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Abstract  
 
Perceptual anomalies in patients with Autism Spectrum Disorder (ASD) have been attributed to irregularities in 
the Bayesian interpretation (i.e., decoding) of sensory information. Here we show that how sensory information 
is encoded and adapts to changing stimulus statistics also characteristically differs between healthy and ASD 
groups. In a visual estimation task, we extracted the accuracy of sensory encoding directly from 
psychophysical data, bypassing the decoding stage by using information theoretic measures. Initially, sensory 
representations in both groups reflected the statistics of visual orientations in natural scenes, but encoding 
capacity was overall lower in the ASD group. Exposure to an artificial statistical distribution of visual 
orientations altered the sensory representations of the control group toward the novel experimental statistics, 
while also increasing their total encoding resources. Neither total encoding resources nor their allocation 
changed significantly in the ASD group. Most interestingly, across both groups the adaptive re-allocation of 
encoding resources was correlated with subjects’ initial encoding capacity. These findings suggest that neural 
encoding resources are limited in ASD, and this limitation may explain their reduced perceptual flexibility.  
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Main Text 
 
Introduction 
 
Recent theories attempting to provide a normative account for the complex phenotype of Autism Spectrum 
Disorder (ASD) have used the language of statistical inference, proposing that prior knowledge about the world 
is under-emphasized relative to incoming sensory information in patients with ASD. The primary source of this 
imbalance is debated: some authors argue for attenuated priors (Karaminis et al., 2016; Pellicano and Burr, 
2012a; 2012b; Powell et al., 2016), while others argue for aberrant sensory precision or prediction error 
(Karvelis et al., 2018; Lawson et al., 2014; Palmer et al., 2017; Brock, 2012; Van de Cruys et al., 2013). In 
common, however, these studies are disproportionally emphasizing the interpretation of incoming sensory 
information (i.e., decoding) while ignoring the possibility that deficits in the neural representation of sensory 
information (i.e., encoding) may also be responsible for the observed differences in perceptual behavior 
between ASD and healthy populations. 
 
Here we focused on characterizing sensory encoding in ASD while purposefully remaining agnostic about the 
decoding process. The goals were to isolate the contribution of changes in encoding from potential effects 
attributed to deficits in decoding. To examine the capacity and flexibility of sensory encoding in ASD we asked 
participants to perform a visual orientation estimation task, first without feedback, and then in the presence of 
trial-by-trial feedback. We took advantage of the well-known “oblique effect” (Campbell et al., 1996; Appelle, 
1972) where humans demonstrate greater sensitivity and repulsive (i.e., away from) biases in perceiving 
orientation and motion at cardinal compared to oblique orientations (Westheimer & Beard, 1998; Dakin et al., 
2005). These effects can be explained by postulating that the visual system efficiently encodes sensory 
information (Wei & Stocker, 2015, 2017) - i.e., by an encoding stage that is matched to the natural 
environmental statistics where vertical and horizontal edges are most common (Coppola et al., 1998, Girshick 
et al., 2011). In other words, the distribution of orientations in natural scenes imposes a sensory representation 
that allocates less sensory resources for low probability stimulus values, resulting in a less accurate neural 
representation of these stimuli. 
 
We analyzed the psychophysical estimation data using an information theoretic approach, the Cramer-Rao 
bound, that leverages the lawful relation between estimation bias, variance, and encoding accuracy (Casella & 
Berger, 2002; Wei & Stocker, 2017). The approach allows us to determine the accuracy of sensory 
representation while making only the minimal assumption that the efficiency of the decoder is independent of 
stimulus orientation. From measurements of perceptual biases and variance we estimated a lower bound of 
Fisher Information (FI), a measure of encoding accuracy. Subsequently, based on the efficient coding 
hypothesis (Wei & Stocker, 2015), we can further postulate that encoding accuracy reflects subjects’ 
expectations of the stimulus distribution (i.e., their prior). We express these expectations as a combination of 
the distribution of orientations in natural scenes (Coppola et al., 1998, Girshick et al., 2011) and the uniform 
distribution of orientations imposed by the experiment. The initial trials in the absence of feedback allowed us 
to compare overall encoding capacity and its allocation as a function of orientation between ASD and control 
groups. The second set of trials allowed us to examine how both properties changed in the presence of 
feedback. Our results show encoding capacity limitations and a lack of encoding flexibility in subjects with 
ASD. These findings suggest that perception in patients with ASD may not only anomalous in the way sensory 
information is interpreted, but crucially also in the accuracy and flexibility of how sensory information is 
encoded in the first place. 
 
 
Results 
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Heightened variability and reduced learning in Autism 
 
Groups of ASD (n = 17) and control (n = 25) individuals matched a briefly (120ms) presented visual target of 
random orientation. Target orientations were drawn from a uniform distribution. Initially no feedback was 
presented (woFB block), but in the second and third block of trials (wFB1 and wFB2; 200 trials/block) feedback 
was presented by overlaying the participant’s response and the target (Fig 1A, see Methods for details). As 
shown with an example control (Fig. 1B) and ASD (Fig. 1C) individual, orientation perception was biased away 
from cardinal orientations in both groups – namely, both groups demonstrated an “oblique effect” (Campbell et 
al., 1996; Appelle, 1972). With feedback, the bias seemingly dissipated in the control subject but not the ASD 
individual (Fig. 1B, C scatter plot are individual responses, curve is a running average within a sliding 15° 
Gaussian kernel, and vertical dashed lines are orientations at 45°, 90°, and 135°. See Fig. S1 for similar plots 
for all individual subjects). 
 

 
 
Figure 1. Experimental Protocol and Individual Subject Performance. A) A target orientation (Gabor) is briefly 
presented and participants report their percept by orienting a line indicator (white). No feedback is given on the first block 
of trials, but is in subsequent blocks by overlaying the target orientation and the participant’s response. B) Target 
orientations (x-axis) are drawn from a uniform distribution (individual dots are single trials). Y-axis indicates the bias for an 
example control subject (response subtracted from target), and lines are the running average within a sliding Gaussian 
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kernel of 15°. Different columns (and the color gradient) respectively show performance on the block without feedback 
(woFB; leftmost), on the first block with feedback (wFB1; center), and the second block with feedback (wFB2; rightmost). 
C) follows the format in B) while depicting the performance of an example ASD subject. 

 
These basic observations are also evident in group averages of control and ASD individuals (Fig. 2). When 
presenting targets between 0° (horizontal) and 45°, the bias was on average positive (e.g., average bias for 
control group: 6.0° ± 0.26° (S.E.), p < 10-3), suggesting that horizontal gratings were perceived closer to the 
oblique 45°. Contrary, when presenting targets between 45° and 90° (vertical), the bias was negative (e.g., 
average bias for control group: -5.14° ± 0.26°, p < 10-3), suggesting that vertical gratings were also perceived 
closer to the oblique 45° (Fig. 2A, B). Before feedback, there was no statistically significant difference in the 
overall magnitude (i.e., absolute value) of bias between control and ASD groups (control: 5.63° ± 0.12°; ASD: 
5.99° ± 0.22°, Δ = 0.35° ± 0.25°, p = 0.077). On the other hand, when provided with feedback, orientation 
perception bias was reduced in the control group, but less so in the ASD group (reduction in average 
magnitude of bias between the block without feedback (woFB) and the second set of trials with feedback 
(wFB2), control: Δ = 2.38° ± 0.17°, p < 10-3; ASD: Δ =1.04° ± 0.31°, p < 10-3; ΔControl - ΔASD = 1.34° ± 0.35°, 
p < 10-3; Fig. 2A, B, feedback conditions shown by a color gradient). 
 
Regarding the variability of orientation perception, we found that at baseline (i.e., before feedback), the ASD 
group had larger variance in their estimates than the control group (control: 0.180 ± 0.006; ASD: 0.297 ± 0.010; 
Δ = 0.117 ± 0.11, p < 10-3; Fig. 2C, D). This is in line with a growing literature suggesting heightened sensitivity 
to noise in ASD (e.g., Dinstein et al., 2012; Haigh et al., 2014; Zaidel et al., 2015; Noel et al., 2019). 
Additionally, while variance was seemingly further reduced with feedback in the control group, especially in the 
latter feedback block, this was not evident in the ASD cohort (reduction in overall variance between woFB and 
wFB2, control: Δ = 0.037 ± 0.008, p < 10-3; ASD: Δ = -0.012 ± 0.015, p = 0.414).  
 
As expected, based on these differences in bias and variability, the control group overall had better 
performance as measured by root-mean-square error (RMSE). This was true in the initial block of the 
experiment (control: 14.82° ± 0.35°, p < 10-3; ASD: 19.42° ± 0.47°, p < 10-3), and was exacerbated with 
feedback (Fig. 2E, F). Namely, performance of the control but not the ASD group increased with feedback, 
(reduction in overall RMSE between woFB and wFB2, control: Δ = 2.83° ± 0.48°, p < 10-3, ASD: Δ = -0.55° ± 
0.71°, p = 0.78).   
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Figure 2. Orientation Perception in Combined Control and ASD Subject. Bias (y-axis) as a function of target 
orientation (x-axis, cardinal and oblique orientation indicated by dashed lines) and feedback block in control (A) and ASD 
(B) subjects. Variance (1/kappa, y-axis) as a function of target orientation and feedback block in control (C) and ASD (D) 
subjects.  Root-mean-square error (RMSE, y-axis) as a function of target orientation and feedback block in control (E) and 
ASD (F) subjects. Error bars are ± SEM across 5,000 bootstrap runs. 
 
Extracting accuracy of sensory encoding from psychophysical estimation data 
 

The observed differences in bias and variance between ASD and control individuals (Figs. 1, 2) could originate 
from differences in the encoding process (i.e., how a target is sampled in noisy neural representations) or as a 
growing literature emphasizes, in how the sensory representations are interpreted in light of prior knowledge 
and expectations (e.g., Pellicano & Burr, 2012) (Fig. 3A, encoding step vs. decoding step). To disambiguate 
between these possibilities some (e.g., Karvelis et al., 2018) have recently jointly fit likelihood functions and 
priors to psychophysical data from individuals with ASD. This exercise allows estimating the shape of a 
likelihood function and one may equate the latter with sensory encoding. However, this approach is 
problematic as it 1) assumes an intact inference process in ASD (Palmer et al., 2017), and 2) ignores more 
nuanced and interdependent relations between Bayesian priors, sensory likelihoods, and posteriors beyond 
that specified by Bayes’ Rule (posterior = likelihood x prior). Namely, as suggested by efficient coding, the prior 
may directly constrain the shape of likelihood distributions (e.g., Wei & Stocker, 2015), or as suggested by 
hierarchical Bayesian models (e.g., Mathys et al., 2014), posteriors at one level may be the likelihood functions 
at the next. Further, during the feedback condition subjects may develop explicit and idiosyncratic strategies to 
reduce error in their estimate that cannot be fully captured by a restricted family of estimators, such as 
Bayesian decoders. 
 
To overcome these issues, our goal here was to return to more basic concepts and to examine neural 
encoding within a normative framework that is independent from the decoding process. This may inform 
whether purported deficits in the decoding process may be inherited from anomalous encoding. For this, we 
leverage a lawful relationship between the bias and variance of an estimator, the Cramer-Rao lower bound 
(Casella & Berger, 2002; Wei & Stocker, 2017), to estimate Fisher Information (FI). This latter measure 
describes how much information subjects’ internal representation carries about the physical stimulus 
presented, and provides a lower bound for the discrimination threshold of an observer based on that 
representation (Seung & Sompolinsky, 1993; Series et al., 2009). To illustrate the independence of this 
approach from the specific decoders, we present a simulation. We assume an encoding process ���|�� with a 
peaked (von mises) FI centered around 90° (Fig. 3B). Then, we built three arbitrarily chosen decoders �����, 
which given a sensory measurement �, generate an estimate �� (Fig. 3C). These decoders each produces a 
distinct pattern of bias and variance in their estimate, albeit based on the same encoding process (Fig. 3C). 
The Cramer-Rao lower bound (Eq. 1) states that, the bias and variance pattern produced by any decoder 
based on the same encoding process, has to satisfy the relationship (see Methods):  
 

�	���� 
 �1  bias�����/σ���.  (Eq. 1) 
 
Thus, upon observing the bias and variance, we can estimate a (lower bound) of FI in the encoding process 
(Fig. 3D). As example, despite the distinct behavior of the three decoders in this stimulation, we can extract the 
exact same actual pattern of FI in the encoding process. The only assumption here is that the decoder is 
efficient (i.e., it achieves the bound), which we verified as a valid assumption for a large range of decoders 
(also see Discussion). In turn, we use the Cramer-Rao Inequality and FI to examine encoding capacity and 
flexibility in ASD and control individuals. 
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Figure 3. Simulation Demonstrating that Fisher Information is a Measure of Sensory Encoding Accuracy that is 
Independent of the Decoding Process. A) Perception can be described by a process whereby an external stimulus �, is 

first encoded by a noisy measurement, ���|�� , which is then decoded into an estimate �� . The estimate can be 
characterized by a bias and variance in perception. B) To examine sensory encoding independently of the decoding 
process, we use the lawful relation between (the derivative of) bias and variance to estimate Fisher Information (FI). The 
latter being a measure of encoding accuracy, as we illustrate by a simulation. We assume an encoding process, ���|��, 
with a peak FI at 90°. C) As an example, we construct three arbitrary decoders (red, black, and blue) yielding different 
biases and variances. D) Applying the Cramer-Rao Inequality we estimate the lower bound of FI, which appropriately 
suggests that all three patterns of bias and variance possess the same pattern of FI. 

Reduced capacity and aberrant allocation of encoding resources in Autism 

Two aspects of FI are important for characterizing the sensory encoding of our subjects: 1) the overall scale, 
which determines the total amount of encoding resources, and 2) the shape or pattern of FI, which determines 
how resources are allocated among different orientations. 
 
Regarding the shape of FI as a function of target orientations, we found that in both groups FI peaked at 
cardinal orientations, those that are most common in the natural environment (Fig. 4A). The overall 
(normalized) pattern of FI matches the previously measured distribution of orientations in natural images (Dong 
& Atick, 1995; Roth & Black, 2005; Coppola et al., 1998, Girshick et al., 2011). On the other hand, both the 
total amount of FI and how this measure changed over the course of the experiment differed for ASD and 
control groups. Already during the first block of trials (woFB), total FI was significantly lower in ASD than 
controls (woFB, control: 14.67 ± 0.24, ASD: 11.28 ± 0.19). Further, total FI increased from woFB to wFB2 for 
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the control group (Δ = 1.96 ± 0.38, p < 10-3), but did not change in the ASD group (Δ = -0.060 ± 0.27, p = 0.83, 
Fig. 4B). 
 
To more fully quantify the impact of feedback on the shape and amount of FI, and more importantly, to relate 
our information theoretic measure (FI) to previous Bayesian accounts (e.g., Pellicano & Burr, 2012; Lawson et 
al., 2017; Karvelis et al., 2018), we parametrized the normalized square root of FI as a weighted sum of the 
distribution matching the known statistics for orientations in the environment (Girshick et al., 2011) and the 
experimental uniform distribution (with weights � and 1 � �, respectively; Fig. 4C, Eq. 3-6 in Methods). That 
is, under the framework of efficient coding the square root of FI is proportional to the stimulus distribution, the 
prior (Eq. 2, also see Wei & Stocker, 2015). Efficient coding dictates that sensory system ought to allocate 
encoding resources to match the natural statistics of the environment and under this theoretical framework, a 
flattened FI (Fig. 4A, controls) is expected if subjects begin to adapt their natural prior in order to incorporate 
the uniform prior imposed by the experiment (given that random orientations presented in the current 
experiment were drawn from a uniform distribution). The smaller �, the closer the participants’ prior to the 
statistics imposed by the experiment. Further, the overall scale of the square root of FI (i.e., the amount of total 
FI) is determined by another parameter, λ (Fig. 4C). We then fitted the bias predicted by the parameterized FI 
to the measured bias of the combined subject, given the measured variance (see Methods and Fig. S1 for 
individual participant biases and fits). That is, differently from previous computational work within the study of 
ASD, the prior (i.e., square root of FI) here is completely constrained by the participants’ responses (i.e., 
variance and bias, according to the Cramer-Rao Inequality). 
 
Examination of the fitted λ values confirmed that the ASD group had a lower baseline total (square-root of) FI 
than the control group (control λ vs. ASD λ at woFB; Δ = 4.121 ± 0.385, p < 10-3; Fig. 4D). Over the course of 
the experiment, λ further increased for the control group (woFB vs. wFB2 in control: Δ = 2.039 ± 0.502, p < 10-

3; Fig. 4D but this was not the case for the ASD group (Δ = -0.088 ± 0.325, p = 0.788, Fig. 4D). These results 
suggest an aberrant encoding process in the ASD group, showing a lower overall encoding capacity that does 
not improve over the course of repeated feedback. 
 
Notably, both groups started with a similar orientation-dependent pattern of normalized FI, with no significant 
difference in the � parameter prior to feedback (Δ = 0.032 ± 0.037, p = 0.391, Fig. 4E). When provided with 
feedback (woFB vs. wFB2), the � parameter decreased, thus the overall FI pattern became flattened, for the 
control group (change in �: Δ = 0.191 ± 0.040, p < 10-3, Fig. 4E, blue), but much less so for the ASD group 
(change in �: Δ = 0.076 ± 0.039, p = 0.027, contrast between control and ASD: Δ = 0.114 ± 0.057, p = 0.020). 
This change in the �  parameter under the efficient coding framework can be viewed as control subjects 
altering their prior of orientations by incorporating the uniform prior imposed by the experiment, compared to a 
less sensitive ASD group. That is, with feedback not only did the total amount of encoding resources increased 
in control but not ASD individuals, but the allocation of these resources also adapted to the experimental 
requirements in the control and much less in the ASD group.  
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Figure 4. Quantification and Parametrization of FI in Control and ASD individuals. A) Fisher Information (FI) peaked 
at cardinal orientations for both control (blue) and ASD (red) individuals. B) The total amount of FI was larger in control 
than ASD at the outset, and increased over the course of the experiment in control (blue color gradient) but not ASD (red 
color gradient) individuals. C) The FI pattern as a function of orientation was quantified by two parameters, �, which 
mixes a natural orientation prior with a uniform distribution as the normalized (square-root of) FI, and λ, scaling total FI. D) 
λ and E) � as a function of group (blue = control, red = ASD) and block. Note a � value of 0.5 (grey line) roughly 
corresponds to what has been previously reported as the prior distribution of orientations in natural environment. Error 
bars are ± SEM across 5,000 bootstrap runs. 
 
Reduced initial Encoding Capacity Is Correlated with flexibility in Prior 
 
Recent theoretical studies (Mlynarski & Hermundstad, 2018, 2019) highlight an inherent relation between 
encoding resources and the degree to which one can adapt to changing environments. In other words, if in line 
with efficient coding (Barlow, 1961; Wei & Stocker, 2015) resources are allocated primarily to represent 
statistically likely events, then fewer can be devoted to distinguishing between statistically unlikely alternatives 
– potentially limiting one’s knowledge that the environment has changed or how (Mlynarski & Hermundstad, 
2018, 2019). To examine this hypothesis, we repeated the analysis above for each individual subject and 
correlated participants’ encoding capacity (λ) before feedback with the shape of their prior after feedback (� at 
wFB2). In line with the “adaptive coding” hypothesis stated above (Mlynarski & Hermundstad, 2018, 2019), we 
found a strong correlation between these variables (r = 0.371, p < 0.001, Fig. 5A). Thus, individuals with ASD 
may have inflexible priors because of their limited encoding resources (see Discussion). 
 
Further supporting a potential driving role of encoding capacity in the reduced flexibility of priors in ASD, we 
also found that the total FI (λ) before feedback, but not the shape of the prior distribution (�), correlated with 
ASD symptomatology, as indexed by the Autism Quotient (AQ, Baron-Cohen et al., 2001; λ and AQ: r = 0.110 , 
p = 0.032; � and AQ: r = 0.058, and p = 0.125, Fig. 5B, C). On the other hand, after feedback (wFB2) both λ (r 
= 0.099, and p = 0.042) and most importantly, � (r = 0.243, and p = 0.0025, Fig. 5D, E) – potentially driven by 
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λ before feedback - showed a significant correlation with the AQ. Similar correlations existed as well with the 
Social Communication Questionnaire (Rutter et al., 2003; see Fig. S2). 
 

 
 

Figure 5. Correlation between Sensory Encoding Capacity, Flexibility in Encoding Resources Allocation, and 
Measures of Autism Traits. A) The flatness of FI after feedback (y-axis, indicating incorporation of stimulus statistics 
from the experiment) correlates with total encoding resources before feedback (x-axis). The total amount of encoding 
resources (y-axis) both before (B) and after (C) feedback correlates with Autism Quotient Scores. The shape of the prior 
before feedback (D) does not correlate with Autism trait severity, but does after feedback (E). Controls are depicted in 
blue, and ASD subjects are shown in red (individual dots are single participants, dots with errors bars are means across 
individuals ± SEM). Dark dashed lines are regression slopes that are significant, while the gray dashed line is not. 
 
Discussion 
 
By 1) tracking perceptual estimates over changes in stimulus statistics, 2) directly extracting Fisher Information 
(FI) from psychophysical data, and 3) parameterizing the shape of FI as a function of the stimulus and natural 
distributions, we have estimated the total encoding capacity and the allocation thereof, a proxy for the prior 
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within the efficient coding framework, in individuals with ASD. We show that neural encoding resources are 
limited in ASD and suggest that this limitation may explain their aberrant perceptual flexibility (e.g., Lawson et 
al., 2017; Leider et al., 2019).  
 
We found that the estimated natural prior for visual orientations is initially equal across autistic and neurotypical 
populations, yielding similar orientation-matching biases. Initially, the main difference between groups was the 
lower encoding capacity in ASD, reflected behaviorally as a higher within-subject variability (Zaidel et al., 2015; 
Noel et al., 2019). Using a normative framework, we were able to estimate that, at least within the current 
orientation estimation task, the total amount of encoding resources within the ASD group was about 75% that 
of their neurotypical counterparts. Further, the total amount of encoding resources correlated significantly with 
autistic symptomatology. This is important since recent simulations (Mlynarski & Hermundstad, 2018, 2019) 
highlight an inherent relation between encoding resources and the degree to which one can adapt to changing 
environments. Namely, in line with efficient coding (Barlow, 1961; Wei & Stocker, 2015) where resources are 
allocated primarily to represent statistically likely events, fewer resources may be devoted to distinguishing 
between statistically unlikely alternatives – thus, potentially limiting one’s knowledge that the environment has 
changed or how. 
 
Indeed, we found that the degree to which the encoding prior changed after feedback was correlated with initial 
encoding capacity: participants with greater initial encoding capacity had a prior that is closer to a uniform 
(experimental) distribution at the end of the experiment. Further, we also found that only the control group 
adapted their allocation of encoding resources from matching the statistics of the natural environment to 
matching those of the experiment. This was not observed in the ASD group. Further, the change in the pattern 
of allocating encoding resources correlated with autistic symptomatology. The only measure not correlating 
with ASD symptomatology was the prior before feedback, arguably the only parameter not dependent on 
encoding resources. Together, these findings argue for the importance of sensory encoding limitations in 
autistic phenotypes. Given that the prior was initially similar across groups, but FI was not, we argue that 
reduced encoding capacity leads to the loss of flexibility and adaptability in the ASD group. Thus, our findings 
suggest that the reason priors are inflexible in ASD may be because of a limited pool of encoding resources, 
and thus the inability to represent statistically unlikely events.  
 
In recent years, several ASD studies have employed a Bayesian decoder framework and have argued for 
weaker and/or inflexible priors in the condition (e.g., Lawson et al., 2017; Lieder et al., 2019; Powell et al., 
2016; Palmer et al., 2017). Our results do not contradict these conclusions, they simply emphasize that a 
computational understanding of the ASD phenotype cannot be limited to Bayes’ Rule (Posterior = Prior * 
Likelihood). In fact, the observed reduction of FI in ASD may be in agreement with the hypo-prior conjecture: 
expectations – particularly if they are accurate priors – may effectively implement a low-pass filter (e.g., moving 
average) reducing variance and uncertainty. In this perspective the panoply of studies demonstrating 
heightened variability (Distein et al., 2012; Haigh et al., 2014; Bonneh et al., 2011; Milne, 2011; Noel et al., 
2019) and heightened sensitivity to sensory noise (Zaidel et al., 2015) in ASD are all in line with either the 
hypo-prior account or a reduction in encoding resources.  
 
However, Bayesian decoding analysis neglect that, before interpreting sensory representations by decoders, 
environmental signals must be captured by noisy sensors at the sensory periphery and encoded by stochastic 
neurons. To account for encoding independently from decoding, here we have examined for the first time 
sensory representations in ASD within a principled framework. The computational choice is supported by the 
fact that the estimated FI matches the known distribution of orientations in the environment, and our analysis 
has the advantage that it only makes the assumption that the decoder is efficient (i.e., the decoder is at the 
Cramer-Rao lower bound). A wide range of decoders may apply, and we need not assume a particular 
decoder (see simulations in Fig. 3). This is important, emphasizing that previous studies concluding a 
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particular deficit in the priors or likelihood functions of a decoder have assumed appropriate Bayesian decoding 
in ASD, which has never been explicitly tested. 
 
Nonetheless, one may wonder whether the reported effects may be due to differential efficiency of decoders in 
the control and ASD population. In a set of additional simulations (Fig. S3), we show that decoding inefficiency 
that is independent of the stimulus (e.g., homogeneous noise added to the decoder) will both decrease the 
total amount of FI and flatten the pattern of FI. This is incompatible with our results in two aspects. First, the 
control and ASD group differ only in the total FI (i.e., the λ parameter), but not the pattern of FI (i.e., the � 
parameter) before receiving feedback. Second, learning through feedback increases total FI while flattening 
the pattern of FI. If the increase in total FI were to be explained by an increase in the efficiency in the decoder, 
the pattern of FI ought to be sharpened, which is the exact opposite of what we observed in the data.  
 
There is a wide range of potential neural mechanism by which the amount and allocation of encoding 
resources may change relatively rapidly. A first possibility is a gain modulation of the neural response. Indeed, 
for an efficient coding framework where each cell transmits an equal portion of the stimulus probability mass, 
an increase in the overall firing rate corresponds to a direct increase in population FI (Ganguli & Simoncelli, 
2014). Gain modulation could be implemented by alterations in neuromodulation, and fittingly Lawson and 
colleagues (2017) recently demonstrated abnormal noradrenergic responsivity in ASD. Previous studies of 
sensory adaption (e.g., Clifford et al., 2007) have also suggested that gain changes specific to a subpopulation 
of neurons are able to alter the allocation of coding resources. A second potential mechanism may be changes 
in the structure of correlated noise in the neural population. For example, a decrease in interneuronal 
correlations generally reduces the impact of noise on stimulus representation, thus leading to a higher 
population FI (Cohen & Maunsell, 2009). Along this line, Coen-Gagli & Solomon (2019) have recently 
suggested that divisive normalization is a critical player in neural variability, and Rosenberg and colleagues 
(2015) have accounted for a wide array of perceptual deficits in ASD by postulating a deficit in divisive 
normalization. 
 
In conclusion, recent theories within computational psychiatry have proposed that a range of 
psychopathological disorders, most notably Autism (Pellicano & Burr, 2012; Van der Cruys et al., 2014; 
Lawson et al., 2014) but also Schizophrenia (Fletcher & Frith, 2009; Corlett et al., 2009; Adams et al., 2013), 
are underpinned by deficits in performing Bayesian inference: the ability to correctly integrate sensory 
information with prior knowledge. These psychiatric-focused Bayesian theories, however, have so far largely 
ignored the possibility that the encoding of sensory information itself could be affected (but see Karaminis et 
al., 2016; Karvelis et al., 2018). They generally assumed that the generation of likelihood functions (encoding) 
and its combination with a prior (decoding) are independent processes. However, such an assumption runs 
counter the efficient coding framework (Barlow, 1961) and the normative foundation that the nervous system is 
optimized to represent those stimuli it most often encounters. Having taken this property into account, the 
present analyses suggest that in ASD a reduced pool of encoding resources leads to increased variability and 
the inability to accurately represent statistically unlikely events. This may explain the observed inflexibility in the 
re-allocation of sensory resources. More importantly, our results suggest that the encoding stage itself appears 
aberrant in ASD. Thus, future studies must carefully characterize other aspects of normative computation, like 
efficient coding, before concluding that it is the (Bayesian) decoding phase that has gone awry in ASD.   
 
Online Methods 
 
Participants  
 
A total of forty-two subjects completed an orientation-matching task. Seventeen were individuals diagnosed as 
within the Autism Spectrum Disorder (ASD; N = 17, mean ± s.d.; age = 15.3 ± 2.6 years; AQ = 33.5 ± 7.0; SCQ 
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= 16.8 ± 4.4) by expert clinicians according to the Autism Diagnostic Observation Schedule (ADOS; Lord et al., 
2000). The rest were neurotypical individuals (Control; N = 25, mean ± s.d.; age = 14.8 ± 2.1 years; AQ = 14.0 
± 5.5; SCQ = 5.6 ± 3.2). Participants had normal or corrected-to-normal vision, and no history of 
musculoskeletal or neurological disorders. Before partaking in the study, all participants completed the Autism 
Spectrum Quotient (AQ; Baron-Cohen et al. 2001) and the Social Communication Questionnaire (SCQ; Rutter 
et al, 2013). The Institutional Review Board at Baylor College and Medicine approved this study, and all 
participants gave their written informed consent and/or assent. 
 
Materials and Procedures 
 
Participants were comfortably seated facing a gamma-corrected CRT monitor (Micron Technology, Boise, ID; 
43 x 35 cm) at a distance of 57 cm. Subjects self-initiated a trial by button press, upon which a Gabor (120ms 
presentation, 0.4 cycles/degree, 5 cm radius, Gaussian envelope) was presented centrally on a gray 
background. The orientation of this target Gabor was random (uniform distribution, 0 – 180 degrees). 
Immediately following the offset of the Gabor, a mask consistent of 6 concentric circles (line color: black; radii = 
1.25, 2.00, 2.75, 3.50, 4.25, 5.00) was presented. This mask had a duration of 300 ms and was presented in 
order to eliminate the possibility of subjects experiencing an afterimage. Following a blank period of 400ms, 
subjects were presented with a white Gabor patch (3 cycles/degree, only one strip visible, random initial 
orientation) that they rotated via button press (up and down arrow, resolution = 1 degree) until they considered 
the orientation of the white Gabor patch indicator to match that of the target Gabor. Subjects logged a 
response via button press. The inter-trial interval was set to 1 second, and participants completed 200 trials per 
block. The experiment consisted of 3 blocks; the first was without feedback, as described above. In the second 
and third blocks participants were given feedback by superimposing the target Gabor and the orientation 
reported during the inter-trial interval. Participants were given approximately 5 minutes rest between blocks. All 
stimuli were generated and rendered using C++ Open Graphics Library (OpenGL). 
 
Data Analyses: 
 
We model subjects as a generic estimator �  of the orientation parameter � , and thus the responses as 
independent samples of �. The bias and variance of the estimator �  is a function of �  defined by ���� �
����� � �, and ����� � ��

����, respectively. The lower bound of Fisher information (FI) as a function of � is 
given by Cramer-Rao Lower Bound (Fig. 3): 
 

	���� 
 �����	�
��

��	�

   [Eq. 1, see main text] 

 
For our analysis, we assumed a tight bound (e.g., both Bayesian and maximum likelihood estimator can attain 
the bound asymptotically, also see Fig. 3), which allows us to extract FI directly from data (Fig. 3, 4C). 
Furthermore, with an efficient coding assumption that the square-root of FI is directly proportional to the prior 
subjects adopt:  
 

�	���� � ����   [Eq. 2], 
 
we can thus estimate the prior distribution by calculating the normalized square-root of FI: 
 

�	���� /    

�
�	���� !�   [Eq. 3]. 

 
To quantify the changes in encoding of subjects in the experiment, we parameterized the square-root of FI with 
λ and �:  
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�	���; #,  � � # $ � $ �0.877 $ �1 � )*+|2�|��  �1 �  � $ �

�
�   [Eq. 4], 

 
where # determines the amount of total (square-root of) FI, and   controls the shape, or “allocation” of FI, 
effectively the prior distribution, by mixing a natural orientation prior distribution with a uniform distribution (Fig. 
4C). Note the constants are such that the prior part of the equation normalizes properly to 1. 
 
To recover λ and �, we calculate the predicted bias:  
 

����; #,  � �   �

�
��	���; #,  � $ ���� � 1�!�   [Eq. 5]. 

 
We find #- and  ̂ that give rise to the best fit to the observed bias ����(Fig. S1): 
 

/01�*+�,    ||����; #,  � � ����||�
�   [Eq. 6]. 

 
Note that here we choose to fit the bias pattern ����, mainly to avoid the noisy derivative, ����� in the Cramér-
Rao Lower Bound (and introduce an integration step instead). 
 
Fig. 4D, E shows the parameters estimated for the combined subject, while the regression analysis presented 
in Fig. 5 is based on parameters estimated with the same procedure applied to each individual subject. All 
tests and p-values (except for the regression in Fig. 5) reported are based on the distribution (intervals) of the 
sample statistics (e.g., mean, variance, model parameters � and #) across 5,000 bootstrap runs (Efron & 
Tibshirani, 1994). Tests are one-sided unless specified otherwise in the main text. 
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Fig. S1: Scatter plot of the response data for individual subject, and the model fits to the average bias pattern. 
Note that we enforced the bias pattern to have a period of 90° to increase the reliability of the fits.  
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Fig. S2: Correlation of extracted parameter with SCQ scores. 
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Fig. S3: Extracted pattern of FI using Cramer-Rao lower bound when there is a stimulus-independent 
inefficiency (homogeneous noise in this case) added to the decoder. 
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