1

1 Full Title

- 2 Microtubule Defect Involved in 'Mitophagy Resistance' Under Subacute
- 3 Oxidative Stress Potential Mechanism for Cellular Inflammation

4

5 Short Title

- 6 Microtubule Defect Involved in 'Mitophagy Resistance' Under Subacute
- 7 Oxidative Stress
- 8

9 Author names and affiliations

- 10 Takahiko Tamura^{1,2}, M.D., Ph.D. Nobuo Yasuda¹, Ph.D. Tomoharu Shakuo¹,
- 11 M.D., Ph.D. Aki Kashiwagi¹, M.D., Ph.D. Jeevendra A, J, Martyn¹, M.D., Ph.D.
- 12 Masataka Yokoyama², M.D., Ph.D. Shingo Yasuhara¹ M.D., Ph.D.

- 14 1. Department of Anesthesia, Critical Care and Pain Medicine
- 15 Shriners Hospitals for Children Boston, Massachusetts General Hospital and
- 16 Harvard Medical School. 51 Blossom Street, Boston, MA 02114, USA
- 17 2. Department of Anesthesiology and Intensive Care Medicine
- 18 Kochi Medical School. Oko-cho Kohasu, Nankoku, Kochi, 7838508, Japan

19

20 Corresponding Author

- 21 Shingo Yasuhara
- 22 51 Blossom Street, Boston, MA 02114
- 23 Phone number: (617)314-5109
- 24 Email address: syasuhara@mgh.harvard.edu

25

26 Author contributions

- 27 Takahiko Tamura: Data Curation, Formal Analysis, Investigation, Methodology,
- 28 Visualization, Writing-Original Draft Preparation
- 29 Nobuo Yasuda: Data Curation, Formal Analysis, Investigation, Methodology,
- 30 Visualization
- 31 Tomoharu Shakuo: Data Curation, Investigation, Methodology
- 32 Aki Kashiwagi: Data Curation, Investigation, Methodology
- 33 Jeevendra A, J, Martyn: Finding Acquisition, Project Administration, Resources,
- 34 Supervision, Writing-Review & Editing
- 35 Masataka Yokoyama: Finding Acquisition, Project Administration, Supervision

36 Shingo Yasuhara: Conceptualization, Finding Acquisition, Methodology, Project

37 Administration, Resources, Software, Supervision, Writing-Review & Editing

4

38 [Abstract]

39	Introduction: Oxidative stress is considered an essential mechanism in
40	ICU-acquired weakness. The roles of oxidative stress in autophagy/mitophagy
41	dysfunction remains elusive. Microtubule serves as an essential guide rail for
42	auto/mitophagosome trafficking required for proper maturation of
43	auto/mitophagosomes in normal circumstances, and microtubules network
44	formation is regulated by signal transduction mechanisms involving Akt, GSK3 β ,
45	and the microtubule plus-end tracking molecule, EB1. We have investigated (1)
46	whether oxidative stress affects this pathway, leading to the defective mitophagy
47	response, and (2) whether trehalose, an auto/mitophagy modulator, can
48	ameliorate these pathological conditions.
49	Methods: By stably transfecting markers for auto/mitophagy or MT synthesis,
50	we have established a few new C2C12 myocyte cell lines, expressing, GFP-LC3,
51	EB1-GFP, and/or tandem-fluorescence LC3 (tfLC3). To monitor microtubule
52	network, the cells were stained by SiR-tubulin. The cells were cultured in the
53	presence or absence of oxidative stress by hydrogen peroxide (H2O2) and
54	treated with or without trehalose. The response of mitophagy parameters
55	including vesicle motion and the maturation status was monitored by stimulating

56	the cells with carbonyl cyanide m-chlorophenyl hydrazone (CCCP), an
57	established mitophagy inducer, under a time-lapse confocal microscopy. Signal
58	transduction mechanisms linking mitophagy to microtubule formation was
59	analyzed by Western Blotting against Akt and GSK3β.
60	Results: Cells under the oxidative stress, showed abolished MT network
61	formation, decreased microtubule synthesis by EB1, and a decrease in
62	CCCP-invoked response of mitophagosome motion, perturbed mitophagosome
63	maturation, and increased superoxide production. Signal resistance of
64	Akt/GSK3 β pathway to mitophagic stimulation, was documented. Trehalose
65	treatment reversed signal resistance, diminished MT synthesis, ameliorated the
66	disturbed MT network, and improved maturation defects, suppressing the
67	production of superoxide.
68	Conclusions: Oxidative stress decreases the response of mitophagy and
69	abolishes microtubule network. Trehalose improves the synthetic ability of
70	microtubule and normalized the disturbed microtubule network, resulting in the
71	improvement of the perturbed mitophagosomes maturation under the oxidative
72	stress.

74 [Keywords]

- 75 Muscle weakness, ICU-acquired weakness, Autophagy, Mitophagy, Oxidative
- 76 stress, Microtubule, Akt, GSK3β, Trehalose, Mitochondria

7

77 [Introduction]

78	Muscle wasting and muscle weakness is one of the major complications among
79	many types of critical illnesses including sepsis, burn, and major trauma [1]. In
80	critical illnesses, muscle wasting occurs mostly in chronic phase. More recently,
81	however, ICU- acquired weakness (ICU-AW), which occurs rapidly in the
82	critically ill patients, has acquired both scientific and clinical attention in the field
83	of critical illness studies [2] and the onset of muscle wasting/dysfunction is
84	regarded to develop at relatively earlier stage of the disease than previously
85	considered. When the disease persists, the muscle wasting and weakness
86	arising from these illnesses lead to prolonged mechanical ventilation [3], with
87	increased morbidity and mortality [4]. Oxidative stress and mitochondria
88	dysfunctions are considered one of the key mechanisms in sepsis or burn
89	injury-induced organ dysfunctions, and in ICU-AW. [5,6]
90	Mitochondrial dysfunction has been reported to occur concomitantly in
91	many forms of muscle dysfunctions in critical illnesses. Perturbation of
92	mitochondrial network integrity and their functions leads to systemic catabolism,
93	affecting adenosine triphosphate (ATP) production, decreased organelle
94	biogenesis, elevated proteolysis and often resulting in the loss of muscle size [2].

95	In addition to their roles in bioenergetic homeostasis, mitochondria are involved
96	in various signal transduction. Dysregulation of these signals lead to cellular
97	malfunction directly or indirectly. Damaged mitochondria release catastrophic
98	mediators including reactive oxygen species (ROS), cytochrome-c, which can
99	initiate the process of cell death and induce proteolysis [7]. Mitochondrial quality
100	control is therefore essential not only for energy homeostasis but also in the
101	determination of cell fate.
102	Autophagy is a cellular housekeeping system that mediates either bulk
103	removal of cellular components or selective degradation of damaged organelles
104	and protein aggregates [8]. Its defect or derangement in signals is associated
105	with pathogenesis of various diseases such as cancer, neurodegeneration,
106	metabolic diseases and multiple organ failure of critically illness [9]. Autophagy
107	plays an essential role in the skeletal muscle system, maintaining muscle fiber
108	integrity [10]. Dysregulation of autophagy [5,11] has been associated with the
109	development of ICU-AW, or muscle wasting syndrome in critical illnesses, but
110	the precise pathophysiological mechanism has remained elusive. Particularly,
111	damaged mitochondria are removed by a form of selective autophagic
112	degradation, or mitophagy. Mitophagy thus plays essential roles of cellular and

113	mitochondrial homeostasis, but the causative relationship with muscle wasting
114	and mitophagy has not been fully clarified in critical illness-induced muscle
115	dysfunctions or ICU-AW despite the reports of mitochondrial dysfunctions. [12]
116	The relationship between oxidative stress and auto/mitophagy has been
117	studied intensively mostly with the conclusion that oxidative stress, mediated by
118	ROS, activates auto/mitophagy [13,14]. Given that auto/mitophagy are cell
119	protective systems acquired by eukaryotes during evolution [8,15], findings
120	about ROS activating auto/mitophagy is rational. The cells need to adapt to
121	acute stress by reinforcing auto/mitophagy. In this context, however, the effect of
122	oxidative stress on the basal level of, (but not the responsiveness or
123	competency of), auto/mitophagy, has been the focus of study [16]. The effect of
124	prolonged oxidative stress on the 'response', or competency, of auto/mitophagy
125	has not been investigated in detail. Clinically, it has been recognized that
126	competency of various organs for stress adaptation is diminished in many
127	chronic inflammatory diseases or in critical illnesses. [17,18] In this setting, it can
128	he advanted that even in include a competency of but not just the basel level of
	be advocated that examining the competency of, but not just the basal level of,
129	auto/mitophagy, is critical to fully understand the pathological symptoms of many

131	for turning mitophagy flux, in response to mitophagy-inducing stimulation and
132	investigated how oxidative stress affects this response. Herein, by focusing on
133	the response of mitophagy, a new disease entity of compromised response to
134	mitophagy-inducing stimuli ('resistance to mitophagic stimuli', or operationally
135	simplified as 'mitophagy resistance') will be discussed. Similar to insulin
136	resistance in type 2 diabetes mellitus (T2DM) or in chronic illnesses, we have
137	noted there is a pathological condition where signal response for mitophagy flux
138	turnover is defective, thus yielding poor response to mitophagy-invoking stimuli
139	and thus resulting in decompensated quality control of mitochondria and in
140	diminished safety margin in the homeostasis of mitochondria. [19,20]
141	Furthermore, despite the intensive studies about the relationship
142	
	between ROS and auto/mitophagy, the molecular target of ROS in
143	between ROS and auto/mitophagy, the molecular target of ROS in auto/mitophagy pathway remained somewhat elusive [16]. Previous studies tried
143 144	
	auto/mitophagy pathway remained somewhat elusive [16]. Previous studies tried
144	auto/mitophagy pathway remained somewhat elusive [16]. Previous studies tried to link ROS signal to pathways for activating the basal level of auto/mitophagy
144 145	auto/mitophagy pathway remained somewhat elusive [16]. Previous studies tried to link ROS signal to pathways for activating the basal level of auto/mitophagy signals [13,21], but studies for explaining the link between the ROS and the

149	assembly and disassembly to fulfill cellular needs. They function both to
150	determine cell morphology and participate in a variety of cell locomotion, the
151	intracellular transport of organelles, and the separation of chromosomes during
152	mitosis. Accumulating numbers of recent studies demonstrated that MT serves
153	as an essential guide rail for auto/mitophagosome vesicle trafficking and thus
154	are the key component of auto/mitophagy pathway [22]. The roles of MTs in
155	auto/mitophagy dysregulation, however, have less been investigated especially
156	in the context of diseases. In this study, we analyzed whether MTs and its
157	regulation are affected by oxidative stress and how it leads to the defective
158	mitophagy response.
158 159	mitophagy response. There have been attempts of therapeutic approaches by stimulating the
159	There have been attempts of therapeutic approaches by stimulating the
159 160	There have been attempts of therapeutic approaches by stimulating the autophagy in disease models where defects of autophagy and/or mitophagy is
159 160 161	There have been attempts of therapeutic approaches by stimulating the autophagy in disease models where defects of autophagy and/or mitophagy is reported. Many of these approaches are aimed at activating the upstream
159 160 161 162	There have been attempts of therapeutic approaches by stimulating the autophagy in disease models where defects of autophagy and/or mitophagy is reported. Many of these approaches are aimed at activating the upstream autophagy initiating mechanisms. However, there has been no discussion
159 160 161 162 163	There have been attempts of therapeutic approaches by stimulating the autophagy in disease models where defects of autophagy and/or mitophagy is reported. Many of these approaches are aimed at activating the upstream autophagy initiating mechanisms. However, there has been no discussion regarding the validity of stimulating the upstream event where the downstream

167	evaluating the flux blockade of mitophagy response, the efficacy of a
168	non-conventional auto/mitophagy modulator is examined. Trehalose, a
169	non-reducing disaccharide composed of two D-glucose units linked α -1,1, is
170	present in many organisms, including bacteria, fungi, plants, yeast, and
171	invertebrates including tardigrades and brine shrimps. These organisms use
172	trehalose to augment their adaptation competency against extremely severe
173	environmental conditions including frigidity, dehydration, starvation, and
174	UV-radiation. [23,24] Supplementation with trehalose also improves the survival
175	of mammalian cells [25,26]. Recent studies demonstrated that trehalose induces
176	autophagy via mammalian (mechanistic) target of rapamycin
177	(mTOR)-independent pathway [27,28]. Some studies have suggested that
178	trehalose helps maintain MT-forming function of tubulins [29]. By employing the
179	cell-protective and autophagy-augmenting proficiency of trehalose, therapeutic
180	studies have been proposed to treat several diseases in which autophagy plays
181	an important role [9]. This study therefore examined whether normalizing the
182	disturbed MTs with trehalose can prevent the mitophagy dysfunction under the
183	subacute oxidative stress.

13

185 [Materials and Methods]

186 Ethics Statement and Animal Research

187 There is no animal research involved in the current study.

188

189 Reagents, Transgene Plasmid Constructs, Antibodies

- 190 The reagents used in this study are; MitoSOX (Thermo Fisher Scientific),
- 191 LysoTracker (Thermo Fisher Scientific), SiR-tubulin (Cytoskeleton), CCCP
- 192 (Millipore Sigma), E64d (Millipore Sigma), pepstatin A (Millipore Sigma),
- 193 Lipofectamine 3000 (Thermo Fisher Scientific), G418 (Millipore Sigma),
- 194 Mammalian expression plasmids for GFP-LC3 (kindly provided by Dr. N.
- 195 Mizushima), tandem-fluorescent LC3 (Addgene), GFP-EB1 (Addgene),
- 196 antibodies against LC3 (Sigma), phospho-Akt (Ser473, Cell Signaling
- 197 Technology, #9271), phospho-GSK3β (Ser9, Cell Signaling Technology, #9322),
- 198 Anti-GAPDH (#9484 abcam, #2275-PC-100 Trevigen)
- 199

200 Cell Culture and Staining

- 201 C2C12 murine myocytes were obtained from ATCC and maintained in DMEM
- 202 (Gibco/Thermo Fisher Scientific) with 10% fetal bovine serum (ATCC) and

203	50U/mL	penicillin-streptomycin	(Gibco/Thermo	Fisher Scientific). By stably
-----	--------	-------------------------	---------------	-------------------------------

- 204 transfecting auto/mitophagy markers in C2C12 myocyte, new muscle cell lines
- were established, expressing GFP-LC3 or EB1-GFP or tfLC3.

206

207 Stable Transfection

- 208 Mammalian expression transgene constructs were transfected into C2C12 cells
- 209 by lipofection using Lipofectamine 3000 according to the manufacturer's
- 210 instructions. After 24 hours of transfection, stable transfectants were selected
- 211 using G418 selection for one week and fluorescently labeled cells were cloned
- according to the method described previously [30].
- 213

214 Drug Treatment, Mitophagy Induction, and Oxidative stress

- 215 To impose subacute oxidative stress, myocytes were exposed to 500µM of
- 216 hydrogen peroxide (H_2O_2) for 12-18 hours. To test the therapeutic efficacy of
- trehalose, the cells were treated with or without 100µM trehalose for 2 hours
- 218 before the observation. To monitor the response of mitophagy, the cells were
- stimulated with 5µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), an

220	established mitophagy ind	ucer. To disrupt m	nicrotubule network,	the cells were
-----	---------------------------	--------------------	----------------------	----------------

- treated with 5µM colchicine for 1 hour.
- 222
- 223 Cell Staining
- 224 To monitor lysosomes, the cells were stained by LysoTracker Blue. To observe
- microtubule, the C2C12 myocyte were stained by SiR-tubulin. To investigate the
- superoxide production from mitochondria, the C2C12 cells were stained by
- 227 MitoSOX at 5µM.
- 228

229 Image Data Analysis

- 230 For detailed time-lapse image analyses, C2C12 cells were observed using a
- 231 confocal microscopy (Nikon Eclipse, A1R HD) with a 2 second interval, and the
- 232 captured images were analyzed by Image J. To investigate the mechanism of
- the beneficial function of trehalose on MT, the synthesis speed of MT was
- 234 monitored using EB1-GFP, the plus-end tracking reporter. To investigate the
- 235 mitophagy response induced by CCCP, the motion and maturation of
- 236 mitophagosome were monitored. The vesicle motion was measured by using the
- tracking plugins of ImageJ. The maturation of mitophagosome was defied by the

ratio of RFP/GFP. To measure fluorescent light intensity, a wide-field fluorescent

microscope (Nikon Eclipse 800) calibrated with a standard fluorescent beads

238

240	(LinearFlow, Thermo Fisher)
241	
242	Cell Experiment Procedure for Western Blot
243	The C2C12 cells were cultured on 6cm dishes to 80-90% confluence. Cells were
244	serum starved, treated with or without oxidative stress by using 500 $\mu\text{M}~\text{H}_2\text{O}_2$ for
245	12-18 hours. After that, the cells were treated with or without 100 μM trehalose
246	for 2 hours. The response of mitophagy was monitored by stimulating the cells
247	with 5µM CCCP.
248	
249	Cell Homogenization
250	Cell samples were frozen under liquid nitrogen and homogenized in ice-cold
251	homogenization buffer (50 mM HEPES-NaOH, pH 7.5, 150 mM NaCl, 2 mM
252	EDTA, 1% Nonidet P-40, 10% glycerol, 10 mM sodium fluoride, 2 mM sodium
253	vanadate, 1 mM phenylmethyl- sulfonyl fluoride, 10 mM sodium pyrophosphate,
254	10 $\mu g/ml$ aprotinin, and 10 $\mu g/ml$ leupeptin). The homogenized samples were

255 centrifuged at 13000 rcf for 30 min. Aliquots of supernatant containing same

- amounts of protein, determined by BCA protein assay method.
- 257

258 Western Blot

- 259 Cell homogenates containing equal amounts of protein were subjected to 10%
- 260 SDS-PAGE after the addition of sample buffer and boiling for 3 min. After being
- transferred electrophoretically to nitrocellulose membrane (Li-COR, Lincoln, NE),
- the membranes were blocked in 5% skim milk for 1 h at room temperature,
- followed by incubation with primary antibodies for overnight at 4°C.
- 264 Anti-phospho-Akt (p-Akt), anti-phospho-GSK-3β (p- GSK-3β), anti-GAPDH (Cell
- 265 Signaling, Beverly, MA), anti-LC3 (Sigma Aldrich, St Loius, MO) antibodies were
- used as primary antibodies. The anti-rabbit or -mouse IgG antibody was used as
- a secondary antibody at a dilution of 1:10,000. Bands of interest were scanned
- and quantified with the use of Odyssey CLx (Li-COR, Lincoln, NE).
- 269

270 Statistical Analysis

- 271 Data are expressed as mean±standard deviation (SD) and analyzed with
- 272 Student's t-test for two-group comparison, one-way ANOVA and Tukey's

273 method for more than three-group comparison. A value of p<0.05 was

274 considered significant.

275

276 [Results]

277 Subacute Oxidative Stress-Induced Perturbation in Mitophagy Response

- 278 To investigate the non-acute effect of oxidative stress on the responsiveness of
- 279 mitophagy, C2C12 cells were treated with H₂O₂ for 16 hours. Cells were then
- stimulated by CCCP to induce mitophagy in the presence or absence of
- auto/mitophagy flux blockade with E64d and pepstatin A. Purified mitochondria
- fraction was analyzed for mitophagy induction by Western Blotting against LC3.
- As shown in Fig.1, H₂O₂ treatment elevated the basal level of mitophagy, but
- when CCCP-stimulated response of mitophagy was compared between controls
- $(H_2O_2 -)$ and the oxidative stress group $(H_2O_2 +)$, mitophagy flux was significantly
- blocked, indicating that prolonged exposure to oxidative stress confers signal
- resistance to mitophagic stimulation in C2C12 cells.

288

289 Figure 1: Mitophagy flux response to CCCP stimulation is diminished under

290 oxidative stress.

291	(a-d) Western blotting pictures either of the mitochondrial fraction (a, b) or the
292	input of total homogenate (c) are shown. C2C12 myocytes were cultured in the
293	absence (" H_2O_2 -") or presence (" H_2O_2 +") of hydrogen peroxide for 18 hours.
294	Cells were stimulated by CCCP and the response of mitophagy was monitored
295	with or without mitophagy flux blockade by E64d plus pepstatin A ("E&A-" vs.
296	"E&A+"). Shown in the WB pictures are; (a) blotting against LC3, the
297	auto/mitophagy marker in the mitochondrial fraction, (b) mitochondrial residual
298	molecule, Tom20, as an internal control for equal mitochondrial protein load, and
299	(c) GAPDH in the total homogenate as the input loading control for fractionation.
300	(d) Quantification of the band intensity is shown as the ratio of LC3II/Tom20 in
301	the mitochondrial fraction. Despite the tendency of increased basal level of
302	mitophagy under oxidative stress without mitophagy stimulation, $(H_2O_2+, CCCP-,$
303	E&A-), mitophagy flux is diminished (increment from E&A - to E&A+) under the
304	oxidative stress (H_2O_2 +), as compared to that in the control group (H_2O_2 -). (e)
305	The ratio of increase in the LC3II/Tom20 before and after the flux blockade is
306	shown. *: p<0.05, N=4. Data are shown as average +/- standard deviation.
307	Note that in the mitochondrial fraction for LC3 (a), LC3II form is predominantly
308	detected, because this form mainly consists of the vesicle attached form.

310	The Effect of Oxidative Stress on Mitophagy Motion and Its Maturation
311	To further investigate the mechanisms involved in the disturbed mitophagy
312	response by CCCP under oxidative stress conditions, the movement of
313	mitophagosome was monitored by time-lapse confocal microscopy, using
314	C2C12 cells expressing GFP-LC3. In cells under the subacute oxidative stress,
315	the movement of mitophagosomes invoked by CCCP decreased significantly
316	than that in the control cells (Fig.2, Supplementary Video 1), consistent with the
317	data for the decreased mitophagy flux under CCCP stimulation in Fig.1.
318	Trehalose, however, ameliorated the once diminished movement of
319	mitophagosomes under the subacute oxidative stress (Fig.2, Supplementary
320	Video 1). The increment of mitophagosome motion in response to CCCP was
321	significantly improved by trehalose treatment under the subacute oxidative
322	stress (132 vs. 100%: with vs. without trehalose; p<0.05).
323	To investigate the impact of decreased motion of mitophagosomes due
324	to oxidative stress on the mitophagy flux, C2C12 cells expressing
325	tandem-fluorescent LC3 (tfLC3) were monitored for analyzing the maturation
326	status and thus flux of mitophagy after CCCP stimulation. As is shown in Fig.3,

21

327	tfLC3-expressing cells under the oxidative stress harbored more yellow dots
328	(GFP and RFP both positive) as compared to red-only predominant pattern in
329	controls, demonstrating the inhibition of mitophagosomes maturation under
330	oxidative stress conditions. Note that tfLC3 reporter provides fluorescent signal
331	of both GFP and RFP and thus yield yellow signal when autophagosomes and
332	mitophagosomes are premature. During the process of maturation,
333	autophagosomes and mitophagosomes fuse with lysosomes, and due to the
334	drop of intravesicular pH, GFP signal fades, resulting in red-dominant signal.
335	This finding of defective maturation supports the decreased mitophagy flux
336	under the oxidative stress (Fig.1). Trehalose treatment, however, improved ratio
337	of yellow to red mitophagosomes, and ameliorated the defective maturation
338	under the subacute oxidative stress. Next, to further decipher the mechanism of
339	the beneficial effect of trehalose, colchicine, a drug that destabilizes microtubule,
340	was added to the treatment. Colchicine abolished the effect of trehalose on
341	mitophagy maturation (Fig.3), suggesting that beneficial effect of trehalose is
342	likely mediated by its effect on normalization of microtubules.
343	

344 Figure 2. The mitophagy movement is diminished under oxidative stress.

345	(Top) (a-c) Confocal microscopic images of C2C12 cells expressing GFP-LC3,			
346	co-stained with LysoTracker Blue. Pseudo colors are added with green for			
347	GFP-LC3, and red for LysoTracker Blue. (a) In controls, GFP-LC3 dots are fine			
348	granular and show vigorous movement. (b) In H_2O_2 treated cells, GFP-LC3			
349	vesicles are swollen and the motions diminished. (c) Trehalose treatment			
350	partially reverts the size of GFP-LC3 dots and reactivates the vesicle motion.			
351	White scale bar at the right bottom corner of each image represents 10 μ m. (d)			
352	The movement of mitophagosomes was analyzed by ImageJ and shown as the			
353	average value of area with standard deviation (N=3-8). *:p<0.05 by ANOVA with			
354	Tukey's comparison. For video information, refer to Supplementary Video 1.			
354 355	Tukey's comparison. For video information, refer to Supplementary Video 1.			
	Tukey's comparison. For video information, refer to Supplementary Video 1. Supplementary Video 1: Time-lapse confocal video image of C2C12 myocytes			
355				
355 356	Supplementary Video 1: Time-lapse confocal video image of C2C12 myocytes			
355 356 357	Supplementary Video 1: Time-lapse confocal video image of C2C12 myocytes expressing GFP-LC3, stained by LysoTracker Blue.			
355 356 357 358	Supplementary Video 1: Time-lapse confocal video image of C2C12 myocytes expressing GFP-LC3, stained by LysoTracker Blue. Live video information for Fig.2 is shown here.			
355 356 357 358 359	Supplementary Video 1: Time-lapse confocal video image of C2C12 myocytes expressing GFP-LC3, stained by LysoTracker Blue. Live video information for Fig.2 is shown here. Cells are incubated in the presence or absence of H ₂ O ₂ with or without trehalose			

363	markedly diminished. Trehalose treatment (H_2O_2 +, trehalose +, far right)
364	partially reverts the size of GFP-LC3 dots and reactivates the vesicle motion.
365	Yellowish dots represent the mature vesicles after LC3-GFP dot (green) fuses
366	with lysosomes (red), and also shows similar pattern of motion changes. In this
367	video, pseudo colors are added with green for GFP-LC3, and red for
368	LysoTracker Blue.
369	
370	Figure3. The mitophagosome maturation is disturbed under oxidative stress.
371	(Top) (a-h) Confocal microscopic images of C2C12 cells expressing tf-LC3 are
372	shown to document the effect of H_2O_2 and Trehalose on the maturation of
373	mitophagosomes after CCCP stimulation (GFP Green, RFP; Red). (a,e) Control
374	group, (b,f) H_2O_2 group, (c,g) H_2O_2 +trehalose group, (d,h) H_2O_2 +trehalose
375	+colchicine group. Scale bar represents 10µm.
376	(i) The maturation status of mitophagosomes was analyzed by ImageJ and
377	shown as the average value of the ratio of areas of GFP/RFP with the standard
378	deviation (N=12). *:p<0.05, ‡:p<0.05 vs colchicine group by ANOVA with
379	Tukey's comparison.

24

381 The Effect of Oxidative Stress on Microtubule Network Formation

Next, to investigate the roles of MT network in the regulation of mitophagy in

- 383 C2C12 myocytes under the oxidative stress, the MT network of C2C12 cells
- were stained by SiR-tubulin (Fig.4). C2C12 cells under the oxidative stress
- 385 showed disturbed MT network formation as compared to normal cells,
- 386 suggesting that the molecular target of oxidative stress likely involves pathways
- 387 related to MT formation. In line with this finding, it has been reported that
- trehalose augments autophagy/mitophagy by mTOR-independent pathway [27],
- 389 but its precise target has not been fully investigated. As shown above, trehalose
- improves the disturbed maturation process apparently through working on the
- 391 MT network. The effect Trehalose treatment on MT was thus monitored using
- 392 SiR-tubulin. Treatment by trehalose of cells exposed to oxidative stress
- 393 ameliorated the disturbed MT network, suggesting that trehalose can work on
- 394 maintaining the healthy MT network. To examine whether the signal amelioration
- 395 of MTs by SiR under trehalose treatment was not due to artifact of measurement,
- 396 C2C12 cells with trehalose were treated by colchicine. Treatment by colchicine
- 397 abolished, further supporting that trehalose indeed helps maintain the MT
- 398 network under oxidative stress condition.

25

399

- 400 Figure4. Microtubule network formation is disturbed under oxidative stress.
- 401 (Top) (a-d) Confocal microscopic images of C2C12 cell stained by SiR-tubulin
- 402 are shown for the potential effect of H2O2, trehalose and colchicine on the
- 403 microtubule network. (a) Control group, (b) H₂O₂ group, (c) H₂O₂ +trehalose
- 404 group, and (d) H_2O_2 +trehalose+colchicine group. Scale bar =10 μ m.
- (e) The area of SiR-tubulin was analyzed by ImageJ and shown as the average
- 406 value of area with standard deviation (N=7). *:p<0.05, **:p<0.05 vs colchicine
- 407 group by ANOVA with Tukey's comparison.
- 408

409 The Effect of Oxidative Stress on the Synthesis of Microtubule

- 410 To investigate the mechanism of the beneficial function of trehalose on MTs, the
- 411 synthesis extent and speed of microtubule was monitored by time-lapse confocal
- 412 microscopy, using EB1-GFP, the plus-end tracking reporter (Fig.5,
- 413 Supplementary Video 2). In cells under the subacute oxidative stress, the
- 414 movement and the number of EB1 significantly decreased as compared to
- 415 control cells. When cells are treated with trehalose, the diminished movement
- and number of EB1 was significantly increased in cells under the subacute

417	oxidative stress. These results suggest that trehalose normalizes MT network in
418	cells under oxidative stress conditions either by augmenting the MT synthesis or
419	by inhibiting the MT degradation and thus secondarily affecting the synthesis.
420	
421	Figure5. The synthesis ability of microtubule is diminished by oxidative stress
422	(TOP) (a-c) Confocal microscopic images of C2C12 cell expressing EB1-GFP
423	are shown to analyze the effect of H_2O_2 and trehalose on extent and speed of
424	MT synthesis. (a) Control group, (b) H_2O_2 group, (c) H_2O_2 +trehalose group.
425	Scale bar =10µm.
426	(d-f) Magnified images of the boxed areas in the top (a-c) shown. Synthesized
427	overlay images of ten stacked images of time-lapse observation are shown to
428	document the trajectory of EB1 motion. (d) Control group, (e) H_2O_2 group, (f)
429	H_2O_2 +trehalose group. Scale bar =10 μ m.
430	(g, h) The movement speed (g) and number (h) of EB-1 analyzed by ImageJ and
431	shown as the average value of area with standard deviation (N=5). $*:p<0.05$,
432	**:p<0.05 vs colchicine group by ANOVA with Tukey's comparison. For video
433	information, refer to Supplementary Video 2.
434	

435	Supplementary Video 2: Time-lapse confocal video image of C2C12 myocytes
436	expressing GFP-EB1 for measuring MT synthesis.
437	Cells are incubated in the presence or absence of H_2O_2 with or without trehalose
438	treatment. In controls (H_2O_2 -, trehalose -, far left), GFP-EB1 dots, representing
439	the plus-end of elongating MTs, show vigorous movement with greater majority
440	of dots trafficking in the efferent direction. In H_2O_2 treated cells without treatment
441	$(H_2O_2 +, trehalose -, middle)$, both the numbers and the speed of GFP-EB1
442	motion are markedly decreased. Trehalose treatment (H_2O_2 +, trehalose +, far
443	right) partially rescues the EB1 trafficking.
444	
444 445	Signaling Mechanisms Involved in Disturbed Mitophagy Response
	Signaling Mechanisms Involved in Disturbed Mitophagy Response Previous lines of evidence suggested the involvement of Akt/GSK3β signaling in
445	
445 446	Previous lines of evidence suggested the involvement of Akt/GSK3 β signaling in
445 446 447	Previous lines of evidence suggested the involvement of Akt/GSK3β signaling in CCCP-induced mitophagy [31] and in the elongation signals of MTs via EB1
445 446 447 448	Previous lines of evidence suggested the involvement of Akt/GSK3β signaling in CCCP-induced mitophagy [31] and in the elongation signals of MTs via EB1 activation [32]. Activated Akt functions through the phosphorylation and
445 446 447 448 449	Previous lines of evidence suggested the involvement of Akt/GSK3 β signaling in CCCP-induced mitophagy [31] and in the elongation signals of MTs via EB1 activation [32]. Activated Akt functions through the phosphorylation and inhibition of Glycogen Synthase Kinase-3 β (GSK3 β) [33] leading to the

28

453	Western blot with antibodies against phosphorylated form of Akt (Ser473 p-Akt)
454	and GSK3 β (Ser9 p-GSK3 β). (Fig.6-a). Both 5 μ M and 12.5 μ M stimulation
455	caused rapid phosphorylation of Akt and GSK3 β peaking at 15 minutes of
456	stimulation. Since there was no essential difference between $5\mu M$ and $12.5\mu M$
457	stimulation, $5\mu M$ stimulation was used thereafter unless otherwise stated. Next,
458	to investigate the effect of oxidative stress on the activation of Akt/GSK3 β
459	pathway, phosphorylation status of Akt after CCCP stimulation was monitored.
460	Under the oxidative stress, the level of p-Akt and p-GSK3 β was significantly
461	decreased as compared to control cells (Fig.6-b, 0.82±0.39 vs. 1.6±0.26;
462	p<0.05; n=5, and 0.70±0.03 vs. 1.17±0.06; p<0.05; n=5, for p-Akt and p-GSK3β,
463	respectively). Trehalose treatment to cells exposed to oxidative stress rescued
464	the deficient signal response of Akt/GSK3 β in response to CCCP, as compared
465	to that in cells without treatment (Fig.6-c).
466	
467	Figure6. (a-c) Western blot analysis for phospho-Akt (p-Akt) and
468	phospho-GSK3 β (p-GSK3 β) in the C2C12 myocyte after carbonyl cyanide

469 m-chlorophenyl hydrazone (CCCP) stimulation. In both p-Akt and p-GSK3β

29

470	expression, CCC	P treatment induced	rapid phospho	rylation of Akt and	GSK3β,
-----	-----------------	---------------------	---------------	---------------------	--------

471 peaking at 15min.

- 472 (d) Western blot analysis for p-Akt and p-GSK3β in the C2C12 myocyte with or
- 473 without H_2O_2 , trehalose. The p-Akt and p-GSK3 β expression significantly
- 474 decreased in C2C12 cells under the oxidative stress as compared to the control
- group (n=5, * p<0.05). Trehalose treatment partially reversed the decreased
- 476 p-Akt and p-GSK3β expression. The results of the GAPDH analysis are shown
- 477 as an internal control.
- 478 (e) Western blot analysis for mitophagy response (the increase rate before and
- after CCCP) in the C2C12 myocyte under the oxidative stress with or without
- 480 trehalose treatment. Trehalose treatment significantly ameliorated the disturbed
- 481 p-Akt and p-GSK3 β expression (n=5, * p<0.05) under the oxidative stress. The
- results of the GAPDH analysis are shown as an internal control.
- 483

484 Superoxide Production From Mitochondria

- 485 Mitophagy is one of the major quality control systems of mitochondria that
- 486 removes defective mitochondria and thus prevents ROS release from the
- 487 damaged mitochondria. In line with this notion, the superoxide production from

30

488 mi	itochondria in C	C2C12 myocyte w	as analyzed as a	n outcome of poo	or mitophagy
--------	------------------	-----------------	------------------	------------------	--------------

- 489 response under subacute oxidative stress using a staining dye for
- 490 mitochondria-derived superoxide, MitoSOX (Fig.7). The ratio of C2C12 with
- 491 elevated production of superoxide was significantly increased. Trehalose
- 492 treatment significantly ameliorated the increase of superoxide production,
- 493 supporting the hypothesis that amelioration of defective mitophagy by trehalose
- 494 rescues the mitochondria and helps the quality control of mitochondria.

495

- 496 Figure 7. Superoxide production from mitochondria
- 497 (a-c) Fluorescence microscopic images of C2C12 cells stained MitoSOX are
- 498 shown to document the superoxide production from mitochondria after CCCP

499 stimulation. (a) Control group, (b) H_2O_2 group, and (c) H_2O_2 +trehalose group.

500 Scale bar=1000µm.

501 (d) The ratio of C2C12 cells positively stained by MitoSOX was analyzed by

- 502 ImageJ and shown as the average value of area with standard deviation (N=6).
- H_2O_2 subacute stimulation increased superoxide production from mitochondria,
- and H_2O_2 +trehalose ameliorated after CCCP administration. *:p<0.05, **:p<0.05
- 505 vs control by ANOVA with Tukey's comparison.

506

- 508 [Discussion]
- 509 ROS and Mitophagy Response Defect
- 510 In this study, we demonstrated that prolonged oxidative stress decreases the
- 511 response of mitophagy, especially at the maturation stage, possibly due to the
- 512 perturbed MT network formation. This is among the first detailed systematic
- 513 study that analyzed the mechanisms of disturbed mitophagy response, not the
- 514 basal level of mitophagy, in the cells exposed to an oxidative stress.
- 515 Furthermore, it was demonstrated that trehalose, a mTOR-independent
- 516 auto/mitophagy modulator, improves defective mitophagy response in myocytes
- 517 under the oxidative stress, ameliorating the inhibition of mitophagosomes
- 518 maturation, presumably by normalizing MT network formation and increasing the
- 519 synthetic ability of MT. The current study opens a possibility for therapeutic
- 520 approaches for targeting maturation defect in mitophagy response and for
- 521 modulating defective MT network formation in treating diseases arising from
- 522 prolonged oxidative stresses.
- 523

32

524 Oxidative Stress and Autophagy/mitophagy - Upregulation or

525 Downregulation?

- 526 Although the relationship between ROS and auto/mitophagy has been studied
- 527 previously [16], most of the previous investigations focused on the mechanisms
- 528 of ROS-induced upregulation of auto/mitophagy. In these previous studies, the
- 529 basal levels of auto/mitophagy were analyzed and few studies focused on their
- 530 response. Furthermore, in many of previous studies, cells or tissues were
- acutely stimulated for the analyses. Upregulation of auto/mitophagy in such
- acutely stressed cells is reasonable given that auto/mitophagy evolved as
- adaptive responses to the external and internal stresses. Importantly, the current
- 534 finding about the defective mitophagy response is not contradictory to the
- 535 previous findings for upregulated auto/mitophagy under oxidative stress. One
- has to take into account whether the analyses are performed to quantify the
- 537 basal level of auto/mitophagy, or the changes in their responses of
- auto/mitophagy to stimulations. In biological systems, these two often show
- 539 opposite trends. For example, in type 2 diabetes mellitus (T2DM), despite the
- 540 fact that pathophysiology of many disease symptoms can be explained by
- 541 insulin resistance, or the defective response of intracellular signals to insulin

542	stimulation in many organs, even though the basal level of plasma insulin is
543	often elevated in many patients. Despite the serum insulin elevation,
544	suppression or blockade of insulin signal would not be considered a reasonable
545	therapeutic approach. Likewise, although many previous studies reported
546	upregulation of the basal level of auto/mitophagy, blocking autophagy or
547	mitophagy in oxidative stress related diseases may not provide a useful
548	therapeutic approach, especially given that auto/mitophagy are mostly cell
549	protective response in many situations.
550	
551	Mitophagy Defect and Human Diseases Related to Oxidative Stress
551 552	<i>Mitophagy Defect and Human Diseases Related to Oxidative Stress</i> Mitophagy, a form of macroautophagy that selectively degrades damaged
552	Mitophagy, a form of macroautophagy that selectively degrades damaged
552 553	Mitophagy, a form of macroautophagy that selectively degrades damaged mitochondria, is considered as one of the major quality control system of
552 553 554	Mitophagy, a form of macroautophagy that selectively degrades damaged mitochondria, is considered as one of the major quality control system of mitochondria, and helps maintaining the integrity and the functions of healthy
552 553 554 555	Mitophagy, a form of macroautophagy that selectively degrades damaged mitochondria, is considered as one of the major quality control system of mitochondria, and helps maintaining the integrity and the functions of healthy mitochondria [34]. Mitophagy defect is currently assumed to be an essential
552 553 554 555 556	Mitophagy, a form of macroautophagy that selectively degrades damaged mitochondria, is considered as one of the major quality control system of mitochondria, and helps maintaining the integrity and the functions of healthy mitochondria [34]. Mitophagy defect is currently assumed to be an essential pathogenic factor in cancer, neurodegeneration, metabolic disorders, muscle

560	dysfunctions. In our experiments, subacute H ₂ O ₂ stimulation significantly
561	inhibited mitophagy response, after CCCP stimulation (Fig.1,2) blocked
562	mitophagosomes maturation (Fig.3), resulting in elevated superoxide generation
563	from the defective mitochondria (Fig.7). These data suggest that subacute
564	oxidative stress leads to mitophagy defect in myocyte after CCCP stimulation.
565	Trehalose, however, improved the defects in maturation under the subacute
566	oxidative stress (Fig.3) and thus will be a promising drug candidate for treating
567	the mitophagy defect.
568	
569	Microtubule and Mitophagy Maturation
569 570	<i>Microtubule and Mitophagy Maturation</i> MT forms a dynamic cytoskeletal structure. Both integrity of healthy MT and the
570	MT forms a dynamic cytoskeletal structure. Both integrity of healthy MT and the
570 571	MT forms a dynamic cytoskeletal structure. Both integrity of healthy MT and the normal functions of MT-based motors have been shown essential in autophagy
570 571 572	MT forms a dynamic cytoskeletal structure. Both integrity of healthy MT and the normal functions of MT-based motors have been shown essential in autophagy [22]. The centripetal movement of mature autophagosomes prior to fusion with
570 571 572 573	MT forms a dynamic cytoskeletal structure. Both integrity of healthy MT and the normal functions of MT-based motors have been shown essential in autophagy [22]. The centripetal movement of mature autophagosomes prior to fusion with lysosomes requires stable MT [37]. A key mechanism of auto/mitophagosome
570 571 572 573 574	MT forms a dynamic cytoskeletal structure. Both integrity of healthy MT and the normal functions of MT-based motors have been shown essential in autophagy [22]. The centripetal movement of mature autophagosomes prior to fusion with lysosomes requires stable MT [37]. A key mechanism of auto/mitophagosome flux is the transport of auto/mitophagosomes along MTs toward lysosomes to

578	(Fig4). Observation of tfLC3-expressing cells demonstrated that the subacute
579	oxidative stress inhibited mitophagosomes maturation (Fig3), implying that the
580	unstable MT could be one of the important mechanisms of mitophagy defect
581	under the subacute oxidative stress. This notion is supported by the finding that
582	trehalose treatment ameliorated MT defect and mitigated mitophagy maturation
583	defect but that colchicine abolished the beneficial effect of trehalose. These data
584	suggest that MT serves as an essential guide rail for mitophagosome vesicle
585	trafficking and thus are a key component of mitophagy pathway involved in
586	disease conditions
587	Phosphoinositide-3-Kinase (PI3-K) and the downstream kinases Akt and
588	GSK3 β have recently been implicated in regulating both MT dynamics and
589	organization [39]. Akt and GSK3 β coordinately regulate the phosphorylation
590	status of MT end capping molecules including CLASP2 and EB1, thus regulating
591	their recruitment to the synthesis plus end of MTs[40]. Importantly,
592	auto/mitophagy stimulating signal activate this pathway [31,41]. The results of
593	Western Blot analysis showed that the subacute oxidative stress significantly

595 c), suggesting that subacute oxidative stress can affect MT synthesis by

- 596 invoking signal resistance in PI3K/Akt/GSK3β pathway.
- 597

598 Trehalose Function as a Modulator of Mitophagy

- 599 It has been established that trehalose is a modulator of auto/mitophagy pathway,
- augmenting these stress adaptation functions by mTOR-independent
- 601 mechanisms in COS-7 cells and mouse embryonic fibroblasts (MEFs) [42,43].
- 602 Trehalose also upregulates p62 expression and activates the autophagy flux in
- 603 Hepa1-6 cells and MEFs [9]. In our study, trehalose can improve the synthesis
- ability of MT and thus ameliorates the defective MT network under the subacute
- 605 oxidative stress (Fig.4). Thus repaired MT network improved the oxidative
- 606 stress-induced inhibition of mitophagosomes maturation in trehalose treated
- 607 cells. Notably, colchicine, a drug that destabilizes MT, abolished the beneficial
- 608 effect of trehalose on mitophagy (Fig.3&4). In the detailed analyses of the signal
- 609 transduction mechanisms, trehalose treatment significantly increased the
- 610 disturbed Akt/GSK3β signaling in cells under the oxidative stress (Fig.6-b, c).
- 611 Many therapeutic approaches have been previously suggested in human
- 612 diseases or their murine equivalent models where auto/mitophagy are defective.

37

613	In many of previous studies, one of the proposed strategies was to boost
614	auto/mitophagy. The current study suggests, however, that auto/mitophagy
615	defect in diseases can involve maturation defect, or the blocked flux. To
616	forcefully stimulate the upstream activation of auto/mitophagy in such condition
617	where the downstream is blocked, (e.g. by disturbed MT network as shown in
618	the current study), may not serve an effective therapeutic approach. Thus, the
619	importance of finding the precise target of auto/mitophagy defect and
620	ameliorating the perturbation, cannot be overemphasized.
621	Oxidative stress-induced MT disturbance can be a pivotal event in the
622	critical illness-related mitochondrial dysfunction in skeletal muscles, and needs
623	further investigation. Trehalose can ameliorate the perturbed MTs by increasing
624	the synthetic ability of MT, and normalizing the disturbed MTs can serve a novel
625	therapeutic agent in critical illnesses.
626	
627	[Conclusions]
628	Oxidative stress decreases the response of mitophagy and abolishes MT

629 network formation. Trehalose improves the synthetic ability of MT by increasing

630 the number and movement of the MT plus end-capping molecule, EB1,

ົ	0
- <	×
J	o

631	suggesting that trehalose augments MT network synthesis. Observation of
632	tfLC3-expressing cells demonstrates that trehalose also improve the inhibition of
633	mitophagosomes maturation under the oxidative stress. Finally, trehalose
634	normalizes MT network formation by increasing the synthetic ability of MT. All
635	the obtained data suggest that normalizing the disturbed MTs under oxidative
636	stress can prevent the mitophagy dysfunction under the oxidative stress and
637	serve a novel therapeutic target.
638	
639	Acknowledgements
640	We used Shiners Morphology Core and Simches PMB Microscope Core for
641	acquiring microscopy data, Shriners Genomics and Proteomics Core for
642	performing biochemical analyses. We thank Daniel Fong for administrative

643 assistance.

39

644 Reference

645 1.	Ueki R, Liu L,	Kashiwagi S,	Kaneki M,	Khan MA,	Hirose M,	I ompkins RG,
--------	----------------	--------------	-----------	----------	-----------	---------------

- 646 Martyn JA, Yasuhara S (2016) Role of Elevated Fibrinogen in Burn-Induced
- 647 Mitochondrial Dysfunction: Protective Effects of Glycyrrhizin. Shock 46:
- 648 382-389.
- 2. Batt J, Herridge M, Dos Santos C (2017) Mechanism of ICU-acquired
- 650 weakness: skeletal muscle loss in critical illness. Intensive Care Med 43:
- 651 1844-1846.
- 652 3. Kraft R, Herndon DN, Finnerty CC, Shahrokhi S, Jeschke MG (2014)
- 653 Occurrence of multiorgan dysfunction in pediatric burn patients: incidence
- and clinical outcome. Ann Surg 259: 381-387.
- 4. Warren DK, Shukla SJ, Olsen MA, Kollef MH, Hollenbeak CS, Cox MJ, Cohen
- 656 MM, Fraser VJ (2003) Outcome and attributable cost of ventilator-associated
- 657 pneumonia among intensive care unit patients in a suburban medical center.
- 658 Crit Care Med 31: 1312-1317.
- 5. Hermans G, Van den Berghe G (2015) Clinical review: intensive care unit
- acquired weakness. Crit Care 19: 274.

661	6. Wir	kelman (C (2010)) The role	of inflamm	ation in I	ICU-acquired	weakness.	Crit
-----	--------	----------	----------	------------	------------	------------	--------------	-----------	------

- 662 Care 14: 186.
- 663 7. Romanello V, Sandri M (2015) Mitochondrial Quality Control and Muscle
- 664 Mass Maintenance. Front Physiol 6: 422.
- 8. Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24:
- 666 9**-**23.
- 9. Mizunoe Y, Kobayashi M, Sudo Y, Watanabe S, Yasukawa H, Natori D,
- 668 Hoshino A, Negishi A, Okita N, Komatsu M, Higami Y (2018) Trehalose
- 669 protects against oxidative stress by regulating the Keap1-Nrf2 and
- autophagy pathways. Redox Biol 15: 115-124.
- 10. Hosokawa S, Koseki H, Nagashima M, Maeyama Y, Yomogida K, Mehr C,
- 672 Rutledge M, Greenfeld H, Kaneki M, Tompkins RG, Martyn JA, Yasuhara SE
- 673 (2013) Title efficacy of phosphodiesterase 5 inhibitor on distant burn-induced
- 674 muscle autophagy, microcirculation, and survival rate. Am J Physiol
- 675 Endocrinol Metab 304: E922-933.
- 11. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger
- D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to
- maintain muscle mass. Cell Metab 10: 507-515.

679	12. Jiroutkova K, Kra	jcova A, Ziak J, Fric M,	Waldauf P, Dzupa	a V, Gojda J,
-----	-----------------------	--------------------------	------------------	---------------

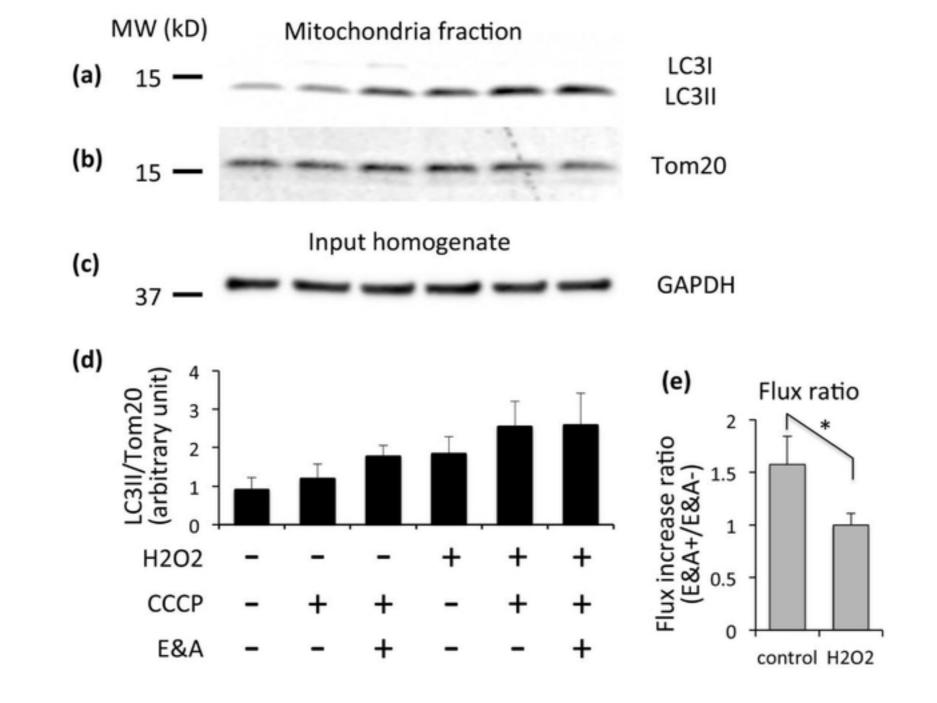
- 680 Nemcova-Furstova V, Kovar J, Elkalaf M, Trnka J, Duska F (2015)
- 681 Mitochondrial function in skeletal muscle of patients with protracted critical
- illness and ICU-acquired weakness. Crit Care 19: 448.
- 13. Filomeni G, Desideri E, Cardaci S, Rotilio G, Ciriolo MR (2010) Under the
- 684 ROS...thiol network is the principal suspect for autophagy commitment.
- 685 Autophagy 6: 999-1005.
- 686 14. Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of
- autophagy. Trends Cell Biol 17: 422-427.
- 15. Morishita H, Mizushima N (2019) Diverse Cellular Roles of Autophagy. Annu
- 689 Rev Cell Dev Biol 35: 453-475.
- 16. Filomeni G, De Zio D, Cecconi F (2015) Oxidative stress and autophagy: the
- clash between damage and metabolic needs. Cell Death Differ 22: 377-388.
- 17. Alberti C, Brun-Buisson C, Chevret S, Antonelli M, Goodman SV, Martin C,
- 693 Moreno R, Ochagavia AR, Palazzo M, Werdan K, Le Gall JR, European
- 694 Sepsis Study G (2005) Systemic inflammatory response and progression to
- severe sepsis in critically ill infected patients. Am J Respir Crit Care Med 171:
- 696 461-468.

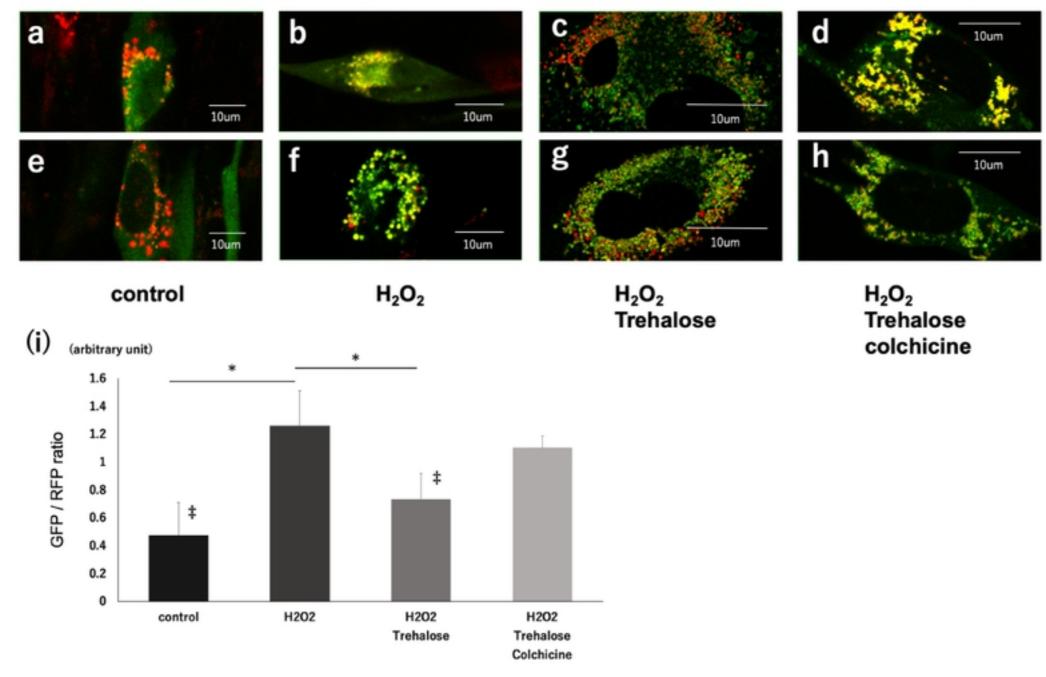
697	18. Skrupky LP, Kerby PW, Hotchkiss RS (2011) Advances in the management
698	of sepsis and the understanding of key immunologic defects. Anesthesiology
699	115: 1349-1362.
700	19. Ueki R, Kashiwagi A, Hirose M, Yu YM, Martyn JA, Yasuhara S (2015)
701	Mitophagy resistance in skeletal muscles after burn injury. ABA Meeting.
702	20. Yasuda N, Shakuo T, Kashiwagi A, Tamura T, Kaneki M, Khan M, Martyn JA,
703	Yasuhara S (2019) Evidence for burn-induced perturbation in mitophagic
704	response (mitophagy resistance) based on skeletal muscle cell culture
705	experiments. American Burn Association Annual Meeting.
706	21. Scherz-Shouval R, Shvets E, Elazar Z (2007) Oxidation as a
707	post-translational modification that regulates autophagy. Autophagy 3:
708	371-373.
709	22. Mackeh R, Perdiz D, Lorin S, Codogno P, Pous C (2013) Autophagy and
710	microtubules - new story, old players. J Cell Sci 126: 1071-1080.
711	23. Hengherr S, Heyer AG, Kohler HR, Schill RO (2008) Trehalose and
712	anhydrobiosis in tardigradesevidence for divergence in responses to
713	dehydration. FEBS J 275: 281-288.

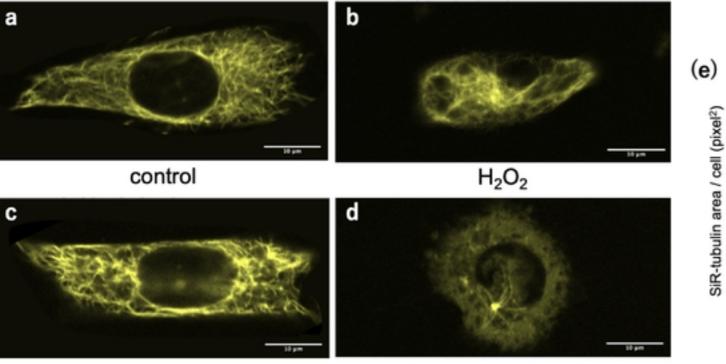
714	24. Bradbury J (2001) Of tardigrades, trehalose, and tissue engineering. Lancet
715	358: 392.

- 716 25. Campbell LH, Brockbank KG (2012) Culturing with trehalose produces viable
- endothelial cells after cryopreservation. Cryobiology 64: 240-244.
- 718 26. Eroglu A, Bailey SE, Toner M, Toth TL (2009) Successful cryopreservation of
- 719 mouse oocytes by using low concentrations of trehalose and
- dimethylsulfoxide. Biol Reprod 80: 70-78.
- 721 27. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007)
- 722 Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the
- clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282:
- 724 5641-5652.
- 28. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M,
- 726 Nekooki M, Nukina N (2004) Trehalose alleviates polyglutamine-mediated
- pathology in a mouse model of Huntington disease. Nat Med 10: 148-154.
- 29. Draberova E, Sulimenko V, Sulimenko T, Bohm KJ, Draber P (2010)
- 729 Recovery of tubulin functions after freeze-drying in the presence of trehalose.
- 730 Anal Biochem 397: 67-72.

	4

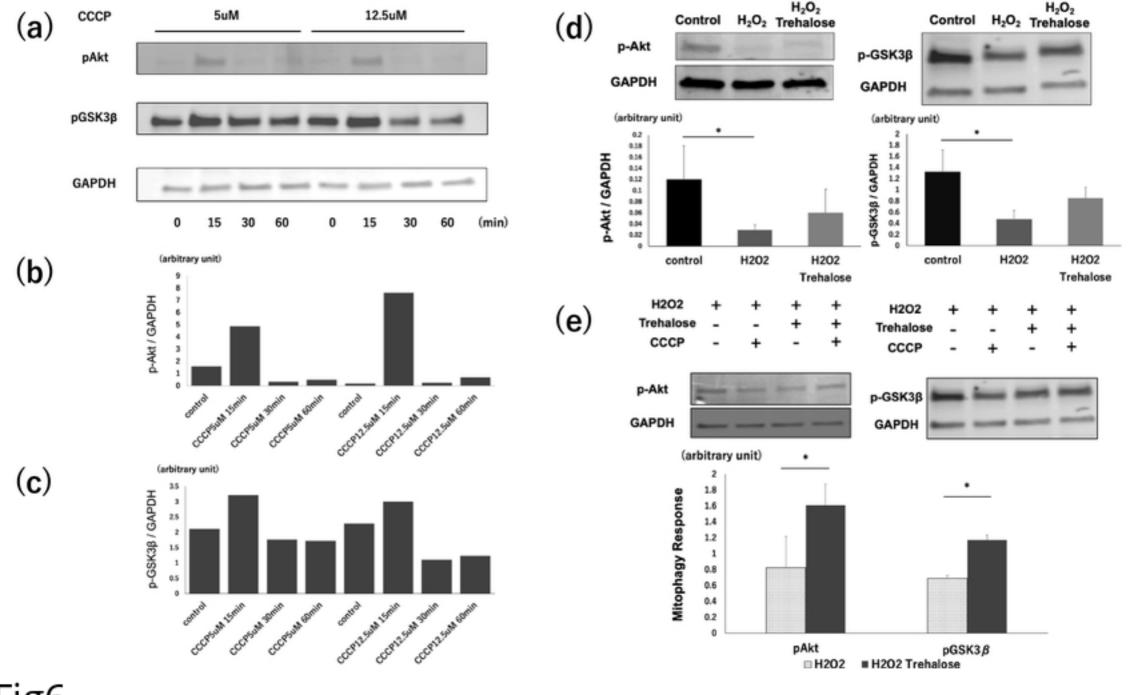

731	30. Sadhu DN, Lundberg MS, Burghardt RC, Ramos KS (1994) c-Ha-rasEJ
732	transfection of rat aortic smooth muscle cells induces epidermal growth factor
733	responsiveness and characteristics of a malignant phenotype. J Cell Physiol
734	161: 490-500.
735	31. Soutar MPM, Kempthorne L, Miyakawa S, Annuario E, Melandri D, Harley J,
736	O'Sullivan GA, Wray S, Hancock DC, Cookson MR, Downward J, Carlton M,
737	Plun-Favreau H (2018) AKT signalling selectively regulates PINK1
738	mitophagy in SHSY5Y cells and human iPSC-derived neurons. Sci Rep 8:
739	8855.
740	32. Schmidt N, Basu S, Sladecek S, Gatti S, van Haren J, Treves S, Pielage J,
741	Galjart N, Brenner HR (2012) Agrin regulates CLASP2-mediated capture of
742	microtubules at the neuromuscular junction synaptic membrane. J Cell Biol
743	198: 421-437.
744	33. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995)
745	Inhibition of glycogen synthase kinase-3 by insulin mediated by protein
746	kinase B. Nature 378: 785-789.
747	34. Yin X, Xin H, Mao S, Wu G, Guo L (2019) The Role of Autophagy in Sepsis:
748	Protection and Injury to Organs. Front Physiol 10: 1071.

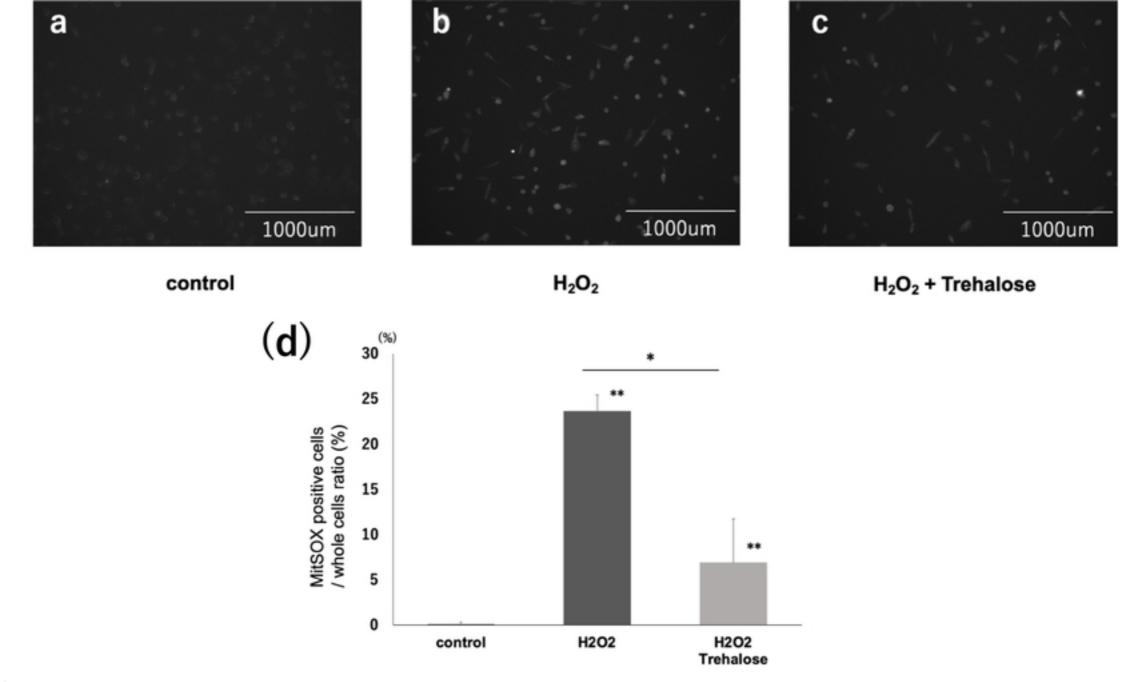

749	35. Springer MZ, Macleod KF (2016) In Brief: Mitophagy: mechanisms and role
750	in human disease. J Pathol 240: 253-255.
751	36. Thiessen SE, Derese I, Derde S, Dufour T, Pauwels L, Bekhuis Y, Pintelon I,
752	Martinet W, Van den Berghe G, Vanhorebeek I (2017) The Role of
753	Autophagy in Critical Illness-induced Liver Damage. Sci Rep 7: 14150.
754	37. Kast DJ, Dominguez R (2017) The Cytoskeleton-Autophagy Connection.
755	Curr Biol 27: R318-R326.
756	38. Geeraert C, Ratier A, Pfisterer SG, Perdiz D, Cantaloube I, Rouault A,
757	Pattingre S, Proikas-Cezanne T, Codogno P, Pous C (2010)
758	Starvation-induced hyperacetylation of tubulin is required for the stimulation
759	of autophagy by nutrient deprivation. J Biol Chem 285: 24184-24194.
760	39. Nehlig A, Molina A, Rodrigues-Ferreira S, Honore S, Nahmias C (2017)
761	Regulation of end-binding protein EB1 in the control of microtubule dynamics.
762	Cell Mol Life Sci 74: 2381-2393.
763	40. Basu S, Sladecek S, Pemble H, Wittmann T, Slotman JA, van Cappellen W,
764	Brenner HR, Galjart N (2014) Acetylcholine receptor (AChR) clustering is
765	regulated both by glycogen synthase kinase 3beta (GSK3beta)-dependent
766	phosphorylation and the level of CLIP-associated protein 2 (CLASP2)

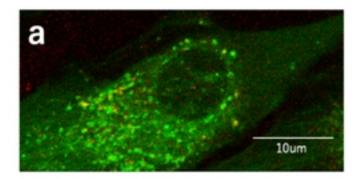

46

767	mediating the capture of microtubule plus-ends. J Biol Chem 289:
768	30857-30867.
769	41. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A (2005) Mammalian target of
770	rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by
771	up-regulating the insulin-like growth factor receptor/insulin receptor
772	substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4:
773	1533-1540.
774	42. Fleming A, Noda T, Yoshimori T, Rubinsztein DC (2011) Chemical
775	modulators of autophagy as biological probes and potential therapeutics. Nat
776	Chem Biol 7: 9-17.
777	43. Sarkar S (2013) Regulation of autophagy by mTOR-dependent and
778	mTOR-independent pathways: autophagy dysfunction in neurodegenerative
779	diseases and therapeutic application of autophagy enhancers. Biochem Soc
780	Trans 41: 1103-1130.

781






H₂O₂ Trehalose


colchicine

