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Malaria parasites invade healthy red blood cells (RBCs) during the blood stage of the disease.
Even though parasites initially adhere to RBCs with a random orientation, they need to align their
apex toward the membrane in order to start the invasion process. Using hydrodynamic simulations
of a RBC and parasite, where both interact through discrete stochastic bonds, we show that parasite
alignment is governed by the combination of RBC membrane deformability and dynamics of adhe-
sion bonds. The stochastic nature of bond-based interactions facilitates a diffusive-like re-orientation
of the parasite at the RBC membrane, while RBC deformation aids in the establishment of apex-
membrane contact through partial parasite wrapping by the membrane. This bond-based model
for parasite adhesion quantitatively captures alignment times measured experimentally and demon-
strates that alignment times increase drastically with increasing rigidity of the RBC membrane.
Our results suggest that the alignment process is mediated simply by passive parasite adhesion.

I. INTRODUCTION

Malaria is a dangerous mosquito-borne disease which kills nearly 0.5 million of people every year [1]. It is caused
by a protozoan parasite of the genus Plasmodium and proceeds in several stages [2–4]. After about 10 days from the
initial infection through a mosquito bite, an infected liver releases a large number of merozoites, egg-shaped parasites
with a typical size of 1−2µm [5, 6], into the blood stream. The blood stage of malaria infection is a clinically relevant
stage, where merozoites invade healthy red blood cells (RBCs) and multiply inside by utilizing the RBC internal
resources. This intra-erythrocytic development is essential for merozoites to be hidden from the immune system and
avoid clearance. After about 48 hours post RBC invasion, infected RBCs are ruptured and new merozoites are released
into the blood stream to repeat this reproduction cycle. Thus, RBC invasion by merozoites is crucial not only for
parasite survival, but also for further multiplication.

RBC invasion by merozoites is preceded by three key events: (i) initial attachment, (ii) re-orientation or alignment
of the parasite such that its apex is facing the RBC membrane, and (iii) formation of a tight junction [7]. The apex
contains all required machinery to invade RBCs after the tight junction is formed [8]. At physiological hematocrit levels
with a volume fraction of RBCs close to 40%, initial attachment of merozoites can be considered almost immediate
after their egress from infected RBCs. However, the initial attachment has a random parasite orientation, which
rarely provides direct alignment of the apex toward the membrane required to start the invasion. This implies that
the parasite alignment is an extremely crucial step for successful invasion, which needs to be completed within a
couple of minutes, as after this time period merozoites generally lose their ability to invade RBCs [9]. To facilitate
parasite alignment, merozoites contain a surface coat of proteins, mainly GPI-anchored, which can bind to the RBC
membrane [5, 10, 11]. However, one of the main difficulties in the investigation of RBC-parasite interactions is that
exact receptor-ligand bindings remain largely unknown. Electron microscopy images [5] of merozoites adhered to a
RBC suggest that along with short surface-coat filaments of length ' 20 nm, there exist much longer filaments of
lengths up to 150 nm, which may play an important role in early stages of merozoite adhesion to the RBC membrane.
Furthermore, these long filaments have a much lower density than short binding filaments. Even though adhesion
kinetics of such bonds remain unknown, recent optical tweezers experiments [9] indicate the adhesion force of spent
merozoites to the RBC membrane to be within the range of 10 to 40 pN.

Another important aspect during merozoite alignment is the deformation of the RBC membrane. Dynamic mem-
brane deformations of various magnitudes are often observed [12–15] and are thought to aid in the alignment process
[16, 17]. Recent live-cell imaging experiments show a positive correlation between RBC deformations and eventual
merozoite alignment [16]. A deformation score on the scale from 0 to 3 with increasing membrane deformation has
been introduced. Most merozoites that successfully invade RBCs induce a deformation score of either 2 or 3, while
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for deformation scores of 0 or 1 the invasion success is much less frequent [16]. Furthermore, these experiments lead
to an estimate of an average alignment time of about 16 s [16]. A recent simulation study by [17], with RBC-parasite
adhesion modeled by a homogeneous interaction potential, has confirmed the importance of membrane deformations,
which facilitate parasite alignment through its partial wrapping by the membrane. However, this model shows static
(not dynamic) membrane deformations and leads to average alignment times of less than 1 s, indicating that an
essential aspect of the alignment process has not been captured. Another speculation is that dynamic membrane
deformations are induced actively by merozoites through changing locally the concentration of Ca+ ions [18, 19]. This
proposition has been confronted by recent experiments [20], which show that calcium release by parasite starts only
at the invasion stage. Therefore, RBC membrane deformations are potentially induced by a passive mechanism, such
as parasite adhesion.
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FIG. 1. (a) Two-dimensional sketch of a parasite with a directional vector n from the parasite’s back at rx = 1.5 µm to its apex
at rx = 0. (b) Three-dimensional triangulated surfaces of a RBC (red) and a parasite (blue). Bonds between the parasite and
RBC can form within the contact zone which is illustrated by a magnified view, where discrete receptor-ligand interactions (or
bonds) are sketched. A receptor-ligand bond can form with a constant on-rate kon and break with a constant off-rate koff .

In this paper, we focus on the passive compliance hypothesis [20] which assumes that RBC deformations and parasite
alignment result from parasite adhesion interactions rather than from some active mechanism. Thus, our central
question is whether parasite alignment can be explained purely by the passive compliance hypothesis. In contrast to
the recent simulation study by [17], where RBC-parasite interactions are represented by a laterally smooth potential,
the adhesion model presented here is based on discrete stochastic bonds between parasite and RBC membrane. This
is a key step toward a realistic description of RBC-merozoite adhesion, since it eliminates the major shortcomings of
the previous potential-based model such as unrealistically fast alignment times and the absence of dynamic membrane
deformations. Even though receptor-ligand interactions which determine parasite alignment are largely not known,
our bond-based interaction model still incorporates a few experimental details such as the range of adhesion forces
and density of different agonists [5]. In particular, bonds of different lengths, i.e. long and short two-state bond
interactions, are employed in the model. The bond-based parasite adhesion model generates a stochastic motion
of the parasite at the RBC membrane, similar to that observed experimentally [16]. Furthermore, it results in
alignment times which agree quantitatively with those measured in experiments [16, 21] and confirms the importance
of membrane deformations for successful parasite alignment. The model is also used to investigate the effect of various
bond properties, such as kinetic rates and bond density, on the parasite alignment process. Future investigations with
this model can consider more realistic scenarios such as parasite adhesion and alignment under blood flow conditions.

The article is organized as follows. First, we introduce and calibrate our hydrodynamic model, where simulation
parameters are tuned to quantitatively match several characteristics of the parasite motion at the RBC membrane
from available experimental data by [16]. Then, RBC membrane deformations and alignment times are investigated
for this reference parameter set and several cases of altered bond kinetics and densities. Finally, the effect of membrane
stiffness on alignment times is studied.

II. RESULTS

The RBC membrane is modeled as a network of Nrbc vertices that are distributed uniformly on the membrane
surface and connected by Ns springs [22–25]. Our RBC membrane model incorporates elastic and bending resistance,
and its biconcave shape is obtained by constraining the total surface area and enclosed volume of the membrane.
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FIG. 2. (a) A time instance of parasite motion at RBC membrane from an experimental movie [16] (top) and simulation
(bottom), see also Movie S1. To obtain the distribution of merozoite fixed-time displacements, the marked parasite (red circle)
is tracked over the course of its interaction with the RBC membrane. (b) Comparison between experimental and simulated fixed-

time displacements (∆d) of the parasite at RBC membrane, which is normalized by the effective RBC diameter D0 =
√
A0/π

calculated from the membrane area A0. By adapting the interaction parameters, the displacement distribution in simulations is
calibrated against the experimental distribution. The resulting interaction parameters for our model can be found in Table II.
(c) Mean squared displacement (MSD) of a parasite from simulations as a function of time. The black solid line marks a
diffusive regime with MSD ∼ t. Note the subdiffusive dynamics for short times, less than about 1 s.

Similar to the RBC, a parasite is modeled by Npara vertices distributed homogeneously on its surface. The egg-like
shape of a merozoite (see Fig. 1(a)) is approximated as [6, 17](

r2
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z
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z

)
+Rar

3
x, (1)

where Ra = 1.5 µm and Rb = 1.05 µm are diameters along the major and minor axes of the parasite, respectively. The
parasite is much less deformable than the RBC, as no deformations of parasite body are visible in experiments [9, 16].
Therefore, the merozoite is considered to be a rigid body, whose dynamics can be described by equations involving
force and torque on the parasite’s center of mass and directional vector [26].

Both RBC and parasite are immersed in a fluid and the hydrodynamic interactions are modeled by the dissipative
particle dynamics (DPD) method [27, 28]. The interaction of parasite and RBC membrane has two components. The
first is an excluded-volume repulsion which is modeled by the repulsive part of the Lennard-Jones (LJ) potential with
a minimum possible distance σ. The second represents adhesion which is modeled by discrete dynamic bonds between
RBC and parasite vertices. A parasite vertex can form two different types of bonds: (i) long bonds with a maximum

extension of `long
ext =100 nm and (ii) short bonds with a maximum extension of `short

ext =20 nm, see Methods for more
details.

To relate simulation units to physical units, a basic length scale is defined as the effective RBC diameter D0 =√
A0/π (A0 is the membrane area), an energy scale as kBT , and a time scale as RBC membrane relaxation time

τ = ηD3
0/κ, where η is the fluid viscosity and κ is the bending rigidity of the membrane. All simulation parameters

in model and physical units are given in Tables I and II in Methods section. Average properties of a healthy RBC
correspond to D0 ' 6.5 µm with A0 = 133.5 µm2 and τ ≈ 0.92 s for κ = 3× 10−19 J and η = 1 mPa s.

To better understand the effect of various adhesion properties on parasite alignment, several parameters such as
bond formation and rupture rates and relative bond densities are varied. For each fixed parameter set, a number of
simulations are performed and the results are combined and/or averaged, which is necessary due to the stochastic
nature of bond-based interaction as well as thermal fluctuation effects within the fluid. Note that each simulation is
performed for a different random choice of membrane vertices which form long and short bonds, while their relative
densities remain fixed, see Methods.

A. Calibration of RBC-parasite interactions

A parasite adhered to the RBC membrane generally exhibits a stochastic (or diffusive-like) motion observed exper-
imentally [16], which is controlled by the receptor densities ρlong and ρshort and the bond formation (klong

on , kshort
on ) and
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rupture (koff) rates that are currently not known. Nevertheless, available experiments [5] suggest that the number of
short bonds in RBC-merozoite interaction is lager than the number of long bonds, which is reflected in the receptor
densities ρlong and ρshort assumed for our parasite model (see Table II). To calibrate RBC-parasite interactions, the
stochastic dynamics of the parasite adhered to the RBC membrane (see Movie S1) is quantified by its fixed-time
displacement, which is measured by tracking the distance ∆d traveled by the parasite at fixed intervals of time ∆t,
see Fig. 2(a). Particle tracking is employed to measure ∆d from available experiments [16], where ∆t is selected to be
1 s, which is the time resolution of the experimental videos. Only time ranges, within which parasites remain visible
and the RBC is not moving much, are included in the analysis.

Figure 2(b) compares experimental and simulated characteristics of fixed-time displacements for the interaction
parameters given in Table II. This set of parameters is obtained by varying ρlong, ρshort, k

short
on , klong

on , and koff until
a good agreement between experimental and simulated parasite displacements is reached. However, the maximum

extensions of long and short bonds remain fixed at `long
ext =100 nm and `short

ext =20 nm in this calibration procedure.
The variance of experimental displacements in Fig. 2(b) is larger than that in simulations due to a limited sample
size of experimental data.

To further characterize the parasite motion on the RBC membrane, the mean-squared displacement (MSD) of the
parasite’s center of mass is computed in simulations and shown in Fig. 2(c). At long enough times t & 3 s, the parasite
exhibits diffusive-like motion, indicated by a linear increase of the MSD curve with time. For shorter timescales, the
MSD of parasite motion shows a transient anomalous subdiffusion, which may occur, for instance, in the case of sticky
particle dynamics with alterations between sticking (i.e., stopping its motion for some time) and diffusing states
[29, 30]. The transient sticky dynamics is an appropriate description for an adhered parasite, where sticking periods
correspond to time intervals within which no bonds are formed or ruptured. The diffusive-like dynamics is governed
by the number of bonds nb and their on- and off-rates, as an adhered particle becomes slower and eventually gets
arrested when nb is increased and the rates are decreased [31].
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FIG. 3. (a) Sketch of apex distance dapex and alignment angle θ. dapex is defined as a distance (magenta line) between the
parasite’s apex and the closest vertex of RBC membrane. The alignment angle θ corresponds to the angle between the parasite’s
directional vector (black arrow) and the normal vector nface (green arrow) of a triangular face whose center is closest to the
apex. (b) & (c) Probability distributions of the apex distance dapex/D0 and the alignment angle θ/π. Data are obtained for
parameters shown in Table II. The dashed line in the apex distance distribution indicates the minimum possible distance σ of
the repulsive LJ potential. Note that a good parasite alignment requires small values of dapex/D0 and values of θ/π close to
unity.
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B. Parasite alignment

Recent experiments suggest that a successful RBC invasion strongly correlates not only with the distance between
parasite apex and RBC membrane, but also with a perpendicular alignment of the merozoite toward the cell membrane
[7]. Furthermore, the junctional (invasion initiating) interaction range rjunc of the parasite’s apex is known to be
around 10 nm [5]. Based on these observations, we define two quantities, (i) the apex distance dapex from the RBC
membrane, and (ii) the alignment angle θ that characterizes parasite orientation, both sketched in Fig. 3(a). Here,
dapex is defined as the distance between the parasite apex and the nearest membrane vertex,

dapex = min
i

(|rapex − ri|) , (2)

the alignment angle θ as the angle between the parasite’s directional vector n and the normal nface of a triangular
face whose center is closest to the apex,

θ = arccos
(
n · nface

)
. (3)

Note that the search for the face closest to the apex is performed only within a cutoff range for long bonds (i.e. within
6
√

2σ + `long
ext ) from the apex, indicated by the blue circle in Fig. 3(a).
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FIG. 4. (a) Two-dimensional probability map as a function of dapex and θ. Each bin represents a single alignment state and
the color corresponds to probability of that state. The dark green area represents the criteria for a successful alignment. (b)
Distribution of alignment times ta obtained from 86 statistically independent DPD simulations. ta is defined as a time interval
between the start of a simulation and the instance when the alignment criteria for dapex and θ in Eq. (4) are met. The average
alignment time is equal to 〈ta〉 ' 9.53 s. (c) Alignment time distribution from MC sampling using the probability map in
Fig. 4(a). The alignment time is defined as a number of MC steps needed to satisfy the alignment criteria, as the MC procedure
does not have an inherit timescale. Note that the sample size in MC modeling is much larger than that in Fig. 4(b).

Figure 3(b,c) shows distributions of apex distance dapex and alignment angle θ for the calibrated RBC-parasite inter-
actions. Both characteristics are represented by distributions as the merozoite moves stochastically at the membrane
surface. Minimum values of dapex in Fig. 3(b) correspond to the parasite’s apex being very close to the membrane
(i.e., dapex ≈ σ), whereas maximum values generally represent a configuration where the parasite is adhered sideways
to the RBC. Furthermore, low values of θ in Fig. 3(c) characterize the sideways adhesion orientation, while large
values of θ represent a good alignment configuration. Note that an ideal merozoite alignment would be achieved if
dapex is less than σ + rjunc (rjunc =10 nm) and the alignment angle is θ ≈ π. Due to a discrete representation of
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the membrane, perfect alignment is unlikely, which requires to slightly relax these conditions. Therefore, we define a
successful parasite alignment by the criteria

dapex ≤ σ + rjunc & θ ≥ 0.8π. (4)

In experiments, merozoite alignment times are measured as time intervals between initial parasite adhesion and the
beginning of invasion [16]. Similarly, alignment time in simulations is calculated as the time required for the parasite
to meet the alignment criteria in Eq. (4) starting from an initial adhesion contact. Figure 4(b) presents a distribution
of alignment times from 86 statistically independent DPD simulations for the reference RBC-parasite interactions in
Table II. The alignment times range between 1 s and 26 s with an average value of 9.53 s. For comparison, the average
alignment time was reported to be 16 s by [16], and the range of alignment times between 7 s and 44 s was found by
[21], which agree reasonably well with our model predictions.

Note that the sample size (about 100) in simulations is limited by the computational cost. A single simulation,
corresponding to a total physical time of about 26 s, requires approximately 168 core hours on the supercomputer
JURECA [32] at Forschungszentrum Jülich. Therefore, a direct brute-force approach for the investigation of the
effect of various parameters on the parasite alignment time is not feasible. To overcome this problem, Monte-Carlo
(MC) sampling (see Methods for details), which is based on a two-dimensional probability map of parasite alignment
characteristics (dapex, θ) illustrated in Fig. 4(a), is employed to determine the differences in alignment times for various
parameter sets. Such a probability map is computed from several direct DPD simulations of RBC-parasite adhesive
interactions. Then, the MC procedure is used to model stochastic jumps between neighboring alignment states (diapex,

θj) within the probability map, starting from a randomly selected initial state and continuing until the alignment
criteria in Eq. (4) are met, and the number of MC steps represents the alignment time. Distribution of alignment times
tn from the MC sampling is shown in Fig. 4(c) for the reference parameter set. Clearly, the distributions obtained by
direct (Fig. 4(b)) and MC (Fig. 4(c)) simulations are very similar, verifying the reliability of the MC approach. Note
that alignment times tn from MC sampling are measured in terms of MC steps, since MC simulations do not have
an intrinsic timescale. The average alignment time for the reference parameter set is denoted as 〈tn,ref〉 and assumed
to be equivalent to 9.53 s, the average alignment time from direct DPD simulations of RBC-parasite adhesion. This
implies that 104 MC steps correspond to about 15 s.

C. Membrane deformation and parasite dynamics

A recent simulation study by [17] with a laterally homogeneous adhesion potential has demonstrated that the
deformation of RBC membrane is crucial for a successful parasite alignment. Here, we show that bond density and
kinetics not only control the parasite motion at the membrane surface, but also directly affect membrane deformation.
To quantify the strength of membrane deformations, a change in total energy between the deformed state and the
equilibrium state of the RBC membrane is computed as [17]

∆Erbc = Edeform
rbc − Eequil

rbc . (5)

Figure 5 shows temporal changes in deformation energy, number of bonds, head distance, and alignment angle for the
reference case. Two major contributions to the deformation energy (i.e. elastic stretching ∆Esp and bending ∆Ebend

energies) indicate that membrane deformation is very dynamic and has a strong variability in its intensity. This is
due to the dynamic formation and dissociation of long and short bonds between the merozoite and RBC membrane.
An interesting observation is that the head distance and alignment angle in Fig. 5 fluctuate around some average
values, indicating that the parasite has a preferred orientation, which is consistent with a peak in the probability
map in Fig. 4(a). In fact, the average values of dapex and θ correspond to a parasite orientation that has a maximum
contact area with the membrane, and are determined by the parasite’s egg-like shape. Furthermore, the fluctuations
of dapex and θ from their average values represent parasite motion toward its apex or bottom due to stochastic bond
dynamics. Thus, the parasite dynamics at the membrane can be described as a superposition of the rolling motion
around its directional vector with a preferred orientation and intermediate fluctuations of parasite orientation toward
its apex or the bottom. The rotational motion around the directional vector is preferred because it is not associated
with a significant energy cost, while fluctuations in the orientation toward the merozoite’s apex or bottom have an
energy penalty.

The dynamic adhesive behavior of the parasite in the current stochastic model is in striking contrast to the previous
adhesion model [17] based on a homogeneous interaction potential between the two cells, where no dynamic deforma-
tions were observed. A qualitative correspondence between these two models can be understood by considering a ratio
kon/koff = exp (∆Ub/kBT ), where ∆Ub is the binding energy of a single bond [33, 34]. Thus, the ratio kon/koff directly
controls the average number of bonds 〈nb〉 and the strength of adhesion, which are correlated with RBC deformation
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FIG. 5. Variations in stretching ∆Esp and bending ∆Ebend energies, the number of bonds nb, the head distance dapex, and the
alignment angle θ as a function of time for the default parameter set given in Table II. Temporal changes in the number of
bonds are shown for both long and short bond types. The dashed lines in the bottom plot correspond to the alignment criteria
in Eq. 4. For all quantities, the corresponding averages and variances represented by box plots are depicted on the right.

energy ∆Erbc. Similarly, in the parasite adhesion model with a homogeneous interaction potential [17], the strength of
adhesion potential controls membrane deformations. Even though average membrane deformations can be compared
for these two models, the stochastic bond-based adhesion model results in a very different diffusive-like dynamics of
the parasite, which is governed by nb and the off-rate koff [31]. A significant increase of nb and/or a decrease of
koff would lead to parasite arrest, which can be compared well with the model based on a homogeneous interaction
potential [17].

There exist three different timescales which might be relevant for the parasite alignment: (i) bond lifetime τb '
1/koff , (ii) membrane deformation time on the scale of parasite size τp ' ηR3

a/κ, and (iii) rotational diffusion time of
the parasite τr ' 8πηR3

a/kBT . These characteristic times are τb ≈0.013 s, τp ≈0.011 s, and τr ≈20 s computed from
the model parameters given in Tables I and II in Methods section. There is a clear separation of timescales between
τr and both τb and τp, indicating that the rotational diffusion of the parasite is too slow to have a significant effect
on merozoite alignment. Furthermore, τb and τp are comparable in magnitude, suggesting that both bond dynamics
and membrane deformations are important for the alignment process. It is also interesting to note that the ratio
τp/τr = kBT/(8πκ) ≈ 6× 10−4 depends only on the bending rigidity κ. This means that membrane deformation will
always represent a dominating timescale over the rotational diffusion of the parasite, independently of the parasite
size and the viscosity of suspending medium.
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FIG. 6. Effect of the off-rate koff on (a) the parasite’s fixed-time displacement, (b) RBC deformation energy, and (c) alignment
time. Since the off-rate controls the lifetime of bonds, a smaller off-rate results in a stronger adhesion, a lower parasite
displacement, and a faster alignment time.

D. Effect of bond properties on parasite alignment

To better understand the dependence of merozoite alignment on bond kinetics, the off-rate koff is varied for two ratios
kshort

on /klong
on of short and long bond on-rates. Figure 6 presents the parasite’s fixed-time displacement, deformation

energy, and average alignment times as a function of koff/k
long
on . A lower ratio of koff/k

long
on (i.e. a lower koff) leads

to stronger adhesion and thereby stronger membrane deformations (see Fig. 6(b) and Movie S2), consistently with
the discussion above. For small koff/k

long
on values, membrane deformation energies can reach up to 2000 kBT , whereas

large values of koff result in ∆Erbc ≈100 kBT . The main reason is that low values of koff lead to a significant increase
in the lifetime of individual bonds, allowing the parasite to form more bonds and thereby increase its adhesion energy
and induce larger membrane deformations. Similarly, large values of koff decrease the bond lifetime, resulting in a
decrease in the adhesion energy. For instance, in case of koff/k

long
on = 0.5, the parasite forms on average about 200

bonds, whereas for koff/k
long
on = 4, the average number of bonds is approximately 15. Furthermore, a larger on-rate for

the short bonds yields a slight increase in the strength of membrane deformations in comparison to a smaller kshort
on .

Figure 6(b,c) shows that there is a clear correlation between the level of membrane deformations and average
alignment time. For example, for off-rates koff/k

long
on ≤ 2, the alignment times are comparable with those for the

reference parameter case, while for off-rates koff/k
long
on > 2, there is a strong increase in alignment times, which is

correlated with insignificant membrane deformations. A shorter alignment time for koff/k
long
on ≤ 2 is due to the partial
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wrapping of the parasite by the RBC membrane, which is consistent with the previous study by [17] that demonstrates
the importance of membrane deformation for merozoite alignment. Note that the fixed-time displacement ∆d in
Fig. 6(a) significantly increases with koff due to a weaker adhesion. This seems to imply that the parasite alignment
proceeds faster for koff/k

long
on > 2. However, as it is evident from Fig. 6(c), this simple expectation is not applicable

here, indicating that a faster motion of the parasite at the RBC surface may not result in a faster alignment.
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FIG. 7. Effect of the density of long bonds ρlong on parasite alignment. (a) Number of short and long bonds and (b) parasite
alignment times as a function of ρlong/ρpara. Note that ρlong + ρshort = ρpara remains constant in all simulations. Here, the
bond kinetic rates are kshort

on = 290.3 τ−1, klong
on = 36.3 τ−1, and koff = 72.6 τ−1. In case of ρlong/ρpara = 0.1, parasite alignment

time could not be computed through the MC sampling, since merozoite alignment has never occurred in direct simulations.

Another parameter, which may significantly affect parasite alignment, is the density of long bonds ρlong. For the
reference parameter set, ρlong is chosen to be ρlong/ρpara = 0.4, so that ρshort/ρpara = 0.6. Figure 7 presents the
number of short and long bonds as well as parasite alignment times as a function of ρlong/ρpara. For the density
ρlong/ρpara = 0.1, the value of 〈tn〉 is omitted, as the alignment criteria in Eq. (4) have not successfully been met
during the entire course of direct simulations, yielding the probability of parasite alignment in MC sampling to be
zero. For densities ρlong/ρpara ≥ 0.3, both bond numbers and alignment times remain nearly independent of ρlong.
However, the average alignment time for ρlong/ρpara = 0.2 is about 30 s which is roughly three times longer than for
the reference case. Note that 30 s is longer than the total length (≈26 s) of direct simulations. Nevertheless, parasite
alignment has occurred in some of these simulations, resulting in a small non-zero probability of merozoite alignment
and a relatively long 〈tn〉 calculated through the MC sampling. The fact that 〈tn〉 for ρlong/ρpara = 0.2 is longer than
the total time of direct simulations means that the probability of parasite alignment is likely overestimated, indicating
that the average alignment time should be even longer than 30 s. An increase of 〈tn〉 with decreasing values of ρlong is
consistent with a significant decrease in membrane deformations. For off-rates koff < 72.6 τ−1, the trends illustrated
in Fig. 7 remain qualitatively the same.

E. Effect of RBC rigidity

To investigate the effect of RBC rigidity on the alignment of a merozoite, we consider a nearly rigid cell membrane
by increasing both bending rigidity and Young’s modulus by two orders of magnitude in comparison to a healthy
RBC. Such a rigid RBC shows no significant membrane deformations for the reference interaction parameters given
in Table II, see Movie S3. Comparison of parasite fixed-time displacements and alignment times for flexible and
rigid membranes is shown in Fig. 8 for two different values of koff . Clearly, larger RBC rigidity leads to much longer
parasite alignment times (see Fig. 8(b)), emphasizing again the importance of membrane deformations for merozoite
alignment. For off-rates koff/k

long
on < 2, parasite alignment at the surface of a rigid RBC is not achieved within the

course of the simulation. As the off-rate increases, alignment time at the rigid membrane becomes comparable with
that for the flexible membrane, because large enough koff values do not result in strong membrane deformations even
for the flexible RBC. Thus, for large off-rates, the parasite’s alignment solely relies on its rotational diffusion controlled
by the kinetic bond rates.
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FIG. 8. Effect of RBC membrane rigidity on (a) alignment time and (b) parasite fixed-time displacement for different off-rates
koff . Note that for a rigid RBC with koff/k

long
on = 1, parasite alignment time could not be computed through the MC sampling,

as the alignment criteria have never been met in direct simulations.

Figure 8(a) presents a comparison of parasite fixed-time displacements at the flexible and rigid membranes. In
both cases, parasite displacements increase with increasing koff , as expected. However, the displacement at the rigid
membrane is larger than at the flexible membrane (for visual comparison, see Movies S1 and S3), because the merozoite
forms less bonds at the rigid surface. For the same reason, the variance of parasite displacements is larger for the
rigid RBC than for the flexible RBC. Note that an increase in koff results in an increase of fixed-time displacement
and a decrease of alignment time for the rigid membrane, whereas for flexible RBC, an increase in off-rate leads to
an elevation of both fixed-time displacement and alignment time. This implies that for a rigid RBC, fast kinetics or
weak adhesion are favorable for a quick alignment. In contrast, for a flexible RBC, slow kinetics or strong adhesion
are advantageous for fast alignment, since the parasite employs RBC deformation for efficient alignment by partial
membrane wrapping.

III. DISCUSSION AND CONCLUSIONS

We have investigated the alignment of a merozoite at RBC membrane using a realistic two-state bond-dynamics
model for parasite adhesion. Motivated by experiments [5], parasite adhesion is modeled by two bond types, with
long and short extension. Since RBC-parasite interactions and the corresponding bond kinetics are experimentally
not yet well characterized, the calibration of bond parameters is based on parasite fixed-time displacement at the
membrane from existing experiments [16], which is in the range of 0.3 − 0.8µm. The presented model is able to
reproduce quantitatively experimentally measured alignment times. Simulated alignment times are in the range
between a few seconds and 26 s, while the analysis of experimental videos by [16] yields an average alignment time
of 16 s. Another independent experimental study by [21] reports alignment times in the range between 7 and 44 s,
which agree relatively well with our simulation predictions. In addition to the good agreement between simulated and
experimental alignment times, our model reproduces well dynamic RBC membrane deformations frequently observed
in experiments [12, 13, 15].

Our main result is that parasite alignment is mediated by RBC membrane deformations and a diffusive-like dynamics
due to the stochastic nature of parasite-membrane interactions. Average number of bonds 〈nb〉 between the parasite
and the membrane is governed by the ratio kon/koff = exp (∆Ub/kBT ) that is connected to the binding energy ∆Ub of
a single bond and determines the strength of membrane deformations. Our results show that membrane deformations
speed up the alignment through partial wrapping of the parasite, facilitating a contact between the parasite apex
and the membrane. This conclusion is consistent with the previous simulation study [17], where merozoite adhesion
has been modeled by a laterally homogeneous interaction potential whose strength controls RBC deformations. The
importance of membrane deformation is also corroborated by simulations of parasite alignment at a rigid RBC, which
show a drastic increase in alignment times. For a rigid membrane, the parasite alignment depends mainly on bond
lifetime (i.e., τb ' 1/koff), indicating that a low koff or large bond lifetime may significantly decelerate the parasite’s
rotational motion, and hence, increase its alignment time drastically. This conclusion agrees well with a recent
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simulation study [31] on the dynamics of two adhered colloids, whose effective rotational diffusion is governed not
only by 〈nb〉 but also by τb. Clearly, τb is also important for parasite dynamics at a deformable RBC, in addition to the
membrane relaxation time on the scale of parasite size τp. The poor alignment of the merozoite at a stiff membrane
can be a contributing factor, limiting parasite invasion. For example, infected RBCs in malaria become significantly
stiffer than healthy cells [35, 36], limiting secondary invasion events. Furthermore, an increased RBC membrane
stiffness is relevant in many other diseases, such as sickle cell anemia [37], thalassemia [38], and stomatocytosis [39],
whose carriers are generally less susceptible to malaria infection.

For large values of koff , the parasite is not able to induce strong deformations even at a flexible membrane, so that
the alignment times at rigid and deformable RBCs become comparable, and the alignment is governed solely by a
diffusive-like rotational dynamics. The diffusive-like motion of the parasite at the membrane surface is facilitated
by stochastic formation/dissociation of bonds between the two cell surfaces, and leads occasionally to a successful
alignment. Therefore, our model is also able to explain the possibility of RBC invasion by a merozoite without
preceding membrane deformations, which is observed much less frequently than the invasion preceded by significant
RBC deformations [16]. Note that the RBC-parasite adhesion model based on a laterally homogeneous interaction
potential [17] predicts the complete failure of parasite alignment without significant membrane deformations, because
it does not capture a diffusive-like rotational dynamics of the parasite. Thus, the bond-based model is more appropriate
for the representation of RBC-parasite interactions.

Even though the bond parameters in Table II were calibrated by the parasite fixed-time displacement obtained
from experiments [16], such choice is likely not unique as some other set of parameters (e.g., receptor/ligand densities,
kinetic rates) may lead to statistically similar displacement characteristics. Nevertheless, it is important to emphasize
that the discrete bonds in simulations should be thought of as ”effective” bonds, which likely represent a small cluster
of real molecular bindings. Furthermore, since the parasite displacement is mainly controlled by the bond kinetics,
this calibration procedure is rather robust in identifying an appropriate range of bond properties. Another important
aspect of this model is the necessity of sufficiently long bonds to facilitate stochastic motion of the parasite at RBC
surface. Simulations with only short bonds show that the parasite is quickly arrested, which is similar to the model for
RBC-parasite adhesion based on a laterally homogeneous interaction potential [17]. Therefore, the long bonds serve as
leverages for parasite motion at the membrane. Electron microscopy images of adhered parasites [5] suggest that the
density of long bonds can be as low as 5−10%. However, the density of long bonds in our simulations is limited by the
resolution of both the RBC and parasite to be larger than about 20%. A much finer membrane model would alleviate
this limitation, but it would be prohibitively expensive computationally. Note that such heterogeneous systems of
receptors exist in other biological systems as well. For example, during leukocyte binding in the microvasculature,
both selectin and integrin molecules participate in adhesion and work synergistically, even though they have distinct
functions [40]. Furthermore, infected RBCs in malaria adhere to endothelial cells via two distinct ligands, ICAM-1
and CD-36, where binding with ICAM-1 exhibits a catch-like bond, while the interaction with CD-36 is a slip-like
bond [41].

Several studies [3, 6, 42] about RBC-parasite interactions hypothesize the existence of an adhesion gradient along
the parasite body, which is expected to facilitate alignment. Based on the RBC-parasite adhesion model with a
laterally homogeneous interaction potential [17], it was shown that an adhesion gradient, where the potential strength
increases toward the apex of a merozoite, generally accelerates parasite alignment. No definite conclusions about
possible gradients can be made in the context of that model, because even in the case of no adhesion gradients,
it predicts very short alignment times of about two orders of magnitude smaller than measured experimentally. An
introduction of adhesion gradients in our bond-based interaction model leads qualitatively to the following conclusions:
(i) Weak adhesion gradients do not significantly disturb the stochastic motion of a parasite at RBC membrane, and
have a negligible effect on the alignment. (ii) Strong adhesion gradients often result in a controlled direct re-orientation
of the parasite toward its apex, suppressing the stochastic motion observed experimentally. These preliminary results
do not permit a definite conclusion about the possible existence of adhesion gradients, as moderate adhesion gradients
may exist and aid partially in the alignment process. Nevertheless, our model shows that adhesion gradients are
not necessary, since the main parasite properties, such as stochastic motion and realistic alignment times, can be
reproduced well by the bond-based model without adhesion gradients.

In conclusion, our model suggests that the parasite alignment can be explained by the passive compliance hypothesis
[17, 20], such that no additional active mechanisms or processes are necessary. Of course, this does not eliminate the
possible existence of some active mechanisms, which may participate in the alignment process. Another limitation
of many studies is that the parasite alignment is investigated under static (no flow) conditions, whereas in vivo,
parasite alignment and invasion occur under a variety of blood flow conditions, including different flow stresses and
flow-induced RBC deformations [43]. Further experiments are needed to investigate RBC-parasite interactions for
realistic blood-flow scenarios. The bond-based model proposed here is expected to be useful for the quantification of
such experimental studies and for a better understanding of RBC-parasite adhesion under blood flow conditions.
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IV. METHODS & MODELS

A. Red blood cell model

The total potential energy of the RBC model is given by [23, 24]

Urbc = Usp + Ubend + Uarea + Uvol. (6)

Here, the term Usp represents the elasticity of spectrin network, which is attached to the back side of the lipid
membrane. Ubend models the resistance of the lipid bilayer to bending. Uarea and Uvol constrain the area and volume
of RBC membrane, mimicking incompressibility of the lipid bilayer and the cytosol, respectively.

The elastic energy term Usp is given by

Usp =

Ns∑
i=1

kBT`
max
i

(
3x2

i − 2x3
i

)
4pi (1− xi)

+
λi
`i
, (7)

where the first term is the attractive worm-like chain potential, while the second term corresponds to a repulsive
potential with a strength λi. Furthermore, `i is the length of the i-th spring, pi is the persistence length, `max

i is the
maximum extension, and xi = `i/`

max
i . The stress-free state of the elastic network is considered to be a biconcave

RBC shape, such that initial lengths in the triangulation of this shape define equilibrium spring lengths l0i . For a
regular hexagonal network, its shear modulus µ can be derived in terms of model parameters as [23, 24]

µ =

√
3kBT

4pi`0i

(
x̄

2 (1− x̄)
3 −

1

4 (1− x̄)
2 +

1

4

)
+

3
√

3λi
4(`0i )3

, (8)

where x̄ = `0i /`
max
i is a constant for all i. Thus, for given values of µ, x̄, and `0i , individual spring parameters pi and

λi are calculated by using Eq. (8) and the force balance ∂Esp/∂li|l0i = 0 for each spring.

The bending energy of the membrane is expressed as [22, 44]

Ubend =
κ

2

Nrbc∑
i=1

1

σi

nrbc
i ·

∑
j(i)

σij
rij

rij

2

(9)

where κ is the bending modulus, nrbc
i is a unit normal of the membrane at vertex i, σi =

(∑
j(i) σijrij

)
/4 is the area

of dual cell of vertex i, and σij = rij [cot(θ1) + cot(θ2)]/2 is the length of the bond in dual lattice, with the two angles
θ1 and θ2 opposite to the shared bond rij .

The last two terms in Eq. (6),

Uarea =
ka (A−A0)

2

2A0
+

Nt∑
i=1

k`
(
Ai −A0

i

)2
2A0

i

, (10)

Uvol =
kv (V − V0)

2

2V0
,

constrain surface area and volume of the RBC [23, 24], where ka and k` control the total surface area A and local
areas Ai of each triangle to be close to desired total area A0 and local areas A0

i , respectively. The coefficient kv

controls the total volume V of the cell. The values of these coefficients are chosen large enough such that the area
and volume fluctuate within 1% of the desired values.

The elasticity of a healthy RBC is characterized by the shear modulus µ ≈ 4.8 µN m−1, which corresponds to
the Young’s modulus Y ≈ 18.9 µN m−1 for a nearly incompressible membrane. These values are employed in all
simulations unless stated otherwise. The described membrane model has been shown to accurately capture RBC
mechanics [23, 24] and membrane fluctuations [45].

B. RBC-parasite adhesion interaction

Interaction between parasite and RBC membrane has two components. The first part imposes excluded-volume
interactions between the RBC and merozoite (i.e. no overlap between them), using the purely repulsive part of the
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Lennard-Jones (LJ) potential

Urep(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, r ≤ 6

√
2σ. (11)

This potential acts between every pair of RBC and parasite vertices separated by a distance r = |rrbc − rpara| that

is smaller than 6
√

2σ. Here, ε represents the strength of the interaction and σ is the characteristic length scale of
repulsion.

The attractive part of RBC-parasite interaction is modeled by a reversible two-state bond model. Bonds can form
between the vertices at RBC membrane and merozoite surface, while existing bonds can also dissociate. These bonds
represent RBC-parasite adhesion through existing agonists at the surface of these cells and can be of two different
types:

(i) long bonds with a maximum extension `long
ext = 100 nm,

(ii) short bonds with a maximum extension `short
ext = 20 nm,

which is motivated by electron microscopy observations of RBC-merozoite adhesion [5]. Both bond types are modeled
by harmonic springs with the potential energy given by

Uad(`) =
λtype

2
(`0 − `)2

, (12)

where λtype is the spring constant of either long or short bond type and `0 is the equilibrium length. To model
the dynamic two-state interaction, constant (i.e. length independent) on- and off-rates (kshort

on , klong
on , and koff) are

chosen, in order to simplify the model and reduce the number of parameters. Furthermore, the off-rate for both bond
types is selected to be same. Note that this model can easily be extended to length-dependent rates. To implement
the different bond types, each vertex at the parasite surface can form either a long or a short bond. The choice
of vertices that form long or short bonds is made randomly for fixed bond densities. To avoid possible artifacts of
a single discrete bond distribution, each independent simulation assumes a different random choice of bonds with
their respective densities kept constant. Bonds between the vertices at the RBC and parasite surfaces can form if

the distance between two vertices is smaller than the corresponding cut-off distances `0 + `long
ext and `0 + `short

ext , which

remain the same in all simulations. Here, `0 = 6
√

2σ corresponds to the length of the excluded-volume LJ interactions
between the vertices of RBC and parasite, whose choice is defined by a characteristic discretization length of the RBC
membrane. Note that only a single bond is allowed at each vertex for the both bond types.

C. Hydrodynamic interactions

Hydrodynamic interactions are modeled using the dissipative particle dynamics (DPD) method [27, 28], where
fluid is represented by a collection of particles interacting through three types of pairwise forces: conservative FC

ij ,

dissipative FD
ij , and random FR

ij forces. The total force between particles i and j is given by

Fij = FC
ij + FD

ij + FR
ij . (13)

The conservative force models fluid compressibility, whereas the dissipative and random forces maintain a desired
temperature of the system. The dissipative force also gives rise to fluid viscosity, which is generally measured in DPD
by simulating a reversible-Poiseuille flow [46, 47]. The DPD interactions are implemented only between the pairs of
fluid-fluid, fluid-RBC, and fluid-parasite particles. DPD interaction parameters are selected such that they impose
no-slip boundary condition at RBC and parasite surfaces [17, 23].

D. Simulation setup

Simulation domain with a size of 7.7D0 × 3.1D0 × 3.1D0 contains both RBC and parasite suspended in a DPD
fluid, where D0 =

√
A0/π is the effective RBC diameter. Periodic boundary conditions are imposed in all directions.

Initially, the parasite is placed close enough to the RBC membrane, so that the interaction between them is immediately
possible. The initial parasite orientation is with its apex directed away from the membrane to mimic least favorable
attachment configuration.
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Parameter Simulation value Physical value
A0 133.5 133.5 µm2

D0

√
A0/π = 6.5 6.5 µm

kBT 0.01 4.282× 10−21 J
τ ηD3

0/κ = 725.8 0.92 s
η 1.85 1× 10−3 Pa s
κ 70 kBT 3.0× 10−19 J
µ 4.6× 104 kBT/D0

2 4.8 µN m−1

Y 1.82× 105 kBT/D0
2 18.9 µN m−1

Npara 1230
Nrbc 3000
σ 0.031 D0 0.2 µm
ε 1000 kBT 4.282× 10−18 J

TABLE I. Simulation parameters given in both model and physical units. The effective RBC diameter D0 =
√
A0/π sets a

basic length, the thermal energy kBT defines an energy scale, and RBC relaxation time τ = ηD3
0/κ sets a time scale in the

simulated system, where A0 is the RBC surface area, κ is the bending rigidity, and η is the fluid dynamic viscosity. The values
of bending rigidity κ, shear µ and Young’s Y moduli are chosen such that they correspond to average properties of a healthy
RBC. Parameters σ and ε correspond to RBC-parasite excluded-volume interactions represented by the purely repulsive LJ
potential in Eq. (11).

The main simulation parameters are shown in Table I, both in simulation and physical units. To compare simulation
units to physical units, a basic length scale is defined as the effective RBC diameter D0, an energy scale as kBT , and
a time scale as RBC membrane relaxation time τ = ηD3

0/κ. For average properties of a healthy RBC, the effective
diameter is D0 ' 6.5 µm with A0 = 133.5 µm2 and the relaxation time becomes τ ≈ 0.92 s for the bending modulus
κ = 3× 10−19 J and plasma viscosity η = 1 mPa s. All simulations are performed on the supercomputer JURECA
[32] at the Jülich Supercomputing Centre, Forschungszentrum Jülich.

Parameter Simulation value Physical value

`long
ext 0.0154 D0 100 nm

`short
ext 0.0031 D0 20 nm
ρlong 0.4 ρpara 107 µm−2

ρshort 0.6 ρpara 161 µm−2

klong
on 36.3 τ−1 39.6 s−1

kshort
on 290.3 τ−1 317.0 s−1

koff 72.58 τ−1 79.2 s−1

λlong 2.46× 104 kBT/D0
2 2.57 µN m−1

λshort 0.82× 104 kBT/D0
2 0.856 µN m−1

TABLE II. List of bond parameters that are used to calibrate displacement of the parasite at the RBC membrane in simulations
(see Movie S1) against available experimental data [16], as shown in Fig. 2(c). The parameter values in simulations are given
in terms of the length scale D0, energy scale kBT , and timescale τ = ηD3

0/κ. The densities of long and short bonds are given
in terms of parasite vertex density ρpara ' 270 µm−2. Note that ρlong + ρshort = ρpara in all simulations.

E. Monte-Carlo sampling of alignment times

One of the main foci of our study is to obtain distributions of parasite alignment times for various conditions, which
requires a large number of simulations of merozoite alignment. In order to significantly reduce the computational
effort, Monte-Carlo (MC) sampling of alignment times, which is guided by direct DPD simulations of RBC-parasite
adhesion, is employed. The MC sampling is based on a two-dimensional probability map (see e.g. Fig. 4(a)), which
characterizes parasite orientation at the membrane surface through the distance dapex between the parasite apex
and membrane and merozoite alignment angle θ (see Fig. 3(a) for definitions of dapex and θ). To construct such a
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probability map, possible dapex and θ values are binned into a number of orientation states (i, j) = (diapex, θ
j), and

the probability P (i, j) of each state is computed from at least 10 long DPD simulations of RBC-parasite adhesion.
We have verified that 10 independent DPD simulations are enough to reliably compute a probability map through its
convergence with the number of DPD simulations. In the MC algorithm, changes in parasite orientation are modeled
by transitions between different states, using the Metropolis algorithm. Thus, the transition from a state (i, j) to one
of the neighboring states (i+ 1, j), (i− 1, j), (i, j + 1) or (i, j − 1) is selected randomly with a probability of 1/4, and
this move is accepted if ξ < P (new state)/P (i, j), where ξ is a random number drawn from a uniform distribution in
the interval [0, 1]. In summary, the MC sampling algorithm is performed as follows

1. Initial parasite orientation is selected randomly by choosing a state (diapex, θ
j), which has a non-zero probability.

2. Transitions between the neighboring states are modeled according to the Metropolis algorithm described above.

3. MC procedure is stopped whenever pre-defined alignment criteria are reached, and the number of MC steps is
interpreted as alignment time.

Note that the MC sampling algorithm fulfills detailed balance, but does not account for hydrodynamic interactions.
However, it is a fast and efficient way to sample the distribution of parasite alignment times.

AUTHOR CONTRIBUTIONS

S.H. and A.K.D performed all the simulations and analyzed the computational results; G.G. and D.A.F. designed
the research project; all authors interpreted the results and wrote the manuscript.

ACKNOWLEDGMENTS

We would like to express our gratitude to Virgilio L. Lew and Pietro Cicuta from the University of Cambridge for
insightful discussions. Sebastian Hillringhaus acknowledges support by the International Helmholtz Research School
of Biophysics and Soft Matter (IHRS BioSoft). We gratefully acknowledge the computing time granted through
JARA-HPC on the supercomputer JURECA at Forschungszentrum Jülich.
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