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Abstract 

Standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural

parameters describing brain white matter architecture. However, a non-linearity of the general model

and diffusion data contamination by noise and imaging artefacts make estimation of diffusion metrics

challenging.  In  order  to  develop  reproducible  and  reliable  diffusion  approaches  and  to  avoid

computational model degeneracy, one needs to devise additional theoretical assumptions allowing a

stable  numerical  implementation.  As  a  result,  it  is  possible  to  estimate  intra-axonal  water  fraction

(AWF) representing one of the important structural parameters.  AWF can be treated as an indirect

measure  of  axon density  and  has  a  strong potential  as  useful  clinical  biomarker. A few diffusion

approaches such as white matter tract integrity, neurite orientation dispersion and density imaging, and

spherical mean technique, allow one to evaluate AWF in the frame of their theoretical assumptions. In

the present study, we considered the compatibility of axon density metrics obtained from different

diffusion models and the influence of the diffusion metric on a brain asymmetry estimation in UK

Biobank sample consisting of 182 subjects. We found AWF derived from a spherical mean technique is

the most statistically representative measure. As a result, we revealed that brain asymmetry indecies

derived from intra-axonal water fraction weakly decrease along the lifespan, reducing the left-right

hemisphere difference within increased age.

Keywords: diffusion MRI, UK Biobank, axonal water fraction, brain asymmetry
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Introduction

Diffusion MRI is  a powerful non-invasive imaging technique allowing one to visualise and

probe a living tissue at the micrometer scale. Random motions of water molecules affected by intra-

and extra-cellular  environments  in  white  (WM) and grey matter  can  be  caught  and quantified  by

different diffusion encoding schemes. As a result, one can observe signal decay due to a spin phase

decoherence  originating  from  Brownian  motion  of  water  molecules  (Jones,  2010).  An  important

question arising in the interpretation of diffusion experimental data is how to connect the diffusion

signal  decay  with  underlying  intra-voxel  geometry  and  the  organisation  of  complex  living  tissue

(Novikov  et  al.,  2018)?  To answer  to  this  question,  many  different  diffusion  models  have  been

developed  and  applied  to  artificial  systems  (Fieremans  and  Lee,  2018),  (Komlosh  et  al.,  2017),

(Vellmer et al., 2017a), animal models (Jespersen et al., 2019), (Ianuş et al., 2018), and in the human

brain in vivo (Johansen-Berg and Behrens, 2014), (Jones, 2010).

An easy to use representation of diffusion imaging is a diffusion tensor imaging (DTI)  (Basser

et al., 1994), allowing one to introduce both a set of scalar metrics describing tissue integrity, such as

fraction anisotropy (FA) or mean diffusivity, and WM connectivity using diffusion tensor eigenstates.

Many attempts  to  fit  the  diffusion  signal  decay by different  empirical  functions  have  been  made

(Novikov et al., 2018) to suggest an accurate explanation of the brain microstructure and associated

changes, for instance, axon losses or (de)myelination mechanisms (Johansen-Berg and Behrens, 2014).

However,  approaches  based  on  signal  fitting  cannot  explain  an  underlying  tissue  architecture  and

ongoing physiological processes (Novikov et al., 2018), (Novikov et al., 2019). In parallel, researchers

have  tried  to  model  white  and,  partially,  grey  matter  architecture  by  proposing  a  simplified

representation of typical tissue compounds such as infinite cylinders, sticks and balls, impermeable

spheres  etc.  For  example,  we  can  mention  composite  hindered  and  restricted  model  of  diffusion

(CHARMED)  (Assaf  and  Basser,  2005),  extended  CHARMED  model  with  introduced  diameter

distribution  of  restricted  cylindrical  axons  (AxCalibre)  (Assaf  et  al.,  2008),  neurite  orientation

distribution and density imaging (NODDI) (Zhang et al., 2012), white matter tract integrity (WMTI)

(Fieremans et al., 2011), spherical mean techniques (SMT) (Kaden et al., 2016b), (Kaden et al., 2016a),

restriction spectrum imaging (White et al., 2013), and more (Novikov et al., 2018). In turn, developed

models  have  been validated  using  either  artificial  diffusion  phantoms (Fieremans  and  Lee,  2018),

(Komlosh et al., 2017), (Vellmer et al., 2017a) or ex vivo measurements (Ianuş et al., 2018), (Jespersen

et al., 2019) including validation by a comparison with electron microscopy data (Lee et al., 2019).
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This has led to the formulation of a standard diffusion model based on decomposition of diffusion

pools into intra- and extra-axonal water compartments (Novikov et al., 2018) (Novikov et al., 2019). 

The standard diffusion model takes a non-linear approach and is associated with difficulties due

to a flat solution landscape (Novikov et al., 2018), (Jespersen et al., 2019) and, as a result, a solution

degeneracy.  The  use  of  the  conventional  Stejskal-Tanner  pulse  sequence  with  clinically  feasible

diffusion weightings (also known as b-values) does not allow one to resolve degeneration in diffusion

imaging (Jelescu et al., 2015), (Jelescu et al., 2016). To avoid this problem, many biophysical models

exploit additional assumptions simplifying the standard diffusion model and make it more practical.

For example,  equation linearisation (White et  al.,  2013), parameter fixation (Zhang et  al.,  2012), a

priori known orientation distribution function (Tariq et al., 2016), have been used. Therefore, a clinical

application of advanced diffusion models can be confined, in particular, in non-healthy tissue, due to

the unknown distribution of pathological tissue parameters.

The healthy human brain possesses a strong quantitative microstructure variability in diffusion

metrics, for instance, across age maturation or sex dimorphism (Smith et al., 2019), (Maximov et al.,

2019), (Westlye et al., 2010). Large imaging databases, such as the UK Biobank (UKB), allow scholars

to  discover  general  brain  patterns,  exploiting  imaging  phenotypes  that  are  accompanied  by

physiological, genetic and demographic data (Smith et al., 2019). UKB presents a great opportunity for

brain research, in particular, using diffusion data (Elliott et al., 2018), (Smith et al., 2019). The chosen

UKB diffusion protocol (Alfaro-Almagro et al., 2018) allows one to apply a set of biophysical models

mentioned above. As a result, one can consider UKB as an excellent source for a statistical validation

of diffusion models, in particular, in cases with unknown ground truth. 

There is still a lack of direct diffusion metric comparisons with the same biophysical meaning

(Jelescu et al., 2015), (Jelescu et al., 2016), (Coelho et al., 2019) using large subject cohorts. The intra-

axonal water fraction which can be treated as an indirect axon density, has a unique representation of

the WM organisation and, consequently, might play an important role as a powerful biomarker for

further brain  studies based on UKB: brain age gap evaluation (Smith et al., 2019), (Kaufmann et al.,

2019), genome-wide association studies (Elliott et al., 2018), understanding of mental health disorders

(Neilson et  al.,  2019).  Thus,  determining the accuracy and reproducibility of  the diffusion-derived

phenotypes is a crucial for further data analysis.
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In the present work we aim to investigate whether axon density metrics derived from three

popular diffusion models (WMTI, NODDI, and SMT) are correlated in healthy individuals. Due to the

time consuming computations of NODDI parameters and impression of diffusion parameters fixation,

it is important to understand whether NODDI metrics derived from different pipelines (Alfaro-Almagro

et al., 2018), (Maximov et al., 2019) and algorithms (Zhang et al., 2012), (Daducci et al., 2015) are

self-consistent and mutually correlated. To evaluate the efficiency of the axon density parameter as a

sensitive biomarker, one can use brain structural asymmetry (Takao et al., 2011), (Takao et al., 2013) as

a comparison criterion. Our results will yield a statistically representative and computationally easy-to-

obtain biophysical model for UKB diffusion protocol which can be recruited in the future big-data

analyses. 

Materials and Methods

Participants and MRI data.

In the present study we used 182 participants (age: min = 40.24; max = 70.11; mean = 54.70;

std = 9.35 years), (sex: male = 90; female = 92). An accurate overview of the UKB data acquisition,

protocol parameters, and image validation can be found in (Alfaro-Almagro et al., 2018), (Miller et al.,

2016).  Briefly,  a  conventional  Stejskal-Tanner  monopolar  spin-echo  echo-planar  imaging  (EPI)

sequence was used with multiband factor 3, diffusion weightings were 1 and 2 ms/µm2 and 50 non-

coplanar diffusion directions per each diffusion shell. All selected subjects were scanned at a single 3T

Siemens Skyra scanner with a standard Siemens 32-channel head coil, in Cheadle, Manchester, UK.

The spatial resolution was 2 mm3 isotropic, and 5 AP vs 3 PA images with b = 0 ms/µm2 were acquired.

All  diffusion  data  were  post-processed  using  optimised  diffusion  pipeline  (Maximov  et  al.,  2019)

consisting of 7 steps: noise correction (Veraart et al., 2016), Gibbs-ringing correction (Kellner et al.,

2016), estimation of echo-planar imaging distortions, motion, eddy-current and susceptibility distortion

corrections  including  outlier  detection  and  reestimation  (Andersson  and  Sotiropoulos,  2016),

(Andersson et  al.,  2016),  field non-uniformity correction (Tustison et  al.,  2010),  spatial  smoothing

using fslmaths from FSL package (Smith et al., 2004) with the Gaussian kernel 1mm3, and diffusion

metrics estimation (see below). A data quality was estimated by temporal signal-to-noise ratio (Roalf et

al., 2016) for each b-shell. Original UKB data were estimated using UKB pipeline (Alfaro-Almagro et

al., 2018) including susceptibility, eddy-current, and head motion corrections accompanied with slice

outlier detection and replacement (Andersson et al., 2016), (Andersson and Sotiropoulos, 2016). The
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UKB  scalar  NODDI  metrics  were  computed  using  Python  implementation  of  the  Accelerated

Microstructure  Imaging  via  Convex  Optimisation  (AMICO)  algorithm  (Daducci  et  al.,  2015)  of

NODDI model (Zhang et al., 2012).

Diffusion models

In order to derive axon density metrics based on intra-axonal water fraction we chose three

biophysical models often used in clinical and research studies: WMTI, NODDI, and SMT, respectively.

Below we briefly describe each approach.

WMTI

In terms of the standard diffusion model, WMTI represents an intra-axonal space as a bundle of

cylinders with effective radius equals to zero (Fieremans et al., 2011). The cylinders are impermeable,

i.e., there are no water exchange between intra- and extra-axonal spaces. The extra-axonal space is

described by anisotropic but still Gaussian diffusion. In order to keep the model simple, a few more

assumptions have been made: that the intra-axonal space consists of mostly myelinated axons without

any contribution from myelin due to fast relaxation rate across of typical diffusion times; at the same

time in extra-axonal space the glial cells possess fast water exchange with extra-cellular matrix; both

intra- and extra-axonal spaces are modelled by Gaussian diffusion tensors (Fieremans et al.,  2011),

(Jelescu et al., 2015). In order to avoid degeneration, it is assumed that diffusion inside of axons is

slower than diffusion in extra-axonal matrix. Besides, WMTI parametrisation works in the case of a

coherent axonal bundle with orientation dispersion below 30º. WMTI output consists of axonal water

fraction  (AWF),  extra-axonal  diffusivities:  axial  and  radial  components.  The  scalar  metrics  were

estimated using original Matlab scripts (MathWorks, Natick, MA USA) from Veraart and colleagues

(Veraart et al., 2013).

NODDI

In comparison to WMTI, NODDI introduces three water compartments: intra- and extra-axonal

spaces and isotropic water pool responsible for cerebrospinal fluid contamination (Zhang et al., 2012).

The NODDI model assumes that the axonal bundle is coherent and axon orientation dispersion can be

described by an axially symmetric function, such as Watson (Zhang et al., 2012) or Bingham (Tariq et

al., 2016) functions. In turn, both intra- and extra-axonal diffusivities parallel to the bundle axis are

fixed to plausible values (in the case of adults to 1.7 µm2/ms). The radial diffusivity in extra-axonal

space is determined by the tortuosity model (Szafer et al., 1995): Dextra
 ┴ = Dextra

 || (1 – fic), where Dextra are

the extra-axonal radial (┴) and axial (||) diffusion coefficients, respectively; fic is the intra-axonal water
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fraction. Water diffusion in isotropic compartment is fixed to 3 µm2/ms. However, original NODDI

approach  computationally  is  time  demanding.  In  order  to  accelerate  an  estimation  of  geometrical

parameters, such as orientation dispersion and water fractions, Daducci and colleagues (Daducci et al.,

2015) decomposed and linearised the problem using information about a bundle orientation from a DTI

metric. This significantly reduced computation time per subject. The NODDI model output consists of

intra-axonal water fraction (icvf for original NODDI metric, and  ICVF for AMICO derived metric),

isotropic water fraction, and orientation neurite dispersion. We estimated NODDI parameters using the

Matlab scripts for original NODDI (Zhang et al., 2012) and for AMICO acceleration (Daducci et al.,

2015).

SMT

An estimation of orientation dispersion in the axon bundles is a complex theoretical problem

(Novikov et al., 2019), in particular, using standard diffusion sequence protocols (Reisert et al., 2019).

Recent achievements in isotropic diffusion weightings (Westin et al., 2016), (Jespersen et al., 2019),

(Vellmer et al., 2017b) and double diffusion encoding (Henriques et al., 2019), (Shemesh et al., 2016)

allowed one to avoid principle problems associated with standard model degeneration. In order to avoid

a necessity to install a new pulse sequence on the clinical scanners one can recall a similar approach

using  a powder averaging technique (Kaden et al., 2016b) for both one and two compartment models

(Kaden et al., 2016a). Nevertheless, an averaged signal still  possesses a quite flat-fitting landscape,

which might lead to degeneracy as in the case of NODDI (Jelescu et al., 2015), (Jelescu et al., 2016).

As a result, Kaden et al. (Kaden et al., 2016a) increased the stability of the optimisation procedure by

the following additional  assumptions:  diffusivity determines by the tortuosity model  (Szafer  et  al.,

1995), axial diffusivity in intra- and extra-axonal spaces are equal, and axons are presented as sticks,

i.e. radial inta-axonal diffusion is equal to zero. In the present work we consider two compartment

spherical mean technique (Kaden et al., 2016a) allowing one to extract an axon density metric. SMT

output  consists  of  intra-axonal  water  fraction  (intra),  intra-axonal  diffusivity,  and  extra-axonal

diffusivities: mean and radial components. We estimated SMT metrics using the original SMT code

(https://github.com/ekaden/smt).

Tract Based Spatial Statistics

In order to compare different diffusion metrics and approaches, we applied TBSS voxel-wise

analysis (Smith et al., 2006). Initially, all volumes were aligned to the FMRI58_FA template, supplied

by FSL (Smith et al., 2004), using a non-linear transformation implemented by FNIRT utility. Next, a
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mean  FA images  of  all  subjects  was  obtained  and  thinned  in  order  to  create  mean  FA skeleton.

Afterwards, the subject’s FA values are projected onto the mean skeleton, by filling the skeleton with

FA values from the nearest relevant tract centre. The skeleton-based analysis allows one to minimise

confounding effects  due to partial  voluming and any residual misalignments originating from non-

linear  spatial  transformations.  Additionally,  the  TBSS  derived  skeleton  is  used  for  averaging  of

diffusion metrics over the skeleton.

We performed voxel-wise comparisons of NODDI scalar metrics obtained from two pipelines

and different algorithm implementations using general linear model (GLM). For simplicity, we used

individual level difference maps (MA-MB, where M is the scalar metric, and A/B are the algorithm or

pipeline index) including age and sex as covariates. For all contrasts, statistical analysis was performed

using permutation-based inference implemented in randomise with 5000 permutations. Threshold-free

cluster  enhancement  (TFCE)  was  used  (Smith  and  Nichols,  2009).  Statistical  p-value  maps  were

thresholded at p < 0.05 corrected for multiple comparisons across space. 

Brain asymmetry analysis was performed using the symmetrised TBSS skeleton produced by

the FSL utility tbss_sym. The script generated the symmetric mean FA image and derived symmetric

skeleton. Next, the difference maps between left-right hemispheres are voxel-wise evaluated for each

diffusion metric using an appropriate design matrix and contrast files with age and sex as covariants by

the randomise function with 5000 permutations. Statistical p-value maps were thresholded at p < 0.05

corrected for multiple comparisons as well.

Linked independent component analysis

In order to model inter-subject variability across the diffusion metrics we performed data-driven

decomposition  based  on  linked  independent  component  analysis  (LICA)  from  the  FSL  package

(Groves et al., 2011). The LICA approach is based on the conventional ICA technique, assuming that

the signal presents a linear mixture of statistically independent spatial patterns. Along the optimisation,

LICA iteratively searches maximally non-Gaussian patterns by subject weight updating. As a result,

LICA components are characterised by spatial maps and subject individual weights. A model order was

fixed by using cophenetic coefficient estimation (Ray et al., 2013).

The axonal water fraction metrics and FA maps were included in the LICA decomposition in

order to evaluate the common and unique inter-subject variability across the six parameters taking into

account differences in the pipeline and NODDI algorithm evaluations. Namely, FA from DKI,  AWF

from WMTI, intra from SMT, icvf from original NODDI and optimised pipeline, ICVF from AMICO
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NODDI and optimised pipeline, and UICVF from AMICO NODDI and UKB pipeline. Since FA values

do not have direct meaning of axon density we repeated LICA analysis excluded FA maps as well. All

LICA analyses were performed using TBSS skeletons with 1 mm3 resolution and 3000 iterations. 

Statistical analysis

Diffusion metrics and associated asymmetry indices (AI = [MR-ML]/[MR+ML], where R/L are the

right or left values of metric M, respectively) were compared using general linear model (GLM) AI = b0

+ b1 Age + b2 Sex. AI indices were averaged over the symmetrised TBSS skeleton after the estimation

for the left and right hemispheres. The GLM fit was performed using Matlab function lmfit. The linear

correlations between diffusion metrics and AI values were estimated using Matlab function corr, which

produced a Pearson correlation coefficient.

Results

Figure 1 shows the scatter plots of FA and estimated axonal water fractions from WMTI, SMT,

and NODDI models. Diffusion metrics were averaged over the subject’s skeleton in accordance with

the TBSS pipeline. The FA values demonstrated the lowest correlation coefficients among all diffusion

metrics. The original NODDI metric (icvf) exhibits the same correlations (r = 0.97) with  ICVF and

UICVF values, in contrast to the lower correlation (r = 0.94) between the two NODDI AMICO metrics

ICVF and UICVF. The AWF and intra (r = 0.97) metrics show a lower correlation (r = 0.92) with ICVF

values. The histogram mode of axonal water fraction (0.39) for AWF values is lower than the modes (≈

0.59) of all other metrics.

In Figure 2, we present the results of LICA analysis using 20 independent components (IC) in

two cases: with and without the FA metric. Fig. 2 shows the contribution of different diffusion metrics

into each IC. The weights coefficient correlations of all  subjects for 20 IC in both cases with and

without FA metric are presented as well. As an example of common variation patterns, we present IC

number 1 and 14. In the case of IC1 we find that all diffusion metrics play an important role in skeleton

changes with the strongest contribution from icfv and ICVF metrics and lowest contribution from FA.

In turn, in the case of IC14, all skeleton changes are determined by only  UICVF contribution. As a

result, we see that diffusion metrics UICVF and ICVF define ICs, where the diffusion contribution to

IC is covered by almost one metric only.

In order to find spatial patterns with significant differences on the brain skeleton between the

three NODDI approaches, we applied TBSS analysis for three NODDI-derived diffusion metrics (axon
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water fraction, isotropic water fraction, and bundle orientation dispersion). Figure 3 demonstrates the

results of the TBSS analysis between two pairs of approaches: a) comparison between original NODDI

and  NODDI AMICO using the same optimised pipeline; b) comparison between optimised and UKB

pipelines for NODDI AMICO algorithm implemented in Matlab (optimised pipeline) and in Python

(UKB pipeline).  Briefly,  the  difference  between  original  NODDI  and  AMICO  NODDI  using  the

optimised  pipeline  covers  a  large  part  of  the  brain  skeleton  and  presents  a  metric  shift  with

underestimated values for AMICO NODDI. The metric shift appears in all NODDI-derived metrics. In

turn,  the  difference  for  the  same  NODDI  AMICO  algorithm  but  with  discrepancies  in  data

preprocessing  looks  more  dramatic  and  possesses  complex  skeleton  patterns  with  under-  and

overestimated values. The differences are found in all NODDI metrics.

Brain asymmetry was evaluated using the TBSS voxel-wise approach for symmetrised skeleton

in accordance with the TBSS pipeline including age and sex as covariates. The results of the TBSS

asymmetry  analysis  are  presented  in  Figure  4.  All  diffusion  metrics  demonstrated  regions  with

significant difference (p < 0.05), where the metrics are higher or lower in left hemisphere. In order to

perform a pairwise comparison between statistically significant spatial patterns on the skeleton, we

computed  structural  similarities  between all  image pairs  using  Matlab  function  ssim  (Wang et  al.,

2004). The results are presented in Table 1. The structural similarities are estimated for two cases: the

values from the left hemisphere are higher than in the right hemisphere, and in the opposite case, the

values from the left hemisphere are lower than in the right hemisphere. These values are presented in

the table cells over the main diagonal (the main diagonal marked by the red colour). The values below

the main diagonal present a ratio between a number of common voxel and the total number of voxel

with significant differences, i.e. R = A∩B/A, where A is the number of voxels in estimated skeleton

region, and B is the number of voxels in skeleton region for a pair comparison. The comparison reveals

that  the  spatial  patterns  with  significant  difference  localised  by  UICVF metric  demonstrate  lower

structural similarities among other diffusion metrics and a lower proportion of common skeleton voxels

with significant difference. In turn, icvf and ICVF metrics demonstrate high level of proximity in both

the structural similarities and number of the common voxels. Using data in Tab. 1 and the fact, that

ICVF and UICVF metrics are quite unstable due to previous findings, we can evaluate a mean overlap

between  AWF,  intra and  icvf maps  for  higher  and  lower  metrics  in  left  hemisphere:  AWF =

0.7913/0.5745; intra = 0.8254/0.6359; icvf = 0.8358/0.6098, respectively. These values allowed us to

suggest the intra metric as having the highest overlapping rate among the diffusion metrics.
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The scatterplots of diffusion metrics and derived AI values are presented in Figure 5. In order to

evaluate a possible correlation between the diffusion metrics and their derived AI values we performed

a linear regression with estimation of the Pearson correlation coefficients. The axon water fractions

derived from the NODDI models demonstrated contradictory results with a positive correlation for AI

vs  ICVF values and negative correlations for AI vs (icvf,  UICVF) values. Of note, in both cases the

correlation coefficients were close to zero. In turn, the correlation between AI vs (FA,  AWF,  intra)

metrics demonstrate a weak linear relationship. Interestingly, the AI vs FA scatter plot yields a simple

rule for FA metrics and AI values: higher anisotropy tends to lower negative AI factor. The AI vs (AWF,

intra) scatter plots show an opposite effect: the higher axon water fraction tends to higher positive AI

values. The mode of AI histogram for UICVF locates in negative range (-0.01), when the modes for all

other  metrics  are  located  in  positive  range.  Thus,  UICVF derived  AI  values  demonstrate  higher

diffusion metric in the left hemisphere.

Finally, we estimated an influence of subject ages on the AI dependence using GLM. For this

purpose, we fitted GLM with the sex as a covariance. The results are presented in Figure 6. In brief, the

axon density metrics demonstrate a self-consistent behaviour by decreasing the AI along the subject

years. In turn, the b0 intercept of the GLM demonstrated moderate variation among different diffusion

models, in particular, for UICVF, which is negative. Interestingly, FA derived AI values weakly grow as

age increases. The results of GLM fit such as intercept/slope and root mean squared error (RMSE) and

R-squared values are summarised in Table 2. The highest R-squared and GLM slope values were found

for intra and UICVF metrics.

Discussion

Diffusion  MRI  is  a  sensitive  tool  for  the  estimation  of  the  brain  microstructure  and  its

organisation, particularly in WM. The standard diffusion model (Novikov et al., 2019) is limited by

non-linearity, numerical instability and being prone to image distortions. The proposed comparison of

intra-axonal water fraction obtained from WMTI, NODDI, and SMT demonstrated that even very high

correlations between these metrics does not guarantee a reproduction of the next statistical analysis. We

found  that  NODDI  metrics  have  significant  voxel-wise  differences  depending  on  the  estimation

algorithm or preprocessing pipeline. In particular, the pipeline can significantly influence the analysis

and leads to unreproducible results. LICA analysis demonstrated that the NODDI AMICO algorithm

might seriously affect the diffusion metrics introducing algorithm specific variances and an estimation
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of ICs. The diffusion derived metrics such as asymmetry index, allowed us to suggest the SMT model

as more statistically feasible using age-asymmetry association and diffusion-asymmetry distribution.

In the standard diffusion model (Novikov et al., 2018) the intra-axonal water fraction allows

one to estimate indirect axon density and presents an important imaging phenotype.  However, this

parameter can be estimated using different theoretical assumptions in order to make the computations

more reliable and stable in the frame of diffusion model. Thus, the same biophysical feature can be

estimated from different diffusion models such as WMTI, NODDI, and SMT. In turn, even the same

diffusion approach can have  variability in  numerical  implementation such as  original  NODDI and

NODDI  AMICO.  Does  this  approach  variability  produce  self-consistent  diffusion  metrics?  The

skeleton averaged diffusion metrics demonstrated very high mutual correlations (see Fig. 1). However,

even in  this  case,  the correlation coefficients have variance depending on the diffusion model,  for

example, original NODDI metrics correlates with both NODDI AMICO metrics with r = 0.97. In turn,

the same NODDI AMICO algorithm with differences in the pipeline exhibited a smaller correlation

coefficient (r = 0.94). The axon density distribution also demonstrated the difference, since all model

modes lie in close range of ~ 0.59, excepting WMTI with mode = 0.39. 

LICA  analysis  allowed  us  to  decompose  a  signal  as  a  linear  mixture  of  independent

components. In the case of conventional analysis with multiple imaging modalities, it helps to specify

spatial  patterns  with  common  variations  and  to  estimate  a  contribution  of  each  modality.  Along

decomposition of the same biophysical parameter, we expected to see a combination of all axon density

metrics with a close percentage ratio. In the case of main independent components this hypothesis is

realised  (see  Fig.2a,e).  However,  there  are  two  diffusion  models  which  suppressed  all  other

contributions, namely,  ICVF and  UICVF, for higher order ICs. This kind of behaviour might be an

indicator of unique features, not covered by other diffusion models. However, the original NODDI

estimation did not recognise such a feature. It  allows us to conclude that NODDI AMICO metrics

demonstrated not specific behaviour of axonal water fraction. The spatial patterns defined by UICVF or

ICVF are not as large as the results from main ICs (see Fig 2c,d), nevertheless, they might create

spurious findings in the statistical analysis.

The LICA findings indicate that original NODDI and AMICO NODDI might have some serious

differences based on numerical implementation of the same diffusion model. The voxel-wise TBSS

analysis  revealed  that  the  significant  differences  are  more  dramatic,  i.e.  a  use  of  the  same  post-

processing pipeline created a value shift for NODDI AMICO metrics (see Fig. 3a). Notably, that for
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isotropic water faction and orientation dispersion metrics the value shift covered almost all skeleton

regions. At the same time, the spatial patterns for intra-axonal water fraction have their own variability.

Surprisingly, the  optimised  pipeline  (Maximov et  al.,  2019)  demonstrated  a  greater  impact  on the

skeleton patterns with over- and under-estimated diffusion metrics (see Fig. 3b). It emphasises the need

in accurately harmonised data before analysis, in particular, in the noise correction as an important step

in post-processing pipeline and carefully to consider a numerical implementation of the used models

(David et al., 2019), (Maximov et al., 2015).

Although the diffusion metrics reflect important microstructure brain features on their own, it

can be used for a description of macroscale brain architecture such as brain asymmetry (Duboc et al.,

2015). Brain asymmetry has potential as a useful biomarker (Zhong et al., 2016), in particular, in the

case of mental disorders (Joo et al., 2018), (Wei et al., 2018), where the brain peculiarity is difficult to

localise compared to the healthy brains. The estimated AI values based on different diffusion models

and conventional FA using symmetrised TBSS skeleton revealed a moderate variability in the results, in

particular, for UICVF data (see Fig. 4). Notably, that a coincidence of icvf and ICVF results is very high

(over 97%). Nevertheless, the results are dependent on the diffusion metrics and a test design (higher or

lower values in the left hemisphere). 

Since AI values are derived from the symmetrised skeleton, it is quite interesting to verify their

correlation with original diffusion metrics derived from the mean skeleton. The results of estimated

correlations are presented in Fig.  5.  We found that the correlation coefficients for  icvf,  ICVF,  and

UICVF scatter  plots are negligibly low, in contrast  to a weak relationship for FA,  AWF,  and  intra

metrics.  Interestingly,  that  icvf and  UICVF metrics  exhibited  the  negative  coefficients.  The  linear

correlation between diffusion metric and AI values allowed us to assume that AI can be used as a

complementary biomarker for age microstructure dependence. 

The GLM fits of AI dependence on the age demonstrated self-consistent results for all axon

density  estimators.  The  regression  parameters,  summarised  in  Tab.  2,  did  not  reveal  significant

differences between metrics. Nevertheless, the intercept of UICVF-age fit is negative in contrast to all

other  values.  Surprisingly,  intra values  exhibited  the  higher  RMSE  and  R-squared  values  in  the

regression, comparing to other modalities. The low regression slope for FA-age dependence partially

reproduces the earlier published results (Takao et al., 2011). The AI behaviour demonstrated a presence

of weak relationship between the brain asymmetry and subject’s age. In order to validate this finding

and to increase the statistical power of this dependence, we plan to perform a more accurate analysis of
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the brain asymmetry using a whole UKB data with regional parcellation in the future (Maximov et al.,

2020).

Conclusion

In the present study, we considered the variability of one biophysical parameter of brain white

matter derived from three diffusion approaches: WMTI, SMT, and NODDI. Our analysis suggests that

axon density metrics based on NODDI approaches do not provide reliable quantities and depend on the

numeric algorithm and post-processing pipeline. To estimate axonal water fraction, we recommend the

use of the SMT model, which can be complementarily verified by AWF maps from WMTI. We found

that the brain asymmetry measured by AI values derived from axon density is a useful and sensitive

biomarker and can be used as an additional structural parameter in clinical and research studies. AI

weakly changes along the lifespan and might be an additional covariant in the regression models.
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Table 1. A comparison of spatial patterns obtained by TBSS asymmetry analysis (p < 0.05). In upper

diagonal cells we present pairwise SSIM estimations between the skeleton regions with significant

differences. In bottom diagonal cells we present the pairwise ratio of voxel numbers N: (NA∩NB)/NA,

where NA,B is the number of voxel with significant difference from metrics A or B.

Values in the left hemisphere higher than in the right hemisphere

AWF intra icvf ICVF UICVF

AWF 1 0.9824 0.9819 0.9823 0.9608

intra 0.7809 1 0.9852 0.9860 0.9616

icvf 0.8017 0.8699 1 0.9972 0.9616

ICVF 0.8076 0.8797 0.9777 1 0.9614

UICVF 0.2068 0.1857 0.1850 0.1837 1

Values in the left hemisphere lower than in the right hemisphere

AWF intra icvf ICVF UICVF

AWF 1 0.9808 0.9804 0.9808 0.9605

intra 0.6006 1 0.9849 0.9857 0.9616

icvf 0.5483 0.6712 1 0.9968 0.9605

ICVF 0.5619 0.6956 0.9718 1 0.9604

UICVF 0.4151 0.4505 0.3530 0.3576 1
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Table 2. Parameters of regression fits for AI dependence on age using different diffusion metrics (see

Fig. 6). The GLM is AI = b0 + b1 Age + b2 Sex. RMSE is the root mean squared error, R-squared is the

coefficient of determination.

Intercept, b0 Slope, b1 RMSE R-squared

FA -7.6880·10-4 4.1383·10-5 0.0042 0.0207

AWF 0.0108 -7.7402·10-5 0.0035 0.0427

intra 0.0157 -1.4689·10-4 0.0060 0.0512

icvf 0.0069 -2.2013·10-5 0.0035 0.0036

ICVF 0.0080 -3.2509·10-5 0.0036 0.0071

UICVF -0.0049 -1.5223·10-4 0.0066 0.0504
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Figure 1. Correlation plots  for FA and axonal  water fractions obtained from WMTI (AWF), SMT

(intra), and NODDI: original algorithm and optimised pipeline (ficvf); NODDI AMICO algorithm and

optimised pipeline (ICVF); and NODDI AMICO algorithm and UKB pipeline (UICVF). All diffusion

metrics were averaged over subject’s skeletons in accordance with TBSS pipeline.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2020. ; https://doi.org/10.1101/2020.02.25.965293doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.965293
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Results of LICA analysis based on diffusion metrics and TBSS skeleton with (a,c,d) and

without (e,f) FA values. Number of independent components (IC) is equal to 20. a) contribution of

diffusion metrics into IC; b) correlation map of weight coefficients for 20 IC; c) spatial patterns of

common variance in the case of the first component; d) spatial patterns of common variance in the case

of  the  15th component;  e)  contribution  of  diffusion  metrics  into  IC;  f)  correlation  map  of  weight

coefficients for 20 IC.
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Figure 3. Voxelwise comparison of NODDI metrics using TBSS approach. a) comparison of original

NODDI metrics vs NODDI AMICO estimations for axonal water fraction (top), isotropic water fraction

(middle), and orientation distribution (bottom). The yellow-red colour marks the regions with values

higher (p < 0.05) in original NODDI maps; b) comparison of NODDI AMICO metrics for optimised

(Matlab scripts) and UKB (python scripts) pipelines. The top row images are cross-sections of axonal

water fraction, the middle row is isotropic water fraction, and the bottom row is orientation distribution.

The yellow-red colour marks the regions with values higher (p < 0.05) in optimised pipeline, the light

blue-blue colour marks the regions with values lower (p < 0.05) in optimised pipeline. The skeleton is

marked by the green colour.
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Figure  4. The  result  of  TBSS  analysis  using  the  brain  asymmetry  feature.  Diffusion  metrics  are

represented by FA and axonal water fractions from different diffusion models. The yellow-red colour

marks the regions with values higher (p < 0.05) in the left hemisphere, the light blue-blue colour marks

the regions with values lower (p < 0.05) in the left hemisphere. The bottom row shows enlarged images

localised by the red frame at AWF map. The symmetrised skeleton is marked by the green colour.
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Figure 6. The results of GLM fit of age and AI dependences. The parameters of GLM fits are presented

in Tab. 2. The red lines are linear regression fit and interval of confidence (95%).

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2020. ; https://doi.org/10.1101/2020.02.25.965293doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.965293
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. The result of linear regression of diffusion metrics and their derived AI. The red lines are

linear  regression  fit  and  intervals  of  confidence  (95%).  The  Pearson  correlation  coefficients  are

presented on the top of each correlation plot.
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