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Abstract

With the advent of high-throughput technologies, life sciences are generating a huge 1

amount of biomolecular data. Global gene expression profiles provide a snapshot of all 2

the genes that are transcribed or not in a cell or in a tissue at a particular moment 3

under a particular condition. The high-dimensionality of such gene expression data 4

(i.e., very large number of features/genes analyzed in relatively much less number of 5

samples) makes it difficult to identify the key genes (biomarkers) that are truly and 6

more significantly attributing to a particular phenotype or condition, such as cancer or 7

disease, de novo. With the increase in the number of genes, simple feature selection 8

methods show poor performance for both selecting the effective and informative features 9

and capturing biological information. Addressing these issues, here we propose Mutual 10

information based Gene Selection method (MGS) for selecting informative genes and 11

two ranking methods based on frequency (MGSf ) and Random Forest (MGSrf ) for 12

ranking the selected genes. We tested our methods on four real gene expression datasets 13

derived from different studies on cancerous and normal samples. Our methods obtained 14

better classification rate with the datasets compared to recently reported methods. Our 15

methods could also detect the key relevant pathways with a causal relationship to the 16

phenotype. 17

Introduction 18

Genes are the physical and functional units of hereditary genetic information. The 19

activity and/or expression level of a gene affects the synthesis of downstream proteins 20

that dictate the functionality of a cell. Therefore, the properties as well as the 21

expression levels of a particular set of genes are responsible for a particular phenotype 22

such as disease or tissue morphology. Those genes which are able to differentiate 23

between different states (such as normal vs diseased, quiescent vs proliferating, adult vs 24

stem cells, etc.) of cells are called informative genes or biomarkers (a measurable 25

indicator of a particular state). Identification of these informative genes is very 26

important for elucidating developmental and disease mechanisms, disease diagnosis, 27
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drug development, etc. Especially, for different cancer diseases, these informative genes 28

may be invaluable for the improvement of diagnosis, prognosis, and treatment. 29

Usually, studies to generate cancer specific gene expression profiles comprise a small 30

number of control and patient samples in comparison to tens of thousands of genes 31

(high dimensionality of the data) in each sample where only a few numbers of genes are 32

responsible for a disease. From a large set of genes, identification of a subset that is 33

differently expressed in cancerous cells compared to the normal ones, is a challenging 34

task and is considered as NP hard or NP-complete [1]. Therefore, the feature/gene 35

selection methods can be a useful way to identify a subset of genes relevant to particular 36

cancer for better diagnosis and treatment. In this paper, we use the terms “gene” and 37

“feature” interchangeably. 38

In bioinformatics, several gene selection methods have been proposed, particularly 39

for cancer data classification [2–4]. “Wrapper”and “Filter”are two popular categories of 40

feature selection methods [5] where wrapper methods are classifier dependent and filter 41

methods are classifier independent and their performance mainly depends on the 42

selection of a criterion. Wrapper based methods select the most discriminant subset of 43

features by minimizing the prediction error of a particular classifier [6]. Support Vector 44

Machine based on the Recursive Feature Elimination (SVM-RFE) [2] is considered to be 45

one of the best performing wrapper methods. It ranks the genes using SVM and selects 46

the important genes combining with the recursive feature elimination strategy. Different 47

variants of SVM-RFE have also been proposed [7, 8]. Although wrapper based feature 48

selection methods provide a better performance, these methods become computationally 49

expensive when the feature size grows. Moreover, these methods are classifier dependent 50

and may not provide the optimal solution for other classifiers [9]. For example, the 51

result of the wrapper method using SVM varies from the result of using random forest 52

(RF). To solve the aforementioned problem, a hybrid filter-wrapper method Information 53

Guided Interactive Search (IGIS) [10] was proposed to select the best genes based on 54

Mutual Information, and the genes were ranked using joint mutual information. 55

However, this method selected more genes than the wrapper or hybrid algorithms. To 56

solve the limitations of IGIS, improved Interaction information-Guided Incremental 57

Selection (IGIS+) [11] was proposed where the first gene is selected based on the highest 58

accuracy and utilizes Cohen’s d test to add a new gene into the selected gene set. One 59

major limitation is that it uses several handcrafted thresholds for Cohen’s d effect. 60

Compared to the wrapper methods, filter based methods are more popular as these 61

can assess the property of features without being dependent on any particular classifier. 62

Filter methods select a subset of features based on some criteria that can be evaluated 63

on the dataset itself. Different criteria that filter methods use are: correlation 64

coefficient [12], t-statistics [13], and mutual information [14,15]. Among these, MI based 65

methods are the most popular for feature selection due to their strong theoretical 66

background and ability to capture non-linear dependencies between features. MI based 67

methods have also been applied for gene expression data analysis [16]. One of the 68

earliest works used Minimum Redundancy Maximum Relevance (MRMR) [3]. In this 69

method, the authors select each gene incrementally which holds the highest 70

discriminatory power (relevancy) with the target class (control/cancer) and lowest 71

dependency (redundancy) with other selected genes. Relevance with the class variable is 72

calculated using MI between a gene and class variable or F-statistics while redundancy 73

among the genes is calculated using pair-wise MI or Pearson correlation coefficient for 74

discrete and continuous data, respectively. MRMR based methods have also been 75

adopted for gene selection using temporal gene expression data [17]. 76

Feature selection methods that use the aforementioned criteria are often posed as an 77

optimization problem where the goal is to select the feature subset that optimizes a cost 78

function. Generally, this cost function is constructed using one of the above criteria. 79
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Apart from the aforementioned wrapper and hybrid methods, there exist few popular 80

evolutionary or bio-inspired algorithms to search for the optimal set of features. 81

Almugren et al. in [18] provide an extensive review of the bio-inspited wrapper and 82

hybrid methods. Alshamlan et. al. proposed a hybrid artificial bee colony as well as a 83

genetic bee colony optimization method that uses mRMR criterion [19, 20]. El Akadi et 84

al. [21] proposed a genetic algorithm based on mRMR criteria. In these methods, 85

mRMR criterion is used to filter noise and redundant genes in the high-dimensional 86

microarray data and then the bio-inspired algorithm uses the classifier accuracy as a 87

fitness function to select the highly discriminating genes. Most bio-inspired algorithms 88

are local searches with random restart or population based methods. However, these 89

algorithms still can get stuck at a local optimum. In order to solve the optimization 90

problems globally, several selection methods were attempted [22]. These methods 91

incorporate parallel search strategies based on semi-definite programming (SDP) or 92

quadratic programming that can find the feature subset in polynomial time [23]. 93

Recently, deep learning based methods have provided better accuracy in different 94

classification problems such as image or audio classification [24]. These deep learning 95

based architectures have also been proposed for classification problems using gene 96

expression data [4, 25]. One of the most recent works based on deep learning was 97

proposed by Ding and Peng [4]. The authors developed a new model namely Forest 98

Deep Neural Network (fDNN) that incorporates deep neural network (DNN) with 99

random forest (RF) to solve the problem of learning from small sample data having a 100

large number of genes. RF is used to reduce the dimension of these datasets by detecting 101

the important genes in a supervised manner [26]. This new feature representation was 102

then fed into DNN to predict the outcomes. However, this method does not make use of 103

the main advantage of deep learning in solving classification problems, which is 104

automatic feature extraction. On the other hand, using a neural network as a black box 105

to extract new features from gene expression data also reduces the interpretability of 106

the classifier which is important in studies such as cancer classification. 107

Since MI based filter methods do not extract new features and thus are more 108

interpretable, parallel to the development in Deep learning, there has been a lot of effort 109

to better approximate MI measures such as relevancy and redundancy. New Information 110

theoretic measures such as complementary information, the additional information that 111

a gene has about the class, which is not found in the already selected subset of genes 112

have been proposed [15,27]. These methods attempt to estimate the joint mutual 113

information of a feature subset with the class. In mDSM [15], the authors showed that 114

during the calculation of MI for finite samples, there exist some errors (bias) for all the 115

three terms namely relevancy, redundancy and complementary. Moreover, for selecting 116

a feature, they proposed to use χ2 statistics by showing that all three terms follow χ2
117

distribution. Moreover, even though it has few good characteristics, by incorporating 118

the term redundancy in gene expression data, informative genes might be discarded [11]. 119

Another issue with gene selection for cancer classification, in contrast to traditional 120

feature selection methods in machine learning, is that the set of genes selected should be 121

biologically relevant to the disease under study. Although filter methods can produce a 122

subset of genes that may be highly accurate in classifying cancer, the literature on filter 123

methods rarely discusses the biological relevance of the selected genes [5]. 124

To solve the aforementioned problems, we propose a new MI based filter method 125

namely Mutual information based Gene Selection (MGS) that achieves better 126

classification performance with high dimensional biological data. The main 127

contributions of this paper are as follows: first, a gene selection technique is proposed 128

for identifying discriminating genes based on their relevancy and complementary 129

information. Second, a statistical test is used to select genes without a handcrafted 130

threshold. Third, two ranking techniques are proposed for the selection of informative 131
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genes that are used in cancer classification. Finally, the proposed methods select the 132

relevant genes associated with a particular type of cancer. 133

Materials and methods 134

In this section, we firstly describe the datasets that are used in our experiment and then 135

discuss the proposed gene selection method. It selects some candidate genes and then 136

ranks the genes based on one of the two proposed ranking criteria. Finally, using the 137

selected top η genes, classification and biological interpretations are then performed. 138

Dataset description 139

We used four different gene expression datasets GDS3341 [28] , GDS3610 [29], 140

GDS4824 [30] and GSE106291 [31] retrieved from the Gene Expression Omnibus (GEO) 141

database [32] at the National Center for Biotechnology Information 142

(https://www.ncbi.nlm.nih.gov). GDS3341 and GDS3610 are independent experimental 143

datasets generated from nasopharyngeal carcinoma (NPC) tissue samples. GDS4824 144

contains the gene expression data of malignant and benign prostate cancer tissues. 145

GSE106291 contains the RNA-seq expression profiles of acute myeloid leukemia patients 146

for the prediction of resistance to induction treatment. The description of datasets are 147

given in Table 1. We used two different global gene expression datasets of 148

nasopharyngeal carcinoma tissues (GDS3341 and GDS3610) as built-in controls in the 149

study to assess the coherence and performance of our proposed methods. Expression 150

data of multiple probes for the same gene were merged. All these datasets contained 151

much less number of samples compared to the number of genes (Table 1).

Table 1. Summary of the datasets used in this study.

Dataset ID Total samples Control samples Cancer samples Features(genes)
GDS3341 41 10 31 30865
GDS3610 28 3 25 14126
GDS4824 21 8 13 30872
GSE106291 235 71 164 21403

152

Overview of gene selection and validation process 153

In this paper, we propose an MI based Gene Selection (MGS) method for the selection 154

of an informative gene subset that provides both better classification accuracy and 155

contains biologically relevant information for cancer gene identification. The overall 156

process of MGS is shown in Fig 1 where we first identify the informative gene subset 157

(Fig 1A) and then use the top η genes from that subset for classification (Fig 1B). The 158

following subsections describe our method with further details. 159

Fig 1. Overall process of the proposed method. (A) Gene selection. (B) 160

Classification 161

Gene subset selection 162

For the identification of a gene subset, in this paper, we propose to use a filter based 163

gene selection method that approximates the joint MI with respect to the class variable. 164

In order to identify an informative gene subset, we first subdivide the given gene 165

expression dataset into K sets. This can be done through a cross validation process 166

when we have a large number of samples (n). However, when n is small, Leave-one-out 167
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cross validation (LOOCV) is proposed here to apply. Since, in this study, the main 168

focus was the identification and classification of genes in datasets with a small number 169

of samples having a very large number of genes, we applied LOOCV. In MGS, we 170

incorporate a variant of mDSM [15] by modifying the selection criteria so that it can 171

identify biologically relevant genes for a class. The accumulation of all genes identified 172

by MGS from K different subsets is defined here as candidate genes (GSC). The final 173

selected gene subset (GS) is then obtained by ranking the candidate genes (GSC). Two 174

ranking criteria namely MGS frequency-based ranking (MGSf ) and MGS Random 175

Forest (RF) based ranking MGSrf ) are proposed here to select the top η genes as 176

biomarkers for cancer classification. 177

Candidate gene selection 178

To measure how much information a particular gene expression provides for the 179

identification of cancer data, we calculate MI between an expression value of a gene gi 180

and the class variable C. This MI represents the relevancy of a gene that reveals the 181

degree of importance of that gene in cancer data classification. Note that, before 182

calculating the MI, the gene expression data is quantized which is necessary for noise 183

reduction and data simplification and thus result in maximizing the relevancy of a gene 184

to the target class C. For calculating the relevance between gi and C, MI is calculated 185

using Eq. 1. 186

Jrel(gi) = I(gdi
i ;C)− (I − 1)(K − 1)

2N ln 2
(1)

where, gdi
i denotes gene gi with di discretization levels. For each gene gi, the minimum 187

discretization levels di is chosen for which Jrel(gi) is greater than its χ2 critical value 188

(x2C(rel)). This test helps to determine whether the gene is significantly relevant or not 189

and can be done because it can be shown that the relevancy follows χ2 distribution with 190

(I − 1)(K− 1) degrees of freedom. Here, I, K and N represent the quantization levels of 191

gene gi, the total number of classes in C and the total number of samples respectively. 192

The genes which do not satisfy the χ2 critical value are discarded considering these 193

genes are not related to C. All the genes selected through this process are now ranked 194

in descending order based on the relevancy. From this ranking, a selection method is 195

followed to get a subset of informative genes. As the top ranked gene is considered to be 196

the most important, we include it to the candidate gene subset GSC at first. Now, the 197

second ranked one is evaluated for selection based on its score calculated using Eq. 2. 198

JMGS(gi) = I(g
dj

i ;C)− (I − 1)(K − 1)

2N ln 2

+
1

| GS |
∑

gsc∈GSC

[
I(g

dj

i ; gsc | C)− (I − 1)(J − 1)K
2N ln 2

] (2)

here, along with relevancy, the complementary information I(g
dj

i ; gsc | C) of a new gene 199

is also incorporated. The complementary information I(g
dj

i ; gsc | C) due to gi for an 200

already selected gene gsc reveals the dependency among those genes while identifying 201

the class variable C. Here, J represents the quantization levels of each gene gsc in GSC . 202

In Eq. 2, the bias correction is also incorporated for calculating relevancy and 203

complementary information. While calculating the value of JMGS , the quantization 204

level (dj) of the gi is also shifted by a small amount (±δ). This is because a small 205

shifting of quantization may increase the value of JMGS and this new quantization value 206

is chosen dynamically considering the dependency among the genes. Now, for a 207

particular gene (gi), if the value of JMGS is larger than the χ2 critical value 208

(χ2
C(MGS)), then it is placed into the selected gene subset. It means when the 209
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relevancy and complementary information of a gi is significant, then it is selected 210

otherwise discarded. So, finding genes that maximize JMGS indicates the genes which 211

are strongly relevant with the class C with greater complementary information will be 212

adopted to the selected subset throughout this process. 213

It is noteworthy to mention here that there may exist a group of genes that share 214

similar information and thus their expression values which may even make them 215

redundant. However, if they have complementary information about the class, it is 216

necessary to incorporate that gene into the selected subset even though it is redundant. 217

Such incorporation of the redundant genes is logical because usually a set of genes 218

contribute mutually for a particular task in our body and these genes may share a 219

similar expression profile. Hence it is required not to consider the redundancy in criteria 220

of gene selection. The biological importance of such exclusion is also shown 221

experimentally in the result and discussion section. 222

Final gene selection 223

The same subset of genes is not always selected during the selection of genes by MGS 224

at each iteration of LOOCV. In the final gene selection step, we aggregate all the 225

candidate gene subsets (GSC) from the candidate gene selection step and find the union 226

of these subsets, GS . Afterward, these genes in GS are ranked using one of the following 227

two ranking criteria. 228

• MGSf : This ranking is performed based on the following assumption. 229

Assumption: The genes which are selected in every iterations are likely to have 230

more discriminating power and biological significance. 231

To quantify the Assumption, we compute the relative frequency of every selected 232

gene, Si in GS using Eq. 3. 233

P (Si) =
FSi

NGSC

(3)

here, NGSC
, FSi and P (Si) are the total number of candidate subsets, frequency 234

of the selected gene Si and the relative frequency of gene Si respectively. For 235

example, we have two candidate gene subsets from candidate gene selection step, 236

L1 = {g1, g3, g4, g5, g6} and L2 = {g1, g2, g4, g6}. Here, the unique genes are 237

GS = {g1, g2, g3, g4, g5, g6} and the frequencies of these unique genes are F = 2, 238

1, 1, 2, 1, 2 respectively. So, the relative frequency is P (Si) = 2/2, 1/2, 1/2, 2/2, 239

1/2, 2/2. Thus, based on the P (Si), ranked genes are GS = g1, g4, g6, g2, g3, g5. 240

• MGSrf : Informative genes have the ability to split the control and cancer 241

samples into two groups. To find the more informative genes, we need to rank the 242

candidate genes. In order to rank these genes, it is necessary to measure how 243

much information a gene contains. To measure the information content of a gene, 244

we can use Information Gain (IG) criterion. IG is used in decision trees to select 245

features that reduces the entropy of the data most by splitting data into two 246

groups (called the the left and right child in a decision tree). We use weighted IG 247

derived in Eq. 4. 248

IG =
Nt

N

[
H(nodeParent)−

NL

Nt
∗H(nodeLeftchild)−NR

Nt
∗H(nodeRightchild)

]
(4)

where, Nt is the number of samples at the current (parent) node, N is the total 249

number of samples, NL is the number of samples in the left child, and NR is the 250

number of samples in the right child. H(node) is the entropy at the node. The 251
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entropy is calculated using Eq. 5. 252

H(node) = −
C∑
i=1

PilogPi (5)

This weighted IG is commonly used in Decision Tree (DT) [26], where each node 253

in a DT contains a gene with its corresponding weighted IG. Besides, to make the 254

weighted IG more robust, we use M number of DTs to construct a Random Forest 255

and take the average of IGs for each gene gj ∈ GS using Eq. 6. 256

IGgj =
1∑V

i=1 δ(vi.g, gj)

[ V∑
i=1

δ(vi.g, gj) ∗ vi.IG
]

(6)

here, V = {vi, vi+1,..,vk} = {(gi, IGi), (gi+1, IGi+1),..,(gk, IGk)} and k is the 257

total number of nodes in the random forest. That is, for each node of the random 258

forest, we store the corresponding gene and its weighted IG in V . δ(vi.g, gj) = 1 if 259

vi.g = gj , and 0, otherwise (Kronecker function). 260

This average score can be used as the importance score of each gene. In our case, 261

this importance score represents how important a particular gene is to explain the 262

target class. Finally, based on the importance score, the genes from GS are 263

ranked in descending order. 264

Classification 265

In this stage, as shown in Fig 1B, only selected genes from the previous step are used in 266

the train and test data to fit the classifiers and predict the outcome. Due to a limited 267

number of samples in each data set, we employ LOOCV to partition all the data 268

samples into training and testing sets. For example, a dataset having n number of 269

samples, we used (n− 1) samples for training and the nth sample for testing. After 270

passing the training data to MGS, we get candidate informative genes. This is repeated 271

n times and passing the selected candidate gene to MGSf and MGSrf for finding the 272

ranked genes. And finally, from the ranked genes, we take top η genes as biomarkers 273

and calculate the performance metrics. 274

To assess the performance of a gene selection method, we consider two performance 275

metrics accuracy and Area Under the Receiver Operating Characteristic Curve 276

(AUROC). Accuracy is the percentage of samples that are predicted to the true class. 277

AUROC represents degree or measure of separability between classes and it can be 278

used when the dataset is highly imbalanced and the number of samples is less than the 279

number of genes. ROC is a probability curve of a classifier at various thresholds. It 280

plots curve based on the true positive rate (TPR) and false positive rate (FPR) 281

represented in Eq. 7 and 8. 282

TPR =
True positive

True positive+ False negative
(7)

283

FPR =
False positive

False positive+ True negative
(8)

here, “True positive” and “True negative” are the numbers of positive and negative 284

samples that are correctly classified. “False positive” are the numbers of negative-class 285

samples misclassified as the positive class, and “False negative” are the numbers of 286

positive-class samples misclassified as the negative class. To compute the points in a 287

ROC curve, AUROC computes an aggregate measure of various thresholds. For our 288

experiments, the reported results are calculated by taking the average over the LOOCV 289

process for these two metrics. 290
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Biological interpretation of the selected genes 291

We used NetworkAnalyst [33] to interpret the biological significance of the selected gene. 292

NetworkAnalyst is a bioinformatics platform to interpret gene expression data within 293

the context of protein-protein interaction (PPI) networks. We used top η selected genes 294

for each dataset determined by our proposed and the previously described methods as 295

input in NetworkAnalyst. Since the type of the cancer samples in the datasets was 296

known, we assessed the performance of the compared methods based on their abilities to 297

identify the key pathways affected in the corresponding cancer types. 298

Results and Discussion 299

We compared the performances of our proposed ranking methods (MGSf and MGSrf ) 300

to other renowned methods- RF , fDNN , IGIS+, and mDSM . As mDSM is a gene 301

selection method, so we incorporate our frequency and RF based gene ranking methods 302

(mDSMf and mDSMrf ) for comparison purpose. Note that, for a fair comparison, we 303

followed the same training and testing protocol for all the datasets. For RF , fDNN 304

and MGSrf (where random forest is used) we used 300 decision trees. We evaluated the 305

performance of these methods using SVM (linear kernel) and RF classifiers. These 306

classifiers are implemented in Python with packages Scikit-learn [34]. 307

In this experiment, we applied the aforementioned methods on four gene expression 308

datasets. In this section, we first discuss the performance of all methods in terms of 309

accuracy and AUROC and then, provide the biological interpretation selecting top η 310

(= 10) genes. In situations where feature selection method (IGIS+, mDSMf , 311

mDSMrf ) had selected less than 10 genes, we used only these genes for our analysis. 312

We also discuss the performance of a different number of top η genes for measuring the 313

robustness of our method. 314

Classification performance 315

Table 2 summarizes the comparative results of the proposed methods along with the 316

existing methods on four datasets as mentioned before. Analyzing the table, it becomes 317

evident that our proposed methods (MGSf , MGSrf ) performed better than than the 318

other methods (RF , fDNN , IGIS+, mDSMf and mDSMrf ) in classification results 319

in terms of both accuracy and AUROC (Table 2), which indicate that our methods 320

selected more informative genes. In the case of dataset GDS3341 and GDS4824, all 321

methods except RF were able to perfectly differentiate the control and cancer disease 322

for both SVM and RF classifiers. The small number of samples compared to a large 323

number of genes may be the reason behind the relatively poor performance of RF . 324

However, even though other methods performed well for selecting distinguishable genes, 325

all the genes were not biologically informative (discuss in the next subsection). For the 326

dataset of GDS3610 and GSE106291, MGSf and MGSrf methods achieved much 327

better accuracy and AUROC compared to the other methods. The performance of 328

MGSf was better to RF , fDNN , IGIS+, mDSMf and mDSMrf in most instances 329

inspite of having imbalanced dataset and n << p property. Moreover, MGSrf 330

unequivocally performed better compared to MGSf . 331

It is not always true that the selected genes that have better classification ability are 332

also relevant for a biological process. To examine this, apart from accuracy and 333

AUROC, we investigated the ability of the top (≤ 10) selected genes in identifying the 334

most relevant pathways in the cancer types used in different datasets. This is described 335

in the next section. 336
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Table 2. Classification accuracy and AUROC of different methods for GDS3341, GDS4824, GDS3610 and
GSE106291 datasets.

Methods
Dataset: GDS3341 Dataset: GDS4824 Dataset: GDS3610 Dataset: GSE106291

Accuracy AUROC Accuracy AUROC Accuracy AUROC Accuracy AUROC
SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

RF 0.878 0.878 0.9548 0.9403 0.4762 0.4762 0.2885 0.3894 6786 0.8929 0.2533 0.5067 0.6979 0.7021 0.2766 0.6224
fDNN 1.00 1.00 1.00 1.00 0.9524 1.00 1.00 1.00 0.75 0.8929 0.56 0.8267 0.766 0.7787 0.7776 0.78264
IGIS+ 0.9756 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.8929 0.8929 0.8533 0.94 0.7319 0.7617 0.6949 0.7645
mDSMf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.9643 0.9286 1.00 0.98 0.7276 0.6936 0.6378 0.6294
mDSMrf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.9643 0.9286 1.00 0.98 0.6979 0.6894 0.4005 0.5419

MGSf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.9643 0.9286 0.96 0.9733 0.7574 0.7617 0.7644 0.7927
MGSrf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.9643 1.00 0.9867 0.7702 0.7574 0.7874 0.7958

Biological interpretation 337

From Table 2 and Table 3, it is evident that MGSf and MGSrf not only achieved 338

better accuracy and AUROC but also performed better in capturing the genes more 339

relevant to the cancer type. For example, Epstein-Barr virus (EBV) is well known to 340

cause nasopharyngeal carcinoma (NPC), which is epithelial cancer prevalent in 341

Southeast Asia [35–37]. GDS3341 and GDS3610 datasets contain NPC samples [28,29]. 342

Though GDS3341 and GDS3610 are independent datasets, both MGSrf and MGSf 343

could detect the genes involved in viral carcinogenesis and Epstein-Barr virus infection 344

(Table 3). We used two different datasets (GDS3341 and GDS3610) on the same cancer 345

type as built-in controls in the study to increase confidence in the experimental results. 346

With both the datasets MGSrf and MGSf performed almost equally well. Moreover, 347

the genes selected by MGSrf performed better than those selected by the MGSf . The 348

other methods (RF , fDNN , IGIS+, mDSMf and mDSMrf ) could detect these 349

pathways only with the GDS3610 dataset. In fact, RF and IGIS+ could detect one of 350

these pathways. The GDS4824 dataset contains gene expression data from prostate 351

cancer samples. Both the MGSrf and MGSf detected genes that are involved in 352

prostate cancer. Although the prostate cancer pathway was ranked 6th in the detected 353

pathways (based on the FDR values) with the genes selected by the MGSrf and 354

MGSf , the top ranked pathways (FoxO signaling pathway, colorectal cancer, pancreatic 355

cancer and endometrial cancer) are relevant to cancer as well [38–41]. In fact, unlike 356

nasopharyngeal carcinoma, prostate cancer development involves different pathways. 357

Fork head box O transcription factors (FoxO) regulates multiple cellular processes, 358

including cell cycle arrest, cell death, DNA damage repair, stress resistance, and 359

metabolism [42]. Inactivation of FoxO protein is linked to multiple tumorigenesis 360

including prostate cancer [42–44]. Among the other methods, fDNN , mDSMf and 361

mDSMrf could detect the genes associated with prostate cancer, although the rank of 362

the pathway and associated FDR values were less significant. 363

It is well known that, although multiple proteins interact in a network in a cell to 364

attain a particular function, each of these does not play an equally important role. 365

Some proteins in a network are more connected and play a pivotal role in the overall 366

biological process. MGSrf and MGSf selected top genes play important roles in 367

pathways relevant to cancer (Fig 2) whereas other methods could not detect any pivotal 368

genes relevant to cancer (Table 3). 369

Fig 2. Roles of MGSrf selected top genes in pathways related to cancer. (A) 370

LGALS1 and LAMB1 were selected among the top 10 genes from GDS3341 dataset by 371

the MGSrf method. These (highlighted in red) are part of a sub-network that contains 372

many other proteins (highlighted in green) known to play roles in different cancers [33]. 373

(B) HCFC1, FOXO1 and IQGAP1 were selected among the top 10 genes from 374

GDS4824 dataset by the MGSrf method. These (highlighted in red) are part of a 375

sub-network that contains many other proteins (highlighted in green) known to play 376
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Table 3. Comparative performance of different methods in identification of relevant biological pathways.

Dataset ID Cancer type Method No. of genes Pathway Output rank FDR

GDS3341
Nasopharyngeal

carcinoma

MGSrf 10
Viral carcinogenesis 1 1.38E-14

Epstein-Barr virus infection 4 2.56E-07

MGSf 10
Viral carcinogenesis 4 0.00259

Epstein-Barr virus infection 14 0.166

RF 10
Viral carcinogenesis ND -

Epstein-Barr virus infection ND -

fDNN 10
Viral carcinogenesis ND -

Epstein-Barr virus infection ND -

IGIS+ 3
Viral carcinogenesis ND -

Epstein-Barr virus infection ND -

mDSMf 4
Viral carcinogenesis ND -

Epstein-Barr virus infection ND -

mDSMrf 4
Viral carcinogenesis ND -

Epstein-Barr virus infection ND -

GDS3610
Nasopharyngeal

carcinoma

MGSrf 10
Viral carcinogenesis 1 4.83E-13

Epstein-Barr virus infection 5 0.0165

MGSf 10
Viral carcinogenesis 1 4.83E-13

Epstein-Barr virus infection 5 0.000259

RF 10
Viral carcinogenesis ND -

Epstein-Barr virus infection 29 0.53

fDNN 10
Viral carcinogenesis 79 7.97E-08

Epstein-Barr virus infection 113 6.85E-05

IGIS+ 7
Viral carcinogenesis 6 0.338

Epstein-Barr virus infection ND -

mDSMf 9
Viral carcinogenesis 1 4.83E-13

Epstein-Barr virus infection 5 0.0165

mDSMrf 9
Viral carcinogenesis 1 4.83E-13

Epstein-Barr virus infection 5 0.0165

GDS4824
Prostate
cancer

MGSrf 10 Prostate cancer 6 1.29E-22
MGSf 10 Prostate cancer 6 1.29E-22
RF 10 ND ND -

fDNN 10 Prostate cancer 28 0.435
IGIS+ 10 ND ND -
mDSMf 6 Prostate cancer 7 1.25E-16
mDSMrf 6 Prostate cancer 7 1.25E-16

GSE106291
Acute myeloid

leukemia

MGSrf 10
Chronic myeloid leukemia 1 2.78E-12
Acute myeloid leukemia 8 8.74E-08

MGSf 10
Chronic myeloid leukemia ND -
Acute myeloid leukemia ND -

RF 10
Chronic myeloid leukemia ND -
Acute myeloid leukemia ND -

fDNN 10
Acute myeloid leukemia ND -

Chronic myeloid leukemia ND -

IGIS+ 10
Chronic myeloid leukemia 22 0.000319
Acute myeloid leukemia ND -

mDSMf 10
Chronic myeloid leukemia ND -
Chronic myeloid leukemia ND -

mDSMrf 10
Acute myeloid leukemia 26 0.448

Chronic myeloid leukemia ND -

ND - Not detected
FDR - False discovery rate
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roles in different cancers [33]. 377

It is noteworthy to mention here that the proposed methods perform much better 378

compared to mDSM even though they follow a similar methodology. The main 379

difference is the exclusion of redundancy term. However, such avoidance of redundant 380

genes may not be appropriate for selecting genes as genes working together in a pathway 381

may be regulated in a more coordinated fashion than a random set of genes and thus, 382

share a more coherent expression profile [45]. Therefore, MGSf and MGSrf do not 383

consider redundancy in Eq. 2 to select new genes. For example, mDSM discards a gene 384

gi if it finds another gene, si with similar expression level. But as mentioned earlier, 385

both gi and si may be informative despite being considered “redundant” and may add 386

complementary information for a disease if selected instead. To understand this issue, 387

let us consider an example of two genes named MAN1C1 and ARCN1 in dataset 388

GDS3610 where MAN1C1 is on the selected list and ARCN1 is considered to be on 389

the selected list. As the redundancy value (0.685461) is greater than χ2 critical value 390

(0.558168), mDSM discarded ARCN1. However, our methods selected ARCN1 in the 391

selected list as it provides complementary information (0.598510). Despite the fact that 392

these genes work in different pathways, both inhibit cancer cell proliferation [46,47]. 393

Comparison of performances for different number of genes 394

We also investigated the performances of the aforementioned methods for a different 395

number of selected genes (η) using two metrics accuracy and AUROC as shown in Figs 396

3, 4, 5 and 6. Except RF , all the methods performed well (Figs 3-6). In the case of 397

GDS3341 and GDS4824 datasets, for a different number of genes, all the gene selection 398

methods classified the samples almost perfectly as shown in Figs 3 and 5. For these two 399

datasets, the expression values of genes are more distinguishable between classes which 400

would be the reason for the almost equal performance of every method. That would be 401

the reason why the performance is not varied with the increasing number of selected 402

genes. For the small and highly imbalanced dataset GDS3610, our methods showed its 403

superiority for a different number of η genes (Fig 4). Our methods handled not only 404

small datasets but also imbalanced dataset which is shown in Fig 4B, as AUROC is a 405

better metric for imbalanced datasets. We also showed our method’s strength in dataset 406

GSE106291, having comparatively large samples (Fig 6). Here, our methods performed 407

better than others in terms of accuracy and AUROC over the different η, indicating its 408

applicability on gene expression datasets with small and relatively medium sample size. 409

Fig 3. Performance comparison using different number of selected genes 410

for the GDS3341 dataset. (A) Accuracy. (B) AUROC. 411

Fig 4. Performance comparison using different number of selected genes 412

for the GDS3610 dataset. (A) Accuracy. (B) AUROC. 413

Fig 5. Performance comparison using different number of selected genes 414

for the GDS4824 dataset. (A) Accuracy. (B) AUROC. 415

Fig 6. Performance comparison using different number of selected genes 416

for the GSE106291 dataset. (A) Accuracy. (B) AUROC. 417

Based on the results presented in Figs 3 - 6 and Table 2, our proposed methods, 418

MGSf and MGSrf outperformed the existing methods for most of the cases. The 419

proposed filter method (MGS) performed well for all classifiers and thus, it is classifier 420

independent. The datasets used for experimentation had a highly imbalanced 421

distribution of the classes. Despite this, the performance of MGS was relatively better 422

compared to the other reported methods, which also indicates that the proposed 423

method is tolerant to the imbalanced dataset. Moreover, for every value of η, MGSrf 424

classified few more samples accurately than MGSf using SVM and RF classifiers, which 425

indicates that MGSrf achieved slightly better performance. 426
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Conclusion 427

In this paper, we presented a gene selection method and two gene ranking methods for
classifying high dimensional low sample size gene expression data. The proposed gene
selection method utilizes the maximum relevance and complementary information for
selecting informative genes that have biological importance. Experimental results on
real datasets illustrate that our gene selection method consistently yields higher
classification accuracy and select more biologically relevant genes than prior
state-of-the-art methods do. However, there are a few challenges that are left to be
addressed for further studies. First, we believe introducing higher-order gene interaction
term will help to reduce the number of selected genes. Second, to obtain globally
optimum gene subsets, we may need a semi-definite programming based search strategy
instead of using a χ2 based filter method used in this paper.
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