjacent fibroblasts maintains stem-ness in 
subsets of AT2 cells27. Fibroblasts were also a source of Slit2, whose loss of expression in 
fibrosis is reported to drive fibrocyte differentiation28. Similar analysis of snRNASeq data in 
disease conditions can provide insight into pathological intercellular crosstalk. 
 
In conclusion, snRNA-seq is feasible from cryopreserved lung, and our simplified protocol 
eliminates the need for FACS purification. In comparison to scRNA-seq, our protocol offers 
equivalent gene detection, eliminates artifactual transcriptional stress responses and delivers a 
much higher proportion of epithelial cells.  
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Figure Legends 
 
Figure 1. Single nucleus RNASeq offers similar gene detection and improves dissociation 
bias compared to scRNASeq. (A) Genes detected per cell when exonic reads alone or exonic 
and intronic reads are used in mapping. (B) Uniform manifold approximation and projection 
(uMAP) plot of 16,656 nuclei from snRNAseq data, combined from two replicates, with 
annotation of cell types. (C) Annotated uMAP plot of 11,473 cells from scRNASeq. (D) 
Percentages of total cells/nuclei grouped by category from snRNASeq, scRNASeq, and a 
previously published scRNASeq dataset. EC, endothelial cells; aEC, arterial endothelial cells; 
vEC, venous endothelial cells; CapEC, capillary endothelial cells; LEC, lymphatic endothelial 
cells; AT1, alveolar type 1 epithelial cells; AT2, alveolar type 2 epithelial cells; BC, B cells; TC, 
T cells; DC, dendritic cells; FB, fibroblasts; MyoFB, myofibroblasts; AM, alveolar macrophages; 
IM, interstitial macrophages; NK, natural killer cells; Mes, mesothelial cells; SMC, smooth 
muscle cells. 
 
Figure 2. Merged single cell and single nucleus mesenchymal cells and differential 
expression between techniques. (A) uMAP plot of cell types after isolating mesenchymal 
subsets. (B) Overlap of transcriptomes from cells and nuclei after subclustering. (C) Binned 
scatterplot illustrating genes detected more reliably in cells versus nuclei, with grey lines 
marking the 95% confidence interval of variation detected by chance. (D) Volcano plot showing 
that 3.0% of genes are more highly expressed in cells (log fold change >0.5, adjusted P 
value<0.05), while 1.4% of genes are more highly expressed in nuclei. (E) Gene ontology 
analysis of enriched genes from scRNASeq and snRNASeq, arranged by log fold-change. FB, 
fibroblasts; MyoFB, myofibroblasts; SMC, smooth muscle cells; Peri, pericytes. 
 
Figure 3. Differences in gene expression patterns between scRNASeq and snRNASeq. (A) 
Increased expression of mitochondrial, ribosomal, and heat shock response genes shown by 
heatmap. (B) Multiple stress response markers are enriched in single cell data, in a manner 
distributed equally among cell types (C). (D) Select genes with increased expression in 
snRNASeq data, including ion channels, signal transduction proteins, and transcription factors.  
 
Figure 4. Characterization of mesenchymal cell types from combined scRNASeq and 
snRNASeq data. (A) Average gene expression heatmap showing distinct expression profiles of 
three fibroblast subtypes. (B) Of Pdgfra+ fibroblasts, Bmper+ and Brinp1+ cells are Col13a1+ 
and do not express Col14a1. (C) Dot plot with additional marker genes for mesenchymal cell 
subtypes. FB, fibroblasts; MyoFB, myofibroblasts; SMC, smooth muscle cells; Peri, pericytes. 
 
Figure 5. Ligand-receptor mapping in alveolar cell types. (A) Cell type-specific expression 
heatmaps of ligands and receptors illustrating potential networks of intercellular communication. 
(B) Alveolar signaling pathways suggested by the current snRNASeq data. AT1, alveolar type 1 
cells; AT2, alveolar type 2 cells; FB, fibroblasts; MyoFB, myofibroblasts; EC, endothelial cells. 
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