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Abstract  
 
Background  

It is not clear whether major depression (MD) is a categorical disorder or if depressive 

symptoms exist on a continuum based on severity. Observational studies comparing sub-

threshold and clinical depression suggest MD is continuous, but many do not explore the full 

continuum and are yet to consider genetics as a risk factor. This study sought to understand 

if polygenic risk for MD could provide insight into the continuous nature of MD. 

 

Methods  

Factor analysis on symptom-level data from the UK Biobank (N=148,957) was used to derive 

continuous depression phenotypes which were tested for association with polygenic risk 

scores for a categorical definition of MD (N=119,692). 

 

Results  

Confirmatory factor analysis showed a five-factor hierarchical model, incorporating 15 of 

the original 18 items, produced good fit to the observed covariance matrix (CFI = 0.992, TLI = 

0.99, RMSEA = 0.038, SRMR = 0.031). MD PRS associated with each factor score 

(standardised ß range: 0.057 – 0.064) and the association remained when the sample was 

stratified into case- and control-only subsets. The case-only subset had an increased 

association compared to controls for all factors, shown via a significant interaction between 

lifetime MD diagnosis and MD PRS (p-value range: 2.28x10
-3

 - 4.56x10
-7

).   
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Conclusions  

An association between MD PRS and a continuous phenotype of depressive symptoms in 

case- and control-only subsets provides support against a purely categorical phenotype; 

indicating further insights into MD can be obtained when this within-group variation is 

considered. The stronger association within cases suggests this variation may be of 

particular importance.   
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Introduction  
 
Major Depression (MD) is a common psychiatric disorder that affects more than 300 million 

people worldwide
 
(World Health Organization, 2017). The Diagnostic and Statistical Manual 

of Mental Health Disorders-5 (DSM-5)
 
(American Psychiatric Association, 2013) and the 

International Classification of Disease 11 (ICD-11)
 
(World Health Organization, 2018) 

implicitly assume a categorical model for MD, whereby a collection of symptoms reflects a 

common dysfunction not present in healthy individuals
 
(Helzer, Kraemer & Krueger, 2006; 

Kraemer, Noda & O’Hara, 2004). An alternative view is that MD is dimensional, existing 

along a continuum. Under this assumption, diagnostic boundaries using DSM-5 and ICD-11 

criteria represent an arbitrary threshold along the distribution to partition ‘affected’ from 

‘unaffected’ individuals
 
(Vares, Salum, Spanemberg, Caldieraro & Fleck, 2015). If MD is 

dimensional, dichotomisation will reduce the power of a study to characterise the 

phenotype. Simulations showed that categorising a right skewed phenotype according to a 

clinical cut-off reduced the power to detect a genetic effect explaining 2% of the variance 

from 90.9% to 9.2%
 
(van der Sluis, Posthuma, Nivard, Verhage & Dolan, 2013).   

 
To compare dimensional and categorical models, studies have focused on clinical correlates 

between sub-threshold and clinical MD, arguing that a linear trend between the two groups 

supports a dimensional phenotype (reviewed in Solomon, Hagga & Arnow, 2001;
 
Rodríguez, 

Nuevo, Chatterji & Ayuso-Mateos, 2012). These findings support a dimensional classification 

of MD, indicating an association between subthreshold MD and increased risk for disability, 

impairment, comorbidities and health care use (Hybels, Blazer & Pieper, 2001; Rucci et al., 

2003; Cuijpers, de Graaf & van Dorsselaer, 2004) and a linear trend between MD severity 
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and risk of a future episode (Kessler, Zhao, Blazer & Swartz, 1997; Kendler & Gardner, 

1998).  

 

There are three key limitations in the literature. First, by grouping individuals into sub-

threshold and clinical MD, the full continuum of the phenotype is not explored. Second, 

grouping individuals in this way fails to account for symptomatic heterogeneity. According 

to the DSM-5, one of two ‘core’ symptoms - low mood or anhedonia – in combination with 

any other four symptoms meets the criteria for a MD diagnosis
 
(American Psychiatric 

Association, 2013). This gives rise to a possible 227 symptom profiles, with evidence that 

many of these profiles present clinically (Olbert, Gala & Tupler, 2014; Zimmerman, Ellison, 

Young, Chelminski & Dalrymple, 2015). Finally, the symptoms assessed all follow DSM 

criteria for MD. Restricting the analysis in this way omits potentially important information, 

for example, it is known MD is highly comorbid with other disorders including generalised 

anxiety disorder (GAD)
 
(Moffitt et al., 2007). 

 
Previous studies have rarely compared dimensional and categorical phenotypes of genetic 

risk. A meta-analysis of twin studies involving 21,000 individuals estimated the heritability of 

MD to be 37% (95% CI: 31%–42%)
 
(Sullivan, Neale & Kendler, 2000). A recent genome-wide 

association study (GWAS) using a broad definition of MD have identified 102 independent 

loci
 
(Howard et al., 2019). These studies confirm a polygenic architecture for MD, where 

genetic predisposition comprises many common genetic variants of small effect that 

additively increase risk
 
(Sullivan, Daly & O’Donovan, 2012). GWAS results can be used to 

determine a single measure of genetic liability from common variants to MD, the polygenic 

risk score (PRS), calculated by summing the number of risk alleles carried by an individual, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2020. ; https://doi.org/10.1101/2020.02.25.962704doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.962704
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

weighted by their effect size
 
(Wray et al., 2014). How PRS associates with various 

characterisations of MD can be used to inform our nosological understanding of the 

disorder.   

 
This study aimed to assess evidence for a dimensional vs categorical basis of MD using 

symptom and genetic data. Exploratory and confirmatory factor analysis were used to 

construct multiple dimensional phenotypes for MD within the UK Biobank, a volunteer-

based, national health resource.  These phenotypes were tested for association with MD 

PRS - calculated according to a categorical definition. Individuals were stratified by self-

reported MD status to explore how the association differed between MD cases and 

controls.  
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Methods  
 
Participants 
 
Participants were from the UK Biobank, a national health resource of 502,655 individuals 

aged between 37 and 73 at the time of recruitment (2006 - 2010)
 
(Bycroft et al., 2018). In 

2016, participants were offered an online Mental Health Questionnaire (MHQ) which 

157,336 participants voluntarily completed
 
(Davis et al., 2020).  

 
Item Selection for the Dimensional Phenotypes 
 
Eighteen items were selected from the MHQ to construct the dimensional phenotypes for 

MD. This included all items from the Patient Health Questionnaire 9 (PHQ-9) - a measure of 

depressive symptoms over the last two weeks which correspond to the DSM criteria for MD
 

(Kroenke, Spitzer & Williams, 2001), all items from the General Anxiety Disorder 7 (GAD-7)
 

(Spitzer, Kroenke & Williams, 2006), relating to symptoms of anxiety over the last two 

weeks, and two items from the subjective well-being questionnaire, on general happiness 

and how meaningful they believe their life to be. For a detailed list of these items, see Table 

S1. 

 
148,957 MHQ participants provided a response to all items above. This sample was 

randomly and equally split into ‘training’ (N=74,478) and ‘test’ (N=74,479) sub-samples. The 

training sample was used to develop a factor model with good fit, and the test sample was 

used to internally validate this model using exploratory and confirmatory factor analysis. 

 
Exploratory factor analysis 
 
Polychoric correlations were computed for the 18 ordinal items

 
(Carroll, 1961) and ordinal 

alpha
 
(Gadermann, Guhn & Zumbo, 2012) Keiser Meyer-Olkin (KMO)

 
(Kaiser, 1974) and 
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Bartlett’s test of sphericity
 
(Bartlett, 1950) were computed. Factor analysis was considered 

an acceptable method if ordinal alpha and KMO were greater than 0.80, and Bartlett’s test 

with p<0.05 in line with previous guidelines (Table S2)
 
(Gadermann et al., 2012; Beavers et 

al., 2013). 

 
Exploratory Factor Analysis (EFA) was performed using the weighted least squares method 

and factors were allowed to rotate. Parallel analysis
 
(Horn, 1965) and Velicer’s Minimum 

Average Partial test
 
(Velicer, 1976) were used to produce an upper and lower bound for the 

appropriate number of factors respectively. Based on these bounds, factor models were fit 

iteratively and compared using the criteria: Tucker Lewis Index (TLI) ≥ 0.95, Root Mean 

Square Error Approximation (RMSEA) ≤ 0.05 and a smaller Bayesian Information Criteria 

(BIC) relative to other models. The model with the best fit was retained for further testing.  

 
Items were removed according to a series of post-hoc tests using Thurstone’s analytical 

method for simple structure criteria
 
(Thurstone, 1947) to attain good model fit. Where 

multiple models demonstrated good fit, the model retaining the largest number of items 

was chosen. All analysis steps, for EFA were performed using the psych package in R 3.4.1
 

(Revelle, 2017).  

 
Confirmatory factor analysis 
 
To internally validate the EFA-derived model, confirmatory factor analysis (CFA) was 

performed in the ‘test’ sub-sample using the lavaan package in R 3.4.1
 
(Rosseel, 2012). 

Factor loadings greater than 0.3 from the EFA model were used to specify the relationships 

between latent variables and items within the CFA model. As in EFA, factors were allowed to 

rotate. In addition to the model fit metrics used in EFA, the comparative fit index (CFI) and 
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standardized root mean square residual (SRMR) were calculated. Models with CFI ≥ 0.95 and 

SRMR ≤ 0.05 were considered a good fit.  

 

Deriving the Phenotype - Factor Score Calculation 

Following confirmation of the proposed model, the selected model was fit to the full sample 

using CFA, and factor scores were computed for each factor (Figure 1). 

 
Polygenic Risk Score Calculation 
 
MD PRS were constructed using PRSice v2

 
(Euesden, Lewis & O’Reilly, 2014) in unrelated 

individuals of European ancestry (N = 119,692) using genotype data and quality control 

procedures previously described (Supplementary Methods)
 
(Bycroft et al., 2018; Coleman et 

al., 2020). Summary statistics from Wray et al. (2018) with 23andMe and UK Biobank 

samples removed (Ncases=45,591, Ncontrols= 97,674) were used as the base dataset. To 

account for linkage disequilibrium, clumping was performed so that single nucleotide 

polymorphisms (SNPs) had an r
2
 < 0.1 and a 250kb window from other SNPs. MD PRS were 

then calculated across 11 p-value thresholds (p < 5 x 10
-8

, p < 1 x 10
-5

, p < 0.001, p < 0.01, p < 

0.05, p < 0.1, p < 0.2, p < 0.3, p < 0.4, p < 0.5, p < 1). PRS for height were used as a negative 

control, and were calculated in the same way as MD PRS, using summary statistics from 

Wood et al. (2014) (N=253,228) as the base dataset.  

 
Association Testing 
 
Factor scores and MD PRS were standardised, and linear regression was performed using 

the 119,692 MHQ participants. Each factor score was regressed on MD and height PRS with 

the first 6 genetic principal components, genotyping batch and assessment centre fitted as 

covariates.   
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Stratification by Major Depression diagnosis 
 
MD cases and controls were identified using the Composite International Diagnostic 

Interview - Short Form (CIDI-SF), a structured self-report questionnaire focusing on 

depressive symptoms during an individual’s worst episode of depression (Supplementary 

Methods)
 
(Kessler, Andrews, Mroczek, Ustun & Wittchen, 1998). Individuals who did not 

complete the CIDI-SF, or who were removed due to the exclusion criteria, were assigned an 

‘unknown’ status, resulting in 60,760 controls, 27,692 cases and 31,240 unknowns.  

 
Participants were stratified into cases and controls and the same set of linear regressions 

repeated in each group. To test for group differences, cases and controls were combined 

(N=88,452) and interaction terms for MD PRS and case-control status as well as for MD PRS 

and all covariates were placed into the linear regression model. Cases were further stratified 

into single episode and recurrent cases with recurrence defined as having self-reported 2 or 

more lifetime depressive episodes and the interaction test was re-performed. In all 

interaction tests, controls were set as the reference for MD status.  

 
 
As many of the tests are highly correlated, a method proposed by Nyholt (2004) was used 

to correct for multiple testing. The ‘poolR’ package
 
(Cinar & Viechtbauer, 2016) in R 3.6.1 

showed the effective number of independent tests for the factor scores and MD PRS was 

14, giving a Bonferroni corrected α<0.0036 (0.05/14).   
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Results  
 
Exploratory Factor Analysis 
 
Initially, a six-factor model produced the best fit for the 18 items from the PHQ-9, GAD-7 

and the two subjective well-being questions (Table S3). Model fit statistics did not surpass 

pre-defined thresholds (TLI = 0.973, RMSEA = 0.054), suggesting either poor discrimination 

or a lack of shared variance for particular items. 

 

To improve model fit, items were removed according to a series of post-hoc tests based on 

the loadings from this six-factor model
 
(Table S4) (Thurstone, 1947).  The following criteria 

produced a model with a good fit to the data that retained the greatest number of items: 

remove items with no factor loadings above 0.4, remove items with loadings to multiple 

factors above 0.3, retain MD symptoms from the PHQ-9 that would otherwise qualify for 

removal except for an item for feelings of inadequacy (test 6; Table S4). These criteria 

retained 15 of the original 18 items and a five-factor model produced a model with good fit 

(TLI = 0.981, RMSEA = 0.048). Items relating to trouble relaxing, irritability and feelings of 

inadequacy were excluded.    

 
Confirmatory Factor Analysis 
 
In contrast to EFA which allows all items to load on all factors, CFA specifies the relationship 

between items and factors directly and provides a more stringent test for the proposed 

model
 
(Thompson, 2004). CFA within the test sub-sample (N = 74,479) confirmed a good fit 

to the observed covariance matrix (CFI = 0.995, TLI = 0.993, RMSEA = 0.033, SRMR = 0.025). 

As correlations between the five factors were moderate to high (r = 0.574 – 0.848), a second 

order latent variable was included in the model; the model fit remained within the pre-
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specified thresholds (CFI = 0.992, TLI = 0.99, RMSEA = 0.038, SRMR = 0.031). Fit statistics did 

not change when fitting the model into the full sample (N = 148,957) using CFA (Table S5).  

 
In the final model, the five first-order factors reflected feelings of anxiety, psychomotor-

cognitive impairment, neurovegetative states, mood and subjective well-being. The second-

order factor, representing the correlation between these factors, was termed the 

‘Internalising’ factor (Figure 2). Calculated as the average squared factor loading, the 

variance explained by each first order factor ranged from 49% - 70%. The internalising factor 

explained 72% of the variance for all first-order factors. The high degree of variance 

explained supports the use of these factors as phenotypes for dimensional MD.    

 
Major Depression Polygenic Risk Score Associates with an Individual’s Factor Score 
 
MD PRS were associated with each of the factor scores (ß range: 0.056 – 0.064; p-value 

range: 2.57x10
-82 

- 1.89x10
-107

; MD PRS p-value threshold: pT < 0.3) indicating their ability to 

differentiate between MD severity regardless of diagnostic status. While the effect sizes 

were similar across factors (Table S6), the two factors with the lowest association with MD 

PRS related to feelings of anxiety and subjective well-being (Figure 3). In contrast, height 

PRS was not associated with any factor score (p > 0.05) at any p-value threshold (Table S7).  

 

Stratification by case/control status 
 
MD PRS remained associated with factor scores following stratification into case- and 

control-only subgroups (controls: ß range: 0.022 – 0.025; p-value range: 1.89x10
-13 

- 1.43x10
-

17
; cases: ß range: 0.042 – 0.055; p-value range: 7.54x10

-10 
- 8.95x10

-17
; MD PRS p-value 

threshold: pT < 0.3). Figure 3 shows the beta coefficients for MD PRS on each factor for each 

group (cases, controls and unknowns) (Tables S8-S10). The p-value thresholds of MD PRS 
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with the largest effect size differed across factors between cases and controls (case 

threshold: pT < 0.2; control threshold: pT < 1) suggesting SNPs associated with MD contained 

greater signal for dimensions within cases whereas dimensions within controls required 

additional SNPs with weaker evidence for association in the base data. 

 
MD PRS had an attenuated effect in controls relative to cases (Figure 3). To formally test for 

a differential genetic effect, factor scores were regressed on MD PRS and MD diagnostic 

status (case or control; N=88,452) with an interaction term. An interaction was detected for 

all factors (ß range: 0.020 – 0.031; p-value range: 2.28x10
-3 

- 4.56x10
-7

;
 
MD PRS p-value 

threshold: pT < 0.3; Table 1) indicating the genetic contribution is potentiated in cases 

relative to controls.  

 
Cases were stratified into single episode (N=10,590) and recurrent cases, reporting 2 or 

more lifetime depressive episodes (N=10,726). The interaction test was repeated with 

controls as the reference category. No interaction effect was detected between controls 

and single episode cases (p > 0.05) for any factors. A nominally significant interaction was 

found between controls and recurrent cases for all factors, except anxiety and subjective 

well-being. No results survived correction for multiple testing (Table 2).  
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Discussion  
 
The aim of this study was to explore polygenic associations across the continuum of MD and 

test if this association differed between cases and controls. Using the UK Biobank, this study 

shows polygenic liability for a categorical MD phenotype
 
(Wray et al., 2018) also associates 

with a dimensional model of depressive symptoms. Moreover, this finding holds in analyses 

stratified by case-control status. This suggests PRS contains information over and above the 

risk of becoming a case and may also be used to indicate severity across the continuum.  

 
To account for symptom level heterogeneity within the dimensional phenotype, this study 

used factor analysis to derive a 5-factor hierarchical structure for MD. Previous studies 

investigating the latent structure of MD have produced multiple factor solutions. One and 

two factor models have been shown to produce the best fit for the PHQ-9, depending on 

the sample selected, i.e. case-only or population cohort (Elhai et al., 2012; Kocalevent, Hinz 

& Brähler, 2013). The 5-factor hierarchical model derived in this study has a high level of 

agreement for depressive symptoms with a model proposed by Kendler, Aggen & Neale 

(2013) in a population based sample of 7500 twins which showed three uncorrelated 

genetic factors best decompose the phenotypic variance in lifetime MD symptoms. Our 

model differed in two ways, firstly the symptom of feelings of worthlessness or excessive 

guilt was not included; and suicidal thoughts loaded on the mood factor, whereas it loaded 

on the psychomotor/cognitive factor in the model proposed by Kendler et al., (2013). Our 

study may therefore be considered a quasi-replication that used phenotypic rather than 

genetic covariance, in a substantially larger dataset (N=119,692), with current in contrast to 

lifetime symptoms, to provide support for the multidimensionality of MD. 

Multidimensionality also indicates a deeper level of complexity in MD that is left unexplored 
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when using either sum-scores of symptoms or a case-control design. A logical extension 

would be to use this multidimensionality to determine which genetic variants influence each 

factor, however, the high loadings of the 5 first order factors onto the second order 

‘internalising’ factor suggests a significant proportion of this complexity is shared. As a 

result, it is likely that larger sample sizes will be required to identify genetic variants specific 

to a given factor.  

 
The separation between symptoms of MD, anxiety and subjective well-being is noteworthy. 

The GAD-7 has previously been shown to possess a unidimensional factor structure
 
(Löwe et 

al., 2008) distinct from symptoms of MD
 
(Spitzer et al., 2006). Compared with the ‘core MD 

factors’, an interaction between controls and recurrent MD with MD PRS was not detected 

for the factors relating to anxiety and subjective well-being at the level of nominal 

significance. This may suggest that although these symptom dimensions contain a highly 

pleiotropic genetic component
 
(Purves et al., 2020), a diagnosis of MD contains a degree of 

specificity which reflects the structure suggested by the DSM and ICD. However, as no 

factors survived correction for multiple testing for the recurrent case interaction, this 

conclusion warrants further investigation.  

 
When stratified into cases and controls for MD, an attenuated association between MD PRS 

and the continuous phenotypes was evident for controls relative to cases. This is, perhaps, 

not surprising as controls were screened for the presence of any psychiatric disorders and 

high levels of current depressive symptoms (PHQ-9 sum-score < 14). As such, compared to 

cases, controls are expected to form a more homogenous group of healthy individuals, 

limiting the power for MD PRS to associate with the phenotype. Nevertheless, we still 

detected a significant association, suggesting that even in what would typically be 
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considered a healthy group, MD PRS can still differentiate the subtle differences of the 

continuous phenotype.  

 

In contrast, the effect size within cases was similar to that of the entire sample, indicating 

cases contain the majority of the signal for the dimensions. This finding has important 

implications under the assumption of a purely dimensional phenotype as it suggests 

ignoring the variation within cases, also ignores a substantial proportion of the association. 

The increased association within cases may be due to the increased variability within the 

group. Alternatively, questionnaires may be being interpreted differently between cases 

and controls for MD, perhaps due to a greater degree of familiarity with the questionnaires 

in cases. Familiarity may increase the validity of the responses as individuals are more ‘in 

tune’ with the symptoms, reducing measurement error and improving power for the study 

to detect an association.  Importantly, the different associations between cases and controls 

does not provide evidence for a categorical phenotype for MD. It is possible to derive an 

interaction in this way by sampling from the tails of the distributions of a continuous 

variable.  

 

Whilst the presence of an association within cases and controls for MD appears to 

contradict the purely categorical phenotype of MD, it does not exclude the possibility that 

MD is a categorical phenotype characterised by continuous variation within cases and 

controls. Two taxometric studies, designed specifically to detect the presence of such 

groups or ‘taxons’ provide support for this finding (Ruscio, Zimmerman, McGlinchey, 

Chelminski & Young, 2007; Ruscio, Brown & Ruscio, 2009). However, this field of research 

has consistently supported a dimensional classification, and the results appear to depend on 
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the measurement instrument used, whether the symptoms were self-report or clinically 

ascertained and age of the sample (Hankin, Fraley, Lahey & Waldman, 2005; Liu, 2016).  

 

Limitations 
 
This study has many strengths including large sample size from a volunteer-based, national 

health resource and its accounting for the heterogeneity inherent to MD, however, 

limitations remain. The items used to create the dimensional phenotypes were self-

reported, increasing the risk of misclassification and sampling-bias. It has been shown that 

participants who responded to the MHQ have a higher level of education and fewer hospital 

diagnoses inclusive of mental disorders compared with other UK Biobank participants
 

(Adams et al., 2019). This ‘healthier and wealthier’ bias may hamper our ability to 

appropriately represent cases at the most severe end of the spectrum. The same study 

showed that MHQ responders were more likely to have a family history of severe 

depression relative to non-responders
 
(Adams et al., 2019). Similarly, the influence of 

personal interest in mental health could limit the generalizability of this sample to the 

general population.          

 
This study assessed current depressive symptoms at a single time point, when the MHQ was 

completed. Studies investigating latent class trajectory of depressive symptoms have 

supported the dynamic nature of MD, with trajectories including persistently low, 

persistently high, increasing and decreasing symptoms (Kuchibhatla, Fillenbaum, Hybels & 

Blazer, 2012; Byers et al., 2012). Future studies should seek to confirm this model in 

longitudinal settings to test if it is robust to temporal invariance
 
(Widamann, Ferrer & 

Conger, 2010). Furthermore, the MHQ was completed in one sitting, and the distinction 
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between factors might reflect an artefact of time from the three questionnaires taken at 

different points in the MHQ
 
(Davis et al., 2020). 

Conclusions 
 
MD PRS supports a multi-dimensional model of MD, indicating that information is contained 

within cases and controls that would otherwise be omitted using a categorical phenotype. 

Much of this additional information is held within cases. Considering this in future study 

design may enhance the power to detect genetic associations, elevate our current 

aetiological understanding, and improve prediction through more accurate PRS. 
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Table 1: Main and interaction effects of MD PRS and MD diagnostic status on an individual’s standardised factor score. The full 
sample has been subset to only include individuals with MD diagnostic status (N=27,692 cases; N=60,760 controls).  Main effect models 

for MD PRS and MD diagnostic status include the relevant variable and covariates 
 

Factor MD PRS (Main Effect) MD diagnostic status (Main Effect) MD PRS x MD diagnostic status 

Effect Size 

(β) 

Std Error P-value  Effect Size 

(β) 

Std Error P-value*  Effect Size 

(β) 

Std Error P-value  

Anxiety 

 

0.061 3.28x10
-3

 2.48x10
-77

 0.891 6.34x10
-3 

<2x10
-16 

0.020 6.43x10
-3

 2.28x10
-3 

Psychomotor 

Cognitive 

 

0.068 3.23x10
-3

 4.58x10
-97

 0.961 6.11x10
-3

 <2x10
-16

 0.031 6.20x10
-3

 4.56x10
-7 

Neurovegetative 

 

0.070 3.23x10
-3

 3.13x10
-102

 0.961 6.11x10
-3

 <2x10
-16

 0.031 6.20x10
-3

 8.32x10
-7 

Mood 

 

0.068 3.23x10
-3

 8.07x10
-99

 0.952 6.11x10
-3

 <2x10
-16

 0.031 6.20x10
-3

 8.48x10
-7 

Subjective Well-

Being 

 

0.061 3.32x10
-3

 1.13x10
-76

 0.800 6.56x10
-3

 <2x10
-16

 0.022 6.66x10
-3

 7.66x10
-4 

Internalising 

 

0.070 3.24x10
-3

 

 

6.06x10
-102

 0.973 6.12x10
-3

 <2x10
-16

 0.030 6.21x10
-3

 1.11x10
-6 

 

 

* P-value not possible to determine through lm() function in R as it is below the floor limit of the software. As such it is specified to simply be 

under a specific value given in the summary results from R (p<2x10
-16

)
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Table 2a: Main effects of MD PRS and MD diagnostic status split into single episode and recurrent cases. The full sample has been 
subset to only include individuals with MD diagnostic status who report the number of lifetime episodes of depression (N=10,590 

single episode cases; N=10,726 recurrent cases; N=60,760 controls).  Main effect models for MD PRS and MD diagnostic status include the 

relevant variable and covariates. 
 

Factor MD PRS (Main Effect) MD diagnostic status (Main Effect) 

Single episode cases (N=10,590) Recurrent Cases (N=10,726) 

Effect Size 

(β) 

SE P-value  Effect Size 

(β) 

Std Error P-value*  Effect Size 

(β) 

SE P-value*  

Anxiety 

 

0.044 3.11x10
-3

 1.65x10
-45

 0.484 8.60x10
-3 

<2x10
-16 

0.938 8.55x10
-3

 <2x10
-16 

Psychomotor 

Cognitive 

 

0.048 3.01x10
-3

 1.95x10
-57

 0.523 8.17x10
-3

 <2x10
-16

 0.991 8.12x10
-3

 <2x10
-16 

Neurovegetative 

 

0.050 3.04x10
-3

 1.41x10
-61

 0.546 8.25x10
-3

 <2x10
-16

 0.991 8.21x10
-3

 <2x10
-16 

Mood 

 

0.049 3.01x10
-3

 9.97x10
-59

 0.513 8.18x10
-3

 <2x10
-16

 0.984 8.13x10
-3

 <2x10
-16 

Subjective Well-

Being 

 

0.044 3.19x10
-3

 4.54x10
-43

 0.397 9.01x10
-3

 <2x10
-16

 0.819 8.97x10
-3

 <2x10
-16 

Internalising 

 

0.050 3.02x10
-3

 6.48x10
-61

 0.528 8.19x10
-3

 <2x10
-16

 1.005 8.14x10
-3

 <2x10
-16 

 

 

* P-value not possible to determine through lm() function in R as it is below the floor limit of the software. As such it is specified to simply be 

under a specific value (p<2x10
-16

) given in the summary results from R.  
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Table 2b: Interaction effects of MD PRS and MD diagnostic status split into single episode and recurrent cases. The full sample has 
been subset to only include individuals with MD diagnostic status who report the number of lifetime episodes of depression (N=10,590 

single episode cases; N=10,726 recurrent cases; N=60,760 controls).   
 

Factor MD PRS * MD Diagnostic status 

Single episode cases (N=10,590) Recurrent cases (N=10,726) 

Effect Size (β) SE P-value  Effect Size (β) SE P-value  

Anxiety -0.009 8.77x10
-3

 0.288 0.008 8.74x10
-3

 0.364 

Psychomotor 

Cognitive 

 

-0.005 8.33x10
-3

 0.540 0.021 8.30x10
-3

 0.013 

Neurovegetative 

 

-0.008 8.41x10
-3

 0.354 0.023 8.38x10
-3

 0.006 

Mood 

 

-0.006 8.34x10
-3

 0.476 0.020 8.31x10
-3

 0.016 

Subjective Well-

Being 

 

-0.008 9.20x10
-3

 0.378 0.005 9.20x10
-3

 0.572 

Internalising 

 

-0.007 8.35x10
-3

 0.420 0.019 8.32x10
-3

 0.021 
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Fig 1. Flow chart displaying the methodology of the study along with the sample sizes for 

each section. 
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Fig 2. Factor model used to derive the dimensional phenotypes. As is customary in structural 

equation modelling graphs, circles are factors and squares are the self-reported symptoms. 

All symptoms shaded in yellow correspond to core MD symptoms with factors containing a 

majority of MD symptoms are also shaded. Arrows pointing from either one factor to a 

symptom or a factor to another factor represent the factor loadings. 
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Fig 3. Association of MD PRS on each factor in the full sample and when stratified by MD 

Case/Control Status. The MD PRS used was calculated at the p-value threshold of pT < 

0.3. Both MD PRS and Factor scores were standardised to have a mean of 0 and variance of 

1 using the full sample.  
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