
Pair consensus decoding improves accuracy of neural
network basecallers for nanopore sequencing

Jordi Silvestre-Ryan and Ian Holmes

Department of Bioengineering, University of California, Berkeley, 94720, USA

To whom correspondence should be addressed: jordisr@berkeley.edu or ihh@berkeley.edu

Abstract

Nanopore technology allows for direct sequencing of individual DNA duplexes. However, its
higher error rate compared to other sequencing methods has limited its application in situa-
tions where deep coverage is unavailable, such as detection of rare variants or characterization
of highly polymorphic samples. In principle, 2X coverage is available even for single duplexes,
using Oxford Nanopore Technologies’ 1D2 protocol or related methods which sequence both
strands of the duplex consecutively. Using both strands should improve accuracy; however,
most neural network basecaller architectures are designed to operate on single strands. We
have developed a general approach for improving accuracy of 1D2 and related protocols by
finding the consensus of two neural network basecallers, by combining a constrained profile-
profile alignment with a heuristic variant of beam search. When run on a basecalling neural
network we trained, our consensus algorithm improves median basecall accuracy from 86.2%
(for single-read decoding) to 92.1% (for pair decoding). Our software can readily be adapted
to work with the output of other basecallers, such as the recently released Bonito basecaller.
Although Bonito operates only on individual strands and was not designed to leverage the
1D2 protocol, our method lifts its median accuracy from 93.3% to 97.7% , more than halv-
ing the median error rate. This surpasses the maximum accuracy achievable with Guppy,
an alternate basecaller which was designed to include pair decoding of 1D2 reads. Our soft-
ware PoreOver, including both our neural network basecaller and our consensus pair decoder
(which can be separably applied to improve other basecallers), is implemented in Python 3
and C++11 and is freely available at https://github.com/jordisr/poreover.

Introduction

While the use of protein nanopores to sequence DNA has been explored for many years, the
technology was not commercialized until 2014 when Oxford Nanopore Technologies (ONT)
released their MinION device[1]. Nanopore sequencing can generate long reads in the tens
or hundreds of kilobases—including direct readout of modified bases—and can be run on

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

a highly portable platform, enabling sequencing in locations as remote as the International
Space Station[2]. However, the relatively high error rate of nanopore sequencing has limited
some of its applications and spurred the development of new chemistries and basecalling
methods [3].

Nanopore sequencing works by threading a single strand of DNA through a protein
nanopore embedded in a synthetic membrane. The DNA bases block the pore, perturbing
the ionic current flowing through the pore. Machine learning methods are needed to learn
this complex, sequence-dependent nanopore current function and deduce the sequence of
nucleotides that passed through the pore. To do this, basecalling has made heavy use of
probabilistic models: the early ONT basecaller used hidden Markov models, as did the
community basecaller Nanocall [4]. Mirroring a shift in other areas of bioinformatics, a deep
learning approach was adopted for higher accuracy, both by ONT and community basecallers
such as DeepNano[5] and Basecrawller[6].

As an added complication, each nucleotide spends a random length of time in the pore,
and so may generate zero, one, or many current samples during its transition. These early
recurrent neural network basecallers used a segmentation step in preprocessing to cluster
measurements into discrete “events”, which were then fed into the neural network. In this
aspect, basecalling shares similarities with the task of speech recognition, namely a numeric
input that must be segmented and labeled with a discrete number of categories: phonemes or
nucleotides. Connectionist Temporal Classification (CTC) [7] was developed as a way to train
recurrent neural networks to simultaneously classify and segment such a time series. Using
dynamic programming, a loss could be calculated between the deduced and the true sequence
labeling; this loss function can then be minimized via gradient descent. The community
basecaller Chiron[8] applied CTC to nanopore basecalling, yielding competitive results [9],
while ONT incorporated CTC-style models into both production and research basecallers.

The outputs of the neural networks that are trained with CTC loss functions can be inter-
preted as weighted transitions in a finite state machine, not unlike a profile HMM[10]. Thus,
the neural network output defines a probability distribution P (`|y) over possible basecalled
sequences ` given the read y. For any given sequence `, this probability is computed using
the Forward algorithm. By analogy to HMMs, the task of finding the modal sequence of this
distribution is termed “decoding”. While perfectly optimal decoding requires an intractable
exhaustive search over sequences, in practice heuristic algorithms (such as beam search or
Viterbi search) can be used to find reasonably good solutions.

The related problem of “consensus decoding” arises when multiple reads {yn} are derived
from the same underlying sequence `. Basecalling then yields multiple profiles. We seek to
find the single sequence that maximizes P (`|{yn}); under a flat prior P (`) and the assumption
that the reads are independent, this will be the sequence that maximizes the product of
Forward probabilities

∏
n P (`|yn), motivating the reframing of this problem as an exercise

in profile-profile alignment[11]. Pairwise consensus basecalling is particularly relevant to
ONT’s 1D2 sequencing protocol, in which special DNA adapters are used such that after the
template DNA strand passes through the pore, its complementary strand very often follows.

To this end we have developed a beam search decoding algorithm for the pair decoding of
two reads, making use of a constrained dynamic programming alignment envelope heuristic
to speed calculations by focusing on areas of each read which are likely to represent the
same sequence. We test this with our own basecalling software PoreOver, which implements

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

a CTC-style recurrent neural network basecaller and associated CTC decoding algorithms.
Using the neural network output from PoreOver, our consensus algorithm yields a median
6% improvement in accuracy on a test set of 1D2 data. We adapt our software to work
with probabilities generated from the ONT production basecaller Guppy as well as Bonito,
a recently released research basecaller, both of which make use of CTC-style models. We
apply our consensus decoding to output from Bonito and find it achieves the highest median
consensus accuracy of 97.7%, surpassing the 1D2 method in Guppy.

We additionally assess how the choice of decoding algorithm affects single read accuracy
and find that the use of a beam search only slightly improves basecalling accuracy compared
with a best-path Viterbi search on our simplified CTC model. However, when applied to the
“flip-flop” CTC model used in the latest generation of Oxford Nanopore basecallers we find
that more costly beam search does not improve on the best path Viterbi solution.

Methods

Basecalling with connectionist temporal classification

Under CTC, the output of the neural network defines a probability distribution over pos-
sible labelings of the input, a “labeling” in this case representing the DNA sequence that
passed through the pore. CTC uses a differentiable loss function calculated with dynamic
programming to calculate the probability of a given labeling. Using gradient descent, the
network is trained to maximize the probability of the correct sequence.

The final softmax layer of the neural network outputs y, a 5×T matrix that specifies the
probability of emitting each base plus a gap character at each step of the input. Let y(t, c)
be the probability of the character c ∈ G at time t, with G = L ∪ {ε}, where characters in
L = {A,C,G, T} represent bases passing through the pore and ε is a gap or blank character
representing no change in the pore. The neural network output can thus be interpreted as a
linear hidden Markov model [11], with the softmax probabilities corresponding to emission
probabilities in this HMM. The probability of a given path through this profile π ∈ GT is
just the product of the individual probabilities

P (π|y) =
T∏
t=1

y(πt, t)

Under this model, sequences longer than T have zero probability.
Each gapped path π can be mapped to an ungapped label sequence ` by a function

B : G∗ → L∗, which simply removes the gap characters. This is a simplifed version of the
path-to-label mapping used by the canonical CTC model [7]; unlike the original, our version
does not merge repeated label characters (so the path A-CCG--T would result in the label
ACCGT rather than ACGT). For a given label sequence `, we want to find the probability that
` was emitted by y, P (`|y). The probability of a label sequence is the sum of probabilities
of all paths consistent with it, essentially marginalizing over all possible positions of gaps:

P (`|y) =
∑

π:B(π)=`

P (π|y)

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

This probability can be efficiently computed by dynamic programming with a Forward
algorithm[10]. We define the Forward probability of a label as α(t, s), the probability that
the first s characters of ` having been emitted by position t of the underlying HMM. The
core recursion is,

α(t, s) = y(t, `s)α(t− 1, s− 1) + y(t, ε)α(t− 1, s)

terminated by the base case α(0, 0) = 1. From this matrix we can easily read out the
probability of the full sequence, P (`|y) = α(T, |`|).

Decoding the basecaller output

For basecalling we want to find the best label, ˆ̀,

ˆ̀= max
`
P (`|y)

Borrowing HMM terminology, this task is referred to as decoding. While there is not an
efficient general algorithm for this optimization, various heuristic search algorithms can be
used to find high probability sequences. Here we focus on two approximate methods, finding
the (1) Viterbi best path, and (2) a beam search.

While finding the best label is intractable, a simpler approach is to instead find the single
best path:

π̂ = max
π

P (π|y)

Thus, the Viterbi solution is `Viterbi = B(π̂). In our CTC model, this is equivalent to taking
the argmax of each output in the time series and removing the gaps.

An alternative heuristic search method is beam search, which has been used extensively
in the decoding of neural networks, including CTC models[12]. Beam search iterates through
the output y, keeping a fixed-size list (or ‘beam’) of the best solutions. The size of this list is
parameter termed the beam width, and represented with W . The algorithm is the following:
for each iteration t in {1..T}, update its probability at time t using the forward recursions.
Next, extend each label in the beam by each character in the alphabet {A,C,G, T} and
calculate the corresponding forward probabilities. Finally, prune the beam down to the W
labels with the highest probabilities. By increasing the beam width W , more solutions are
tracked at every iteration.

Neural network architecture and training

Our network consists of a single convolutional layer followed by three bidirectional GRU[13]
layers (Figure 1B). Output is passed through a softmax function to yield probabilities for
each nucleotide plus a gap character, {A,C,G, T, ε}. Under this model, the gap character
represents no change in the pore, and so the output probability trace consists of peaks of
probability as each nucleotide passes through the pore, followed by stretches with high gap
probability (Figure 1A).

Given that training organism influences the generalizability of the network[6], we sought
to include a broad taxonomic diversity. A training set of R9.4 reads was assembled from a

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

sample of 10,000 human reads from the nanopore whole genome sequencing consortium[14]
and 10,000 microbial reads from the Zymo mock community[15] spanning 8 bacterial and 2
yeast species.

Reads were re-bascalled with the Guppy basecaller and mapped back to reference genomes.
Tombo1 was used to re-align the raw signal to the reference sequence and correct previous
basecalling errors. These corrected reads were split into chunks of 1000 measurements and
used as the training set. A fraction of the data was held out as a test set and used to
evaluate the performance of our model during training. The neural network was trained for
two epochs using the Adam optimizer [16] (learning rate of 0.001) to minimize CTC loss.

Results

Consensus decoding of 1D2 reads with a banded 2D beam search

Given the probabilistic formulation of decoding CTC models, it is natural to extend decoding
for the task of consensus, finding the single sequence that was most likely to be generated by
multiple reads. We focus here on the task of decoding a pair of reads, particularly relevant
to the 1D2 sequencing protocol, which yields separate basecaller probability profiles for both
template and complement strands.

Assuming the independence of each read, the best label is given by the consensus prob-
ability P (`|y1, y2) = P (`|y1)P (`|y2)

max
`
P (`|y1, y2)

We extend our beam search to work in two dimensions over the T1 × T2 space of both
reads. At each t1 ∈ 1..T1 we update the forward probabilities for labels in the beam at t1 and
for t2 ∈ 1..T2. Each label in the beam is assigned a score equal to the forward probability
from read 1 at t1 times the maximum forward probability from read 2 in the range 1..T2.
Finally, the beam is pruned down to the top W hits with the highest scores, where W is the
beam width.

While DNA flows through the pore at an average of 450 bp/s, the electrical signal is
recorded at 4000 Hz, leading to roughly 9 measurements/bp on average. Given that we
are iterating O(T 2) times, doing a paired-read analysis in signal space versus a paired-read
analysis in sequence space increases the computational cost ≈ 9× 9 = 81-fold. To make our
calculations more tractable, we make use of an additional heuristic, constraining our search
to an alignment envelope[17] of the (t1, t2) pairs where the reads are likely to align.

This envelope is estimated by basecalling each read individually, then aligning the two
sequences. Reads are basecalled with the Viterbi algorithm, which is faster than beam
search with similar performance (Figure 4A), and explicitly returns a signal to sequence
mapping, where each nucleotide is mapped to some range of current signal. Then these
two basecalled sequences are aligned globally (via Needleman-Wunsch), which generates a
mapping of nucleotide from read 1 to nucleotide in read 2, and by extension a range of signal

1https://github.com/nanoporetech/tombo

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

in read 1 to a range of signal in read 2. With some additional padding, this alignment defines
a region for our banded 2D beam search (Figure 2).

Because the complementary strand passes through the pore with high probability but
not every read generates a second strand, there is an additional step during sequencing
to determine whether two reads are complementary strands or not. For this work we just
relied on the determination of the Guppy basecaller. While one could in theory train two
RNNs to operate on the forward and reverse strands and then run consensus on those two
probabilities, here we adopt a simpler approach by taking the “reverse complement” of the
softmax probabilities, for example:

t = 1 2 3

A 0.5 0 0.5
C 0 0.6 0.5
G 0 0.2 0
T 0 0 0
ε 0.5 0.2 0

reverse complement−−−−−−−−−−−→

t = 1 2 3

A 0 0 0
C 0 0.2 0
G 0.5 0.6 0
T 0.5 0 0.5
ε 0 0.2 0.5

Our test set is a sample of 5,000 R9.4 E. coli 1D2 read pairs (Oxford Nanopore Tech-
nologies, personal communication), comprising 10,000 reads in total. After decoding, reads
were aligned to the reference E. coli genome with Minimap[19] and the read accuracy is
calculated as (number of matches)/(length of alignment).

We test this banded 2D beam search and find that it improves the median accuracy from
86.2% for single reads to 92.1% for read pairs (Figure 3), nearly halving the error rate of our
basecaller. While our neural network performs worse than Guppy, which achieved 93.1% 1D
accuracy with its larger “high accuracy” network, our consensus algorithm still shows a large
median accuracy gain for 1D2. Interestingly, the median 1D2 accuracy of 94.7% achieved
by the “fast” Guppy network exceeded the 94.2% accuracy from the larger “high accuracy”
network.

In December 2019, Oxford Nanopore Technologies released a new research basecaller
Bonito, which was inspired by recent successes of purely convolutional neural networks in
speech recognition[18]. Bonito is trained using the canonical CTC model (which merges
repeated characters), and for each time step generates a probability over each nucleotide
plus a gap character. We modified Bonito (version 0.0.1) to save these softmax probabilities
and adapted our decoding algorithm to work with this type of CTC model. Using the output
of the Bonito basecaller and our consensus algorithm we achieved an accuracy of 97.7%, more
than halving the Bonito’s median error rate of 6.7% for single read basecalling and surpassing
the consensus accuracy of Guppy’s 1D2 method (Figure 3).

Evaluating decoding algorithms for single read basecalling

We additionally compare single read decoding algorithms using both our own trained base-
calling network, as well as ONT’s basecaller Guppy, which implements a variant of CTC
called “flip-flop”. The same test set of 10,000 reads was used as in the previous benchmark,
though the pairing information was ignored and reads were treated as standard 1D reads.

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

Simplified CTC model

Test reads were split into chunks of 1000 measurements, batched together, and fed through
our trained basecalling RNN PoreOver to yield the softmax probabilities. Decoding was then
done with both (1) Viterbi best path and (2) a beam search (Figure 4A). The use of beam
search over Viterbi yielded a very slight improvement in median accuracy from 86.2% to
86.8%. Interestingly, the beam width had little effect on the overall accuracy, with W = 50
yielding nearly identical results. While beam search does yield a slight improvement over
Viterbi decoding, it comes at a disproportionately greater computational cost.

Flip-flop CTC model

While the earliest nanopore basecallers focused on the task of predicting a sequence of k-mers
[3], the production basecaller Guppy along with the research basecaller Flappie introduced a
character level, CTC-style model known as “flip-flop”. The flip-flop model is an adaptation
of CTC for the purpose of better calling homopolymers, a known error mode in nanopore
sequencing.

The flip-flop model does not use gaps, as in the standard CTC model but instead has
two sets of “flip” (+) and “flop” (-) states, with transitions within flip and flop states only
emitting a blank character ε, y(c, t) with c ∈ {A+, C+, G+, T+, A−, C−, G−, T−}. Further-
more, transitions from flip to flop states are only allowed between the same nucleotide (e.g.
A− → A+). Internally, the basecaller generates a transition matrix for each time step and
then runs a Viterbi decoding to generate the final basecalled sequence. The marginalized
version of these transition probabilities are stored in FAST5 files, allowing us to use our own
decoding algorithms on the flip-flop probabilities. However, we need to adapt the calculation
of the forward probabilities to take into account the flip and flop states:

α+(t, s) =α+(t− 1, s) · y(t, `s)

+

{
α−(t− 1, s− 1) · y(t, `s) if `s = `s−1

(α+(t− 1, s− 1) + α−(t− 1, s− 1)) · y(t, `s) otherwise

α−(t, s) =α−(t− 1, s) · y(t, `s + 4)

+

{
α+(t− 1, s− 1) · y(t, `s + 4) if `s = `s−1

0 otherwise

Results from running on the same set of 10,000 reads are shown in Figure 4B. Interestingly
for the flip-flop model, the Viterbi algorithm actually outperforms the beam search on this
data. The Viterbi decoding yielded a median accuracy of 90.9% while beam search decoding
yielded a median accuracy of 88.9%. Despite the sequences returned by the beam search
having higher probabilities, they tend to be less accurate when aligned to the reference
genome.

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

Discussion

In this work, we explored the effects the decoding algorithm has on basecalling accuracy
using CTC models. Notably for single read decoding, the Viterbi algorithm is the fastest
and performs quite well. Indeed, even for our simplified CTC model, the difference between
beam search and Viterbi is quite small and might not be sufficient to justify the increased
computational cost.

Curiously with the flip-flop CTC model, the beam search actually did worse than the
Viterbi. For some reason, it appears that the more probable sequences aren’t necessarily
more accurate. While it is unclear why this was the case with the flip-flop model but not
our simplified CTC model, it could be symptomatic of the way these models are trained
and evaluated. Much as in several natural language processing tasks, there is a mismatch
between the maximum likelihood objective used in training, the CTC loss, and the actual
metric used for evaluation, the edit distance or alignment accuracy between the predicted
and true labelings. While this metric is discrete and non-differentiable, there has been some
success in speech recognition using techniques from reinforcement learning to approximate
this gradient and optimize the edit distance directly[12]. Applying policy gradient style
approaches that maximize the reward function (in this case alignment accuracy) to CTC
basecalling could be an avenue for future research.

In addition to the “flip-flop” model available in the production basecaller Guppy, ONT
have also recently introduced another basecalling paradigm known as “run-length encoding,
which is implemented in the research basecaller Runnie. Under the run-length encoding
model, the neural network outputs the best nucleotide as well as parameters of a discrete
Weibull distribution which characterizes the length of the repeat. While this makes single
read decoding trivial (by predicting the mode of the parameterized distribution), the 2D
beam search described could be adapted to work for run length encoded output. Indeed,
one of the strengths of beam search is the ease with which it can be adapted (e.g. to use a
language model in speech recognition).

For our consensus application we focused on 1D2 sequencing, where our 2D banded beam
search yields a significant accuracy improvement. While ONT basecaller Guppy has a built-
in 1D2 basecalling function, the code is not open source, nor is 1D2 basecalling included in
research basecallers such as Flappie and Bonito. In contrast, our code is open source and
modular in design, making it easily modifiable by the community.

Generalizing beyond a pair of reads, consensus approaches are most relevant to the task
of genome assembly polishing. There exist several approaches for multi-read consensus and
polishing, a Monte Carlo approach with an HMM model of the pore (nanopolish [20]), or
sequence-only approaches using neural networks (Helen+MarginPolish [21] and Medaka2).
Other work has even used dynamic time warping to generate a consensus at the raw signal
level [22].

To our knowledge none of these methods explicitly use the intermediate basecaller proba-
bilities, instead relying largely on the basecalled sequence. While the dynamic programming
approach here could be extended for more reads, the curse of dimensionality (O(t2) for 2
reads, O(t3) for 3 reads etc.) would necessitate additional heuristics to narrow down the

2https://github.com/nanoporetech/medaka

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

search space. Nevertheless it would be still possible to implement a consensus algorithms
(e.g. an MCMC approach) that could exploit the basecaller probabilities for general, multi-
read consensus [11].

Acknowledgements

The authors were supported by NIH/NCI grant CA220441, NIH/NHGRI training grant T32
HG000047, and by Oxford Nanopore Technologies. This research used the computational
cluster provided by the Berkeley Research Computing program. We thank Tim Massingham
and Marcus Stoiber (Oxford Nanopore Technologies) for helpful discussion.

References

[1] David Deamer, Mark Akeson, and Daniel Branton. Three decades of nanopore sequenc-
ing. Nature Biotechnology, 34(5):518, 2016.

[2] Sarah L. Castro-Wallace, Charles Y. Chiu, Kristen K. John, Sarah E. Stahl, Kathleen H.
Rubins, Alexa B.R. McIntyre, Jason P. Dworkin, Mark L. Lupisella, David J. Smith,
Douglas J. Botkin, Timothy A. Stephenson, Sissel Juul, Daniel J. Turner, Fernando
Izquierdo, Scot Federman, Doug Stryke, Sneha Somasekar, Noah Alexander, Guixia
Yu, Christopher E. Mason, and Aaron S. Burton. Nanopore DNA Sequencing and
Genome Assembly on the International Space Station. Scientific Reports, 7(1):1–12,
2017.

[3] Franka J Rang, Wigard P Kloosterman, and Jeroen de Ridder. From squiggle to
basepair: computational approaches for improving nanopore sequencing read accuracy.
Genome Biology, 19(1):90, 2018.

[4] Matei David, Lewis Jonathan Dursi, Delia Yao, Paul C Boutros, and Jared T Simpson.
Nanocall: an open source basecaller for Oxford Nanopore sequencing data. Bioinfor-
matics, 33(1):49–55, 2016.

[5] Vladimı́r Boža, Broňa Brejová, and Tomáš Vinař. DeepNano: Deep recurrent neural
networks for base calling in MinION nanopore reads. PLOS ONE, 12(6):1–13, 2017.

[6] Marcus Stoiber and James Brown. BasecRAWller: Streaming Nanopore Basecalling
Directly from Raw Signal. bioRxiv, page 133058, 2017.

[7] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connec-
tionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks. In Proceedings of the 23rd International Conference on Machine
Learning, ICML ’06, pages 369–376, New York, NY, USA, 2006. ACM, ACM.

[8] Haotian Teng, Minh Duc Cao, Michael B Hall, Tania Duarte, Sheng Wang, and Lachlan
J M Coin. Chiron: translating nanopore raw signal directly into nucleotide sequence
using deep learning. GigaScience, 7(5):giy037, 2018.

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

[9] Ryan R. Wick, Louise M. Judd, and Kathryn E. Holt. Performance of neural network
basecalling tools for Oxford Nanopore sequencing. Genome Biology, 20(1):129, jan 2019.

[10] Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison. Biological se-
quence analysis: probabilistic models of proteins and nucleic acids. Cambridge university
press, 1998.

[11] Jordi Silvestre-Ryan and Ian Holmes. Consensus Decoding of Recurrent Neural Network
Basecallers. In Jesper Jansson, Carlos Mart́ın-Vide, and Miguel A Vega-Rodŕıguez,
editors, Algorithms for Computational Biology, pages 128–139, Cham, 2018. Springer
International Publishing.

[12] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent
neural networks. In International Conference on Machine Learning, pages 1764–1772,
2014.

[13] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[14] Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A
Sasani, John R Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, Sunir
Malla, Hannah Marriott, Tom Nieto, Justin O’Grady, Hugh E Olsen, Brent S Pedersen,
Arang Rhie, Hollian Richardson, Aaron R Quinlan, Terrance P Snutch, Louise Tee,
Benedict Paten, Adam M Phillippy, Jared T Simpson, Nicholas J Loman, and Matthew
Loose. Nanopore sequencing and assembly of a human genome with ultra-long reads.
Nature Biotechnology, 36:338, jan 2018.

[15] Samuel M Nicholls, Joshua C Quick, Shuiquan Tang, and Nicholas J Loman. Ultra-deep,
long-read nanopore sequencing of mock microbial community standards. GigaScience,
8(5), 2019.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
pages 1–15, 2014.

[17] Ian Holmes and Richard Durbin. Dynamic programming alignment accuracy. Journal
of computational biology, 5(3):493–504, 1998.

[18] Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Oleksii Kuchaiev,
Vitaly Lavrukhin, Ryan Leary, Jason Li, and Yang Zhang. QuartzNet: Deep Automatic
Speech Recognition with 1D Time-Channel Separable Convolutions. pages 2–6, 2019.

[19] Heng Li. Minimap and miniasm: Fast mapping and de novo assembly for noisy long
sequences. Bioinformatics, 32(14):2103–2110, 2016.

[20] Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete bacterial genome
assembled de novo using only nanopore sequencing data. Nature Methods, 12(8):733,
2015.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

[21] Kishwar Shafin, Trevor Pesout, Ryan Lorig-Roach, Marina Haukness, Hugh E Olsen,
Colleen Bosworth, Joel Armstrong, Kristof Tigyi, Nicholas Maurer, Sergey Koren,
Fritz J Sedlazeck, Tobias Marschall, Simon Mayes, Vania Costa, Justin M Zook, Kelvin J
Liu, Duncan Kilburn, Melanie Sorensen, Katy M Munson, Mitchell R Vollger, Evan E
Eichler, Sofie Salama, David Haussler, Richard E Green, Mark Akeson, Adam Phillippy,
Karen H Miga, Paolo Carnevali, Miten Jain, and Benedict Paten. Efficient de novo as-
sembly of eleven human genomes using PromethION sequencing and a novel nanopore
toolkit. bioRxiv, 2019.

[22] Rachel S.L. Chan, Paul Gordon, and Michael R. Smith. Evaluation of Dynamic
Time Warp Barycenter Averaging (DBA) for its Potential in Generating a Consen-
sus Nanopore Signal for Genetic and Epigenetic Sequences. Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
EMBS, 2018-July:2821–2824, 2018.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

50 100 150 200 250 300 350 400

- 2.0
- 1.5
- 1.0
- 0.5

0.0
0.5
1.0
1.5

no
rm

al
iz

ed
si

gn
al

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

signal

pr
ob

ab
ili

ty

A C G T gap

A B

Input

1D Convolution

Bidirectional GRU

Bidirectional GRU

Bidirectional GRU

Softmax

Output

Figure 1: (A) The time series of current signal is translated to probabilities at of each
base plus a gap character. The gap represents no change in the pore, so we see a high gap
probability punctuated by peaks of probability for each nucleotide. (B) An RNN architecture
for basecalling, with a single convolutional layer followed by three stacked bidirectional GRU
layers. The softmax output is fed into a CTC loss function, and minimized during training.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

A T G A C T

A

C

G

G

A

T

Read 1
Read 2

A
A

paddinginitial envelope

C
T

G
G

G
-

A
A

-
C

T
T

individually basecalled sequences aligned

R
ea

d
1

Read 2

Figure 2: Reads were basecalled individually and the alignment of the resulting sequences
was used to construct an alignment envelope in signal space that banded a 2D beam search.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

De
ns

ity

1D 1D2

Network: PoreOver
Decoder: PoreOver

1D 1D2

Network: Bonito
Decoder: PoreOver

1D 1D2

Network: Guppy fast
Decoder: Guppy

1D 1D2

Network: Guppy hac
Decoder: Guppy

Figure 3: Reads were run through either our PoreOver neural network (magenta) or the
Bonito basecaller (blue) to generate softmax probabilities, which were then decoded using
our algorithms. Guppy accuracies (in violet) were generated entirely from running the Guppy
basecaller and its 1D2 basecalling mode without any additional decoding. The Guppy neural
network comes with two neural network architectures using either smaller (fast) or larger
(high accuracy, hac) recurrent layer sizes. The median accuracy is represented by a dashed
line. Bonito version 0.0.1 and Guppy version 3.2.4 were used.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

�������

���� ������

�� �� �� �� �� �� ���
����

����

����

����

��������

�
��

��
��

��������

�������

���� ������

�� �� �� �� �� �� ���
����

����

����

����

����

��������

�
��

��
��

����� (����)

Figure 4: (A) Comparison of single read decoding algorithms using output from our trained
network, PoreOver, which implements a simplified CTC model that does not merge repeated
characters. (B) Single read decoding algorithms run on output of the Guppy basecaller, which
implements a variation of CTC for calling homopolymers called “flip-flop”. In this case the
beam search surprisingly returned lower accuracy basecalls than Viterbi decoding. A beam
width of 10 was used for both plots.

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.956771doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.25.956771
http://creativecommons.org/licenses/by/4.0/

