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ABSTRACT

Pluripotent state can be established via reprogramming of somatic nuclei by factors 
within an oocyte or by ectopic expression of a few transgenes. Considered as being 
extensive and intensive, the full complement of genes to be reprogrammed, however, 
has never been defined, nor has the degree of reprogramming been determined 
quantitatively. Here, we propose a new concept of reprogramome, which is defined 
as the full complement of genes that need to be reprogrammed to the expression 
levels found in pluripotent stem cells (PSCs). This concept in combination with RNA-
seq enables us to precisely profile reprogramome and sub-reprogramomes, and study 
the reprogramming process with the help of other available tools such as GO analyses. 
With reprogramming of human fibroblasts into PSCs as an example, we have defined 
the full complement of the human fibroblast-to-PSC reprogramome. Furthermore, 
our analyses of the reprogramome revealed that WNT pathways and genes with roles 
in cellular morphogenesis have to be extensively and intensely reprogrammed for the 
establishment of pluripotency. We further developed the first mathematical model to 
quantitate the overall reprogramming, as well as reprogramming in a specific cellular 
feature such as WNT signaling pathways and genes regulating cellular 
morphogenesis. We anticipate that our concept and mathematical model may be 
applied to study and quantitate other reprogramming (pluripotency reprogramming 
from other somatic cells, and lineage reprogramming), as well as transcriptional and 
epigenetic differences between any two types of cells including cancer cells and their 
normal counterparts. 
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An enucleated oocyte can reprogram an implanted somatic cell nucleus to 
pluripotent stem cells (PSCs) [1, 2]. Ectopic expression of a few transgenes can 
also induce pluripotent stem cells (iPSCs) from somatic cells, most commonly 
fibroblasts [3, 4]. iPSC reprogramming from human fibroblasts is a prolonged and 
stochastic process with a very low efficiency [4-6].  One reason for this inefficient 
conversion of cell fates is probably the great expanse of reprogramming required 
[7, 8]. Although it is considered to be extensive as well as intensive, the degree of 
iPSC reprogramming has not been determined quantitatively. A method for the 
measurement of reprogramming expanse is yet to be developed. Here, we report 
a new concept, reprogramome, which provides a basis for measurement of 
reprogramming. Subsequently, we developed the related concepts of 
downreprogramome, upreprogramome, erasome, and activatome. Using these 
concepts, we have precisely defined the breadth of reprogramming required for 
the establishment of human pluripotency. We have additionally developed 
mathematical models for quantification of reprogramming intensity of each gene in 
reprogramming and the total expanse of reprogramming using a new 
reprogramming unit, log2-transformed fold changes (LFC). 

Results

Definition of reprogramome

We define reprogramome as the subset of genes that have to be reprogrammed 
so that one cell type can be converted into another one. A reprogramome generally 
includes two subgroups, downreprogramome and upreprogramome. 
Downreprogramome refers to the group of genes whose expression levels have to 
be downregulated while upreprogramome include the group of genes whose 
expression levels need to be upregulated for a complete conversion of cell fates. 
A downreprogramome may include a subset of genes whose expression has to be 
shut off completely, i.e., erasome. On the other hand, an upreprogramome may 
contain a subset of genes whose expression has to be activated de novo, with a 
term of activatome in its own right. Reprogramome may be a concept of 
transcription or epigenetics, and therefore there are transcriptional reprogramome 
and epireprogramome, respectively. Transcriptional reprogramome is a special 
sub-transcriptome, while epireprogramome is a defined sub-epigenome. 
Reprogramome may characterize any conversion of cell fates including 
pluripotency and lineage reprogramming. As a proof of principle, below we will 
summarize our profiling of the human transcriptional reprogramome for fibroblast 
conversion to iPSCs. 

In the case of human fibroblast reprograming to iPSCs, the transcriptional 
downreprogramome should be the group of genes that have higher expression 
levels in fibroblasts than in PSCs. This group of genes has to be downregulated to 
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the expression levels found in PSCs. On the other hand, the transcriptional 
upreprogramome is the group of genes that have higher expression levels in PSCs 
than in fibroblasts. These genes have to be upregulated to the levels found in 
PSCs. Therefore, in order to define the downreprogramome and upreprogramome, 
we just need to define the group of genes with higher expression in fibroblasts 
(fibroblast-specific genes, or simply fibroblast genes hereafter, or 
downregulatome) and the other group of genes with higher expression in PSCs 
(PSC genes hereafter, or upregulatome). The sum of the fibroblast-specific and 
PSC-specific genes constitutes the entire reprogramome of fibroblast-to-iPSC 
reprogramming. 

Extensive reprogramming revealed by reprogramome profiling

To this end, we sequenced RNA on human fibroblasts and PSCs. We used the 
NIH-registered human embryonic stem cell lines (ESCs), H1 and H9 because 
these are the widely used reference cell lines for PSCs [9]. Our RNA-seq is of high 
quality based on the quality control analyses and read counts for the signature 
genes of both cell types (see STAR Methods, and table S1). Using a set of strict 
criteria for selection (see STAR Methods), we showed that the downregulatome 
contains 3,617 genes/transcripts (Fig. 1A, Table S2), representing 26.4% of 
fibroblast transcriptome (Fig. 1G, Table S3).  The upregulatome includes 4,190 
genes/transcripts (Fig. 1B), equivalent to 30.6% of fibroblast transcriptome (Fig. 
1G, and Table S3) and representing 28.8% of the ESC transcriptome (Table S3). 
Combining downregulatome and upregulatome, the reprogramome contains 7,807 
genes/transcripts. This size of reprogramome is surprisingly large and is equivalent 
to 57% of the fibroblast transcriptome, and 53.6% of the ESC transcriptome.  The 
actual reprogramome may be greater because our selection criteria may have 
excluded a subset of genes with very low expression levels, as well as the subset 
of genes whose differences in expression levels between the two types of cells are 
lower than 2 fold, the threshold we used. 

iPSC reprogramming is intensive

Next, we investigated the intensity of reprogramming. To this end, we broke the 
differences in gene expression levels between fibroblasts and ESCs into four tiers: 
1) expressed in one cell type only but not in the other one; and differences in gene 
expression levels between the two cell types is 2) greater than 10 fold changes 
(FC), 3) 5 to 10 FC, and 4) 2 to 5 FC (Figs. 1C-F). The first tier includes activatome 
and erasome as defined above, representing the most radical reprogramming. The 
remaining three tiers are designated as dramatic, moderate, and mild 
reprogramming. Our data show that the activatome includes 1,788 
genes/transcripts equivalent to 13.1% of fibroblast transcriptome (Figs. 1D, 1F, 
1G, and Tables S2 and S3), while the erasome contains 1,071 genes/transcripts, 
representing 7.8% of fibroblast transcriptome (Figs. 1C, 1E, 1G, and Table S2 and 
S3). Combining these two groups, the radical reprogramming tier includes 2,859 
genes/transcripts, equivalent to 20.9% of the fibroblast transcriptome. There are 
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425 genes/transcripts in the category of dramatic downregulatome, and 210 
genes/transcripts in dramatic upregulatome. The dramatic tier therefore includes 
635 genes/transcripts, representing 4.6% of the fibroblast transcriptome. Thus, 
3,494 genes/transcripts have to be reprogrammed dramatically (10 fold above) or 
radically, equivalent to 24% of the ESC transcriptome and 25.5% of the fibroblast 
transcriptome. From these data, it is evident that pluripotency reprogramming is 
both extensive and intensive involving 57% the size of fibroblast transcriptome and 
a large activatome and erasome. 

As expected, some well-known pluripotent genes [10] are among the activatome, 
for examples, CLDN6, DPPA4, GDF3, L1TD1, LEFTY1, LEFTY2, LIN28A, LRRN1, 
NANOG, NODAL, PRDM14, SALL3, SOX2, TDGF1, TERT, ZFP42, ZIC5, and 
ZSCAN10 (Table S2). Unexpectedly, the master pluripotent gene, OCT4A 
(POU5F1), is not in the list of activatome, but is in the dramatic upreprogramome. 
This is because we used FGF2 in our culture of fibroblasts and FGF2 has been 
reported to stimulate OCT4 expression [11]. OCT4 has a mean read counts of 124 
in our fibroblasts, which is above the cutoff of 50.  Some other established 
pluripotency genes are among the dramatic upregulatome, for examples, 
DNMT3B, SALL2, and SALL4 (Table S2). PODXL, the gene encoding a carrier 
protein for the two widely used pluripotency surface markers TRA-1-60 and TRA-
181 [12], is within the dramatic reprogramome. MYC, one of the original 
reprogramming factors [3, 5, 13], is a member of the moderate upregulatome. 
Interestingly, KLF2, KLF4 and KLF5, the well-known pluripotency genes in mouse 
[14], are all among the human downregulatome rather than upregulatome, with 
KLF2 unexpectedly in the erasome (Table S2). Although KLF4 is one of the four 
canonical reprogramming factors [3, 5, 13] and plays a role in human pluripotency 
[15], it is widely expressed in various types of cells and tissues [16]. Of note, KLF4 
was first cloned from fibroblasts [17].

Extensive reprogramming in WNT pathway

To understand the unique features that have to be established during 
reprogramming, we further conducted gene ontology (GO) analyses with the 
activatome using the PANTHER platform [18]. Out of the 1,549 uniquely mapped 
genes, 1,405 genes fall into the unclassified group. Nevertheless, 275 genes in the 
activatome can be assigned to at least one PANTHER pathway. Out of the 163 
pathways available in PANTHER databases, 100 are represented in the 
activatome, and 76 pathways are over-represented (Table S4). Among them, 29 
pathways have a p value less than 0.05 and 19 pathways have FDR less than 0.05 
(Table S4). Fig. S1A shows the top 20 pathways over-represented by activatome 
in terms of p values. Of note, 47 genes in WNT signaling pathway are in the group 
of activatome (p = 2.58 x 10-5) (Fig. 2A, Tables S4 and S5). Other interesting 
pathways include cadherin signaling (33 genes, p = 1.3 x 10-6), FGF signaling (18 
genes, p = 0.01), and VEGF signaling (12 genes, p = 0.01). Considering that a 
large number of genes in WNT pathway are represented by the activatome, we 
further analyzed the WNT-pathway genes in the upreprogramome. Surprisingly, 
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the upreprogramome includes 87 WNT-pathway genes (p = 5.62 x 10-4) (Fig. 2C, 
and Table S5). This prompted our further pathway analyses with erasome and 
found that it contains 19 WNT-pathway genes (Fig. 2B, and Table S5). We then 
analyzed the full downreprogramome and found that it contains 56 WNT-pathway 
genes (Fig. 2C, and Table S5). Therefore, genes in WNT pathways should be 
intensely and extensively reprogrammed (also see quantification below). 

A mathematic model for quantification of reprogramming

Pluripotency reprogramming is intensive and extensive, but there is no available 
method to quantitate reprogramming. After establishment of the reprogramome 
concept that allows for profiling of reprogramming genes, we further reasoned that 
the total expanse of pluripotency reprogramming could be measured by total 
numbers of genes to be reprogrammed along with the degree of reprogramming 
for each gene. The degree of reprogramming for each gene is reflected by its fold 
change (FC) in transcription. To distinguish down- from up-reprogramming, we 
propose to use the log2-transformed fold change (LFC). For gene i, the log2-
transformed fold change to achieve for complete reprogramming is Gi = log2(FCi) 
(Fig. 3A). We assume that under an ideal condition (for example, reprogramming 
that happens in a fertilized egg, or reprogramming in a reconstructed egg with a 
transferred somatic nucleus into a mature oocyte [19]), every gene has the same 
reprogramming constant. Given a reprogramming constant of , the amount (or 
intensity) of reprogramming for gene i is: Ri = Gi (Fig. 3A). The total 
reprogramming (reprogramming expanse) for the set of genes that have to be 
upregulated is Rup = Gi (Fig. 3B). The total reprogramming for the set of genes 
that have to be downregulated can be calculated similarly, but Rdown is a negative 
value. The reprogramming constant  can be arbitrarily set as 1 for clarity, and the 
formulas become Rup = Gi and Rdown = Gi (Fig. 3C). The total amount of 
reprogramming (total reprogramming expanse) would be: R = Rup + |Rdown| (Fig. 
3D). Based on this model, we have calculated the reprogramming expanse of 
human fibroblast reprogramming into pluripotency. The Rdown is -11,096.4 LFC; Rup 
is 14,936.4 LFC, and the total reprogramming expanse R is 26,032.8 LFC (Table 
S3, and Fig. 3E). We also calculated the amount of reprogramming for the 
erasome and activatome to be -5,244.6 LFC and 10,190 LFC, respectively (Table 
S3). Rdown is 74.3% of Rup, while the amount of reprogramming for erasome is 
51.5% that of activatome. These data indicate that upreprogramming is more 
dramatic than downreprogramming. 

Since WNT pathways are intensely and extensively reprogrammed, we also 
quantitate the amount of reprogramming in WNT pathways. The WNT 
downreprogramming RWNT-down is -166.8 LFC while the RWNT-up is 356.1 LFC (Fig. 
2C). These results indicate that the components of WNT pathways are 2.1 times 
more upreprogrammed than downreprogrammed. The total WNT reprogramming 
RWNT is 522.9 LFC, representing 2% of the overall reprogramming (Table S3). 

Profiling and quantification of reprogramming in cell morphorgenesis
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To demonstrate further the utility of our quantification method for reprogramming, 
we analyzed genes involved in cellular morphogenesis and its regulation. 
Conversion of fibroblasts into iPSCs involves dramatic changes in cell morphology 
and establishes a unique cellular colony characteristic of PSC culture. In fact, high 
quality iPS cell lines can be established by selecting colonies with the 
characteristic cell and colony morphology without a reporter [7, 8, 20], and 
automatic imaging system can be used for identification of high quality iPSC 
colonies [21]. GO analyses of reprogramome reveal that 22 and 23 such GO terms 
are associated with the downreprogramome and upreprogramome, respectively 
(Table S6). Fig. 4B and 4D shows the top 10 GO terms under the category of 
cellular morphogenesis for upregulatome and downregulatome, respectively. 
There are 269 genes with roles in cellular morphogenesis that have to be 
downregulated at least 2 fold; and 252 such genes are in the upregulatome (Fig.s 
4A, 4C, 4E). Thus, a total of 521 genes with roles in cellular morphogenesis have 
to be reprogrammed for pluripotency establishment, representing 3.8% of 
fibroblast transcriptome (Table S3 and S7). Rmorph-down is -859.5 LFC while Rmorph-

up is 1,133 LFC, and the total reprogramming in cellular morphogenesis Rmorph is 
1,993 LFC, representing 7.7% of the overall reprogramming (Fig. 4E, and Table 
S3). These two data indicate that genes in cellular morphogenesis have to be 
reprogrammed more in intensity than extensiveness (7.7% vs 3.8%). That is, the 
average reprogramming of each genes in cellular morphogenesis (3.8 LFC, 
equivalent to 13.9 FC for each gene) is higher than that for the entire 
reprogramome (3.3 LFC, equivalent to 9.9 FC for each gene). Although there are 
more genes in cellular morphogenesis that have to be downregulated, the 
upreprogramming for such genes are more pronounced since Rmorp-down is only 
75.9% of Rmorph-up. In addition, the erasome includes 56 genes with roles in cellular 
morphogenesis while the activatome contains 130 genes with such roles (Table 
S7 and Fig. S2), indicating that upreprogramming plays a more critical role in the 
establishment of cell and colony morphology of iPSCs. In sum, there is intensive 
and extensive reprogramming in genes with roles in cellular morphogenesis. 

Discussion

In this report, we have developed a new concept, reprogramome. This is 
analogous to transcriptome, epigenome, and kinome. It is more analogous to 
interferome [22]. This novel concept allows for fine profiling of genes to be 
reprogrammed. Further GO analyses, in combination with reprogramome profiling 
will provide many more insights into reprogramming. This is important because it 
is difficult to study the molecular mechanism because of very low efficiency of 
pluripotency reprogramming using the current protocols [5, 13]. With less than 1% 
of cells going to the pluripotent state, the signals we gain from the reprogramming 
population are mostly noise. For example, using our concept of reprogramome we 
were able to reveal that WNT pathways have to be extensively and intensively 
reprogrammed, and that the reprogramming is complicated although 
upreprogramming is predominant. This is not surprising because WNT pathways 
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regulate various cellular and developmental processes. WNT pathways are 
complicated. There are canonical and at least two non-canonical WNT pathways, 
and these are interconnected. In the human genome there are 19 WNT ligands, 
more than 15 WNT receptors or co-receptors, and many downstream effectors 
[23]. WNT roles in reprogramming and pluripotency are poorly understood and 
warrant further investigation.

 Another case study using reprogramome concept is the genes with roles in cellular 
morphogenesis and its regulation. We revealed that as high as 7.7% 
reprogramming involves genes that control and/or regulate cellular 
morphogenesis. This is also not surprising because iPSC generation involves 
dramatic changes in cellular morphology, and requires the establishment of strong 
cell-cell interaction among iPSCs and formation of a characteristic pluripotency 
colony.  Our results are in agreement with a report that 1,454 genes were related 
to unusual colony morphology of human PSCs [24]. The reprogramome for genes 
in morphogenesis should be much greater because we focused on cellular 
morphogenesis and excluded genes for morphogenesis of tissues and organ in 
our current analyses. 

With the concept of reprogramome, here we further developed a mathematic 
model to quantitate reprogramming. This also allows for quantification of the sub-
reprogramomes including upreprogramome, downreprogramome, erasome, and 
activatome, as well as reprogramming for a specific pathway (e.g. WNT pathway), 
cellular functions or processes (e.g., cellular morphogenesis). 

Our concept and methods can be applied to pluripotency reprogramming from 
other starting cell types, as well as reprogramming to various lineages such as 
neural and cardiac reprogramming. Furthermore, our concepts and methods can 
be applied to study the epigenetic changes required for a complete conversion of 
cell fates, i.e., epireprogramome. Of note, the same concept and methods may be 
applied to study the differences in transcription and epigenetics between any two 
types of cells including differences between cancer and their corresponding normal 
cells. 

Materials and methods

Cell lines and tissue culture 

We used and reported to our sponsors two NIH-registered human embryonic stem 
cell lines meeting federal and university regulations. We culture human embryonic 
stem cells (H1 and H9) in the chemically defined E8 media [25]. Human foreskin 
BJ fibroblasts (ATCC, CRL-2522) were cultured in fibroblast medium: DMEM, 10% 
heat-inactivated FBS, 0.1 mM 2-mercaptoethanol, 100 U ml−1 penicillin, 
100 μg ml−1 streptomycin, 0.1 mM MEM NEAA and 4 ng ml−1 human bFGF.

RNA preparation 
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Cells were harvested with Trizol reagent and stored at -80 °C until use. Total RNA 
was extracted using the Direct-zol Miniprep kit (Zymo Research, R2052). The four 
RNA samples of fibroblasts for RNA-seq were harvested on different days at 
different passage number. The three ESC RNA samples for RNA-seq were from 
two different ESC lines. For the repeat RNA samples of H1, they are harvested 
from different passages on different days. 

RNA-Seq

mRNA-sequencing was carried out on the Illumina HiSeq2500 following the 
established protocols. RNA-seq library preparation was done using the Agilent 
SureSelect Stranded kit (Agilent, Santa Clara, CA) as per the manufacturer’s 
instruction. The libraries were quantitated using qPCR in a Roche LightCycler 480 
with the Kapa Biosystems kit for library quantitation (Kapa Biosystems, Woburn, 
MA) both immediately prior to and after library construction. We conducted paired 
end 50-bp sequencing for downstream analyses.

Bioinformatics 

All samples contained a minimum of 28.1 million reads with an average number of 
40.1 million reads across all biological replicates. The FASTQ files were uploaded 
to the UAB High Performance Computer cluster for bioinformatics analysis with the 
following custom pipeline built in the Snakemake workflow system (v5.2.2) [26]: 
first, quality and control of the reads were assessed using FastQC, and trimming 
of the bases with quality scores of less than 20 was performed with Trim_Galore! 
(v0.4.5). All samples passed initial FASTQ QC, which included good quality scores 
through the read length and minimal adapter contamination. Following trimming, 
the transcripts were quasi-mapped and quantified with Salmon [27] (v0.12.0, with 
`--gencode` and `-k 21` flags for index generation and `-l A, `--gcBias` and `--
validateMappings` flags for quasi-mapping) to the hg38 human transcriptome from 
Gencode release 29. The average quasi-mapping rate was 88.8% and the logs of 
reports were summarized and visualized using MultiQC [28] (v1.6). The 
quantification results were imported into a local RStudio session (R version 3.5.3) 
and the package “tximport” [29] (v1.10.0) was utilized for gene-level 
summarization. Differential expression analysis was conducted with DESeq2 
package [30](v1.22.1). 

We prepared heat maps in RStudio using the package of pheatmap [31]; box plots 
with the package of ggplot2; ladder plots with the package of plotrix. 

Read count cutoff of DESeq2 data for expressed gene 

We used two types of cutoffs for DESeq2 read counts for genes considered 
expressed, mean read count and individual read count cutoff. In DESeq2 
normalization, we previously used a mean normalized read counts of 50 for the 
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cell type in question as a cutoff for a gene to be considered active [7, 8]. This cutoff 
is supported by our current data (table S1). To confirm our selection of 50 as the 
mean-read-count cutoff in our data used in this manuscript, we manually selected 
three groups of genes based on our experience and previous microarray data [10], 
pluripotency (26 genes), fibroblast (21 genes), and double negative genes (20 
genes), the last of which are known not to be expressed in both human fibroblasts 
and ESCs. For all these 67 genes except for POU5F1 (i.e., OCT4), the mean 
normalized DESeq2 read counts range from 0 to 48.6 in the cell type in which they 
are not expressed. Most of these read counts are below 30, and only 2 of those 
are over 40. However, OCT4 has a mean DESeq2 read counts of 124.6 in human 
fibroblasts. This is because we used FGF2 in our culture of fibroblasts. FGF2 was 
reported to stimulate expression of OCT4 in fibroblasts [11]. The RNA-seq signals 
of OCT4 provide additional evidence that our RNA-seq is very sensitive and of high 
quality. In addition, many well-known pluripotency genes have read counts in the 
lower half of three-digit numbers, for examples, DPPA2 (254), GDF3 (272), 
LEFTY2 (431), and NODAL (454). These read counts are in agreement with our 
previous microarray data, which displayed low levels of expression for these genes 
[10]. As an autocrine factor regulated by OCT4 and SOX2 in human ESCs with a 
role in ESC self-renewal [32], FGF4 is considered a gene characteristic of hPSCs 
based on a survey of 59 human ESC lines from 17 laboratories by The International 
Stem Cell Initiative [33] because its expression strongly correlates with that of 
NANOG. But FGF4 expression level is very low [33] serving a reference gene for 
the lower limit. Our data with FGF4 are in agreement with that of The International 
Stem Cell Initiative, and the averaged normalized mean read counts for FGF4 for 
human ESCs are 80.6 versus 0.3 for fibroblasts. Therefore, the mean DESeq2 
read counts of 50 is a reasonable cutoff (for example, this cutoff retains FGF4 as 
an expressed gene but CD19 and CGB7 as inactive genes in human ESCs) (see 
table S1). To be stricter in selecting reliable expressed genes, we further used an 
individual-read-count cutoff of 10.  That is, we further excluded genes from the list 
obtained using the above criteria, for which the individual normalized read count is 
less than 10 for any of the repeat experiments. 

Additional selection criteria 

In addition to the read count cutoffs described above, we used other strict criteria 
to define the reliable reprogramomes. We use q values rather than p values. We 
used q values of <0.01 rather than <0.05. Furthermore, we included genes only 
with a least 2 fold of differences in expression levels rather than 1.5 fold as a cutoff. 

Supplementary Information

Supplemental information includes two Fig.s and seven tables.
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Fig. 1. Profiling human fibroblast-to-iPSC reprogramome by RNA-seq. 
(A) Heat maps showing differences of gene expression levels with 2 fold or higher 
expression in human fibroblasts. Log2 scale. Fibroblast, n=4; ESC, n=3. q<0.01. 
(B) Heat maps showing differences of gene expression levels with 2 fold or higher 
expression in human ESCs. Log2 scale. Fibroblast, n=4; ESC, n=3. q<0.01. 
 (C) Distributions of differentially expressed genes into different levels of fold 
changes for fibroblast. 
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(D) Distributions of differentially expressed genes into different levels of fold 
changes for ESC genes. 
(E) Numbers of genes in different groups of reprogramming levels for 
dowregulatome. 
(F) Numbers of genes in different groups of reprogramming levels for 
upregulatome. 
(G) Relative size to fibroblast transcriptome for the different sub-reprogramomes.  

Fig. 2. Profiling of WNT sub-reprogramome, and quantification of 
reprogramming in WNT pathways. 
(A) Box plot showing WNT genes that have to be activated de novo for iPSC 
generation. Red lines in A and B mark the threshold for expressed genes.
(B) Box plot showing WNT genes that have to be shut off for iPSC generation. 
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(C) Total reprogramming for genes in WNT pathways. Unit for y-axis is LFC. The 
number within the waterfall plot is the reprogramming values in LFC calculated 
using our mathematical model. Numbers of WNT genes to be down- and up-
reprogrammed are indicated along the waterfall plots. 

Fig. 3. A mathematical model for quantification of reprogramming under an 
ideal condition (e.g., in a fertilized egg or a re-constructed egg with a somatic 
nucleus transferred into an enucleated oocyte). 
(A) A mathematical model for calculating reprogramming amount of an individual 
gene. 
(B) Mathematical models for calculating total reprogramming for 
downreprogramming (green) and upreprogramming (red). 
(C) A mathematical model for calculating the total reprogramming when an 
arbitrary reprogramming constant a is set to be 1. The x-axis is number of genes 
(from 1 to n) ordered based on log2(FC) values from low to high.
(D) The formula for calculating the total reprogramming. 
(E) Waterfall plots showing amount of reprogramming of human fibroblast 
reprogramming into pluripotency.
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Fig. 4. Gene sets in cellular morphogenesis that needs to be reprogrammed. 
(A) Heat maps showing genes regulating cellular morphogenesis that have to be 
upreprogrammed.
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(B) Top GO terms under the category of cellular morphogenesis for 
upreprogramome. 
(C) Heat maps showing genes regulating cellular morphogenesis that have to be 
downreprogrammed.
(D) Top GO terms under the category of cellular morphogenesis for 
downreprogramome. 
(E) Quantification of reprogramming for genes with roles in cellular 
morphogenesis.
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Supplemental Fig. 1. Top PANTHER pathway GO terms for activatome and 
erasome. 
(A) activatome. (B) erasome. Ranked by p values from low to high. 
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Supplemental Fig. 2. Ladder plots showing expression differences for genes with 
roles in cellular morphogenesis in the erasome (A) and activatome (B). The red 
horizontal lines indicate the log2(read counts) threshold for genes considered as 
being expressed. Labeled are genes with the lowest and highest read counts. 
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