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Abstract 
Recent methods enable simultaneous measurement of protein expression with the transcriptome 
in single cells by combining protein labeling with DNA barcoded antibodies followed by droplet 
based single cell capture and sequencing (e.g. CITE-seq). While data normalization and 
denoising have received considerable attention for single cell RNA-seq data, such methods for 
protein data have been less explored. Here we showed that a major source of noise in CITE-seq 
data originated from unbound antibody encapsulated in droplets. We also found that the counts 
of isotype controls and those of the “negative” population inferred from all protein counts of 
each cell are significantly correlated, suggesting that their covariation likely reflects cell-to-cell 
differences due to technical factors such as non-specific antibody binding and droplet-to-droplet 
differences in capture efficiency of the DNA tags. Motivated by these observations, we 
developed a normalization method for CITE-seq protein expression data called Denoised and 
Scaled by Background (DSB). DSB corrects for 1) protein-specific background noise as reflected 
by empty droplets, 2) the technical cell-to-cell variation as captured by the latent noise 
component described above. DSB normalization improves separation between positive and 
negative populations for each protein, centers the negative-staining population around zero, and 
can improve unbiased protein expression-based clustering. DSB is available through the open 
source R package “DSB” via a single function call and can be readily integrated with existing 
single cell analysis workflows, including those in Bioconductor and Seurat. 
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Introduction 
 
Cell surface proteins are often used to define the 
many heterogeneous cell types in multicellular 
organisms, especially those comprising the immune 
system. Developments in multi-parameter cytometry 
have made it possible to measure over 50 epitopes on 
the same cell1. More recently, two groups used DNA 
barcoded antibodies to simultaneous profile surface 
proteins with the transcriptome in single cells.2,3 We 
recently adopted this approach to profile 82 proteins 

and the transcriptome in single cells in a human 
cohort4, which is used here to assess and develop a 
method for protein data normalization. Sequencing 
based assessment of protein expression lacks spectral 
interference, thus allowing potential measurement of 
hundreds of protein epitopes on the same cells. This 
enhances our ability to define cell types and states and 
interpret single cell transcriptomic data. While data 
normalization and denoising have received 
considerable attention for single cell RNA-seq data, 
methods for processing and normalizing single cell 
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protein droplet capture data are in their infancy. 
CITE-seq protein data are non-sparse (in contrast to 
mRNAs), discrete counts; this creates normalization 
challenges distinct from continuous fluorescence or 
time of flight cytometry data as well as single cell 
mRNA sequencing data.  

In our analysis of CITE-seq data we noticed 
non-zero background noise for proteins expected to 
be negative in certain cell types, consistent with the 
observation reported in the original CITE-seq 
publication3. By comparing unstained control cells 
with empty droplets, we found that ambient, unbound 
antibody within droplets as a major source of this 
background. We further found that the counts of 
isotype controls and those of “negative” markers for 
each cell are significantly correlated, pointing to 

systematic technical differences in global antibody 
tag levels per droplet. These may reflect technical 
factors including per-droplet differences in oligo tag 
capture efficiency and cell-specific differences in 
non-specific antibody staining (together referred to as 
“technical component” hereafter for brevity). 
Motivated by these observations, we developed an 
easy-to-use open source R package specifically to 
normalize CITE-seq protein expression data in single 
cells by accounting for both the ambient antibody and 
technical component of per-cell variation in protein 
counts.  

Results 

 

Figure 1 A. Concordance between two potential sources of experimental noise measurements: a scatter plot of the average protein count 
of unstained control cells spiked into the stained cell pool (y-axis) versus that of empty droplets (x-axis) without a cell. The counts were 
first transformed by ln(count+10) before the means shown are computed. The proteins are colored by their variance across negative 
droplets. B. A Gaussian mixture model with two subpopulations was fitted to the counts (inclusive of all proteins/antibodies) of each 
single cell and here the distribution of the two subpopulation means across single cells are shown. The first mean, for the distribution 
shown in red, can be used alone or combined with isotype controls to infer a latent variable (the first principle component) to form a per-
cell denoising factor to normalize technical variations across single cells. C. A scatter density plot between the mean of the “negative” 
subpopulation from the per-cell Gaussian mixture model (red in Fig 1B) versus the mean of the four isotype controls across single cells. 
D. The correlation structure between the Gaussian mixture negative population mean and each of the isotype controls across single cells 
(Spearman correlation is shown.) E-F. biaxial plots of CD4 and CD14 in single cells normalized by the DSB transformation (E), or other 
transformations that have been used for single cell data (e.g., flow cytometry and CyTOF), including the CLR transformation reported in 
the original CITE-seq publication (F). 
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I. Assessing unstained cells and empty droplets 
revealed that unbound antibodies are a major source 
of background noise  
 
To investigate the origin of the background protein 
counts in CITE-seq data, we took advantage of the 
unstained cells we included in an experiment 
measuring, in total, more than 50,000 Peripheral 
Mononuclear Cells (PBMCs) from 20 human donors4. 
The PBMCs were stained with an 86 CITE-seq 
antibody cocktail (including four isotype controls; 
Totalseq-A reagents, Biolegend). We noticed positive 
counts for each antibody within droplets containing 
unstained control cells. Unlike flow cytometry, where 
cellular autofluorescence is a major source of 
background, potential sources of  background in cells 
not expressing the target proteins in CITE-seq data 
may reflect both non-specific binding and unbound 
antibodies captured in droplets, reminiscent of cell-
free RNA observed in droplet-based single cell 
RNAseq5. Droplet capture technologies use Poisson 
distributed cell loading that naturally results in 
thousands of empty droplets (those without cell 
barcodes) containing unbound antibodies that are then 
sequenced with the rest of the library. If a major 
contributor to background noise is ambient antibody, 
we reasoned that empty droplets would have similar 
background levels as droplets capturing unstained 
control cells. Indeed, we found that the median log 
count of proteins in empty droplets and unstained 
control cells are highly concordant (Fig 1A), thus 
protein counts in empty droplets provide a direct 
measurement of the ambient background for each 
protein without the need for unstained control cells,  
similar to methods that quantify noise with ERCC 
spike-ins6 or account for ambient mRNA in empty 
droplets5.  
 
II. Assessing technical cell-to-cell variation: counts of 
isotype controls and those of ‘negative’ protein 
markers are correlated  
 
Droplet based single-cell sequencing approaches 
generally yield a wide range of counts-per-cell due to 
both biological (e.g., cell size) and technical variation 
attributed to, for example, per-droplet differences in 

oligo tag capture, cell lysis, and reverse transcriptase 
efficiency. Single cell mRNA data are thus often 
normalized to account for these technical factors. 
However, these existing approaches designed for 
mRNA data may not be appropriate for protein data. 
For example, cells can differ substantially in physical 
size (e.g., naïve vs. activated lymphocytes) and thus 
the total protein counts across cells are expected to 
differ; the relative protein levels can also span more 
than six orders of magnitude7. Importantly, typically 
only a small fraction of unique proteins is measured 
compared to transcriptome wide sequencing and thus 
total read counts across proteins can depend on the 
protein panel and cannot be expected to be the same 
across cells. However, we reasoned that for each 
single cell, the protein counts for markers that are not 
expressed could serve as a readout of the technical 
component and thus be utilized in a more 
conservative correction for non-biological differences 
across cells. Unless all protein targets included in the 
experiment are ubiquitously expressed on all the cells, 
each cell should exhibit a bimodal count distribution 
across all proteins – while this may depend on the 
types of sample being profiled and the antibody panel 
used, it is a reasonable assumption for samples with 
heterogeneous cell types/populations (e.g., PBMCs) 
stained with an antibody panel targeting a reasonably 
large number of proteins. To test this idea using our 
data, we fitted a Gaussian mixture model with two 
subpopulations (representing the negative and 
positive protein counts) to each cell’s protein counts 
after correcting for the ambient noise we identified 
above (see also below). We found a clear separation 
between positive and negative/background means as 
well as variation in the background means across 
single cells (Fig 1B).  

To assess the possibility that the inferred 
background might track each cell’s technical 
component of variation, we took advantage of the 
four isotype controls in our antibody panel and found 
that the per-cell isotype control counts are correlated 
with the mean of the per-cell background counts 
estimated above by the mixture model across single 
cells (Fig 1C, Spearman rho = 0.55, p < 2E-16). 
These observations suggest that the shared variation 
captured by the five per-cell variables (the four 
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isotype control antibodies and fitted negative 
subpopulation mean) captured technical variability 
that should be normalized across single cells. The 
correlation among these variables (Fig 1D) motivated 
the approach below in which a single latent factor was 
derived from these five variables for cell-to-cell 
normalization. 
 
 
III. The denoised scaled by background normalization  
 
Based on the above observations, we developed a 
two-step normalization method for protein counts in 
CITE-seq data. We compute the Denoised Scaled by 
Background (DSB) normalized counts for each cell as 
follows:  
 
First, we quantify the ambient noise level of each 
protein using the empty droplets and rescale the 
counts in each of the droplets containing single cells 
via:  
 

(I)      𝑌 = #$%('()*),-.
/.

 

 
Where 𝑥1 is the count for protein Y in cell i (by 
default log denotes the natural log – other bases such 
as 2 can also be used for convenience), P is a 
pseudocount (set to 10 currently) added to prevent 
taking the log of zero and to stabilize the variance of 
small counts, and µ3 and 𝜎3 are the mean and 
standard deviation of negative (empty) droplets for 
protein Y, respectively, and they are computed in the 
same way in natural log space with pseudocount P 
added. The above transformed expression estimate 
(Y) for each protein corresponds to the number of 
standard deviations from the mean of the negative 
control counts and is thus straightforward to interpret. 
This transformation can also help center the apparent 
background population of a protein around zero (Fig 
S1B, S1D). In addition, in ref. 4 we implemented this 
transformation on each staining batch separately to 
accommodate potential batch specific ambient noise–
this helped mitigate batch-to-batch variation4 (Fig 
S1A). The value of P can be empirically chosen; we 
empirically found a value of 10 to provide good 

clustering performance and visualization of CITE-seq 
data.  
 
Second, we denoise each cell to account for the 
technical component. In this optional but 
recommended step, we first fit a Gaussian mixture 
model to the transformed count of each cell from step 
1 with k = 2 mixture components: 
 
 
(II)  f(x) 	= 	𝜙9𝑁9(𝑥	|	µ9, 𝜎9	) +	𝜙>𝑁>(𝑥	|	µ>, 𝜎>)	 
 
 
This model yields µ1, the mean of the background 
count population in each cell (red distribution in Fig 
1B). Given the significant correlation we observed 
between the isotype controls and the inferred 
background counts (Fig 1C–D), we reasoned that the 
primary latent component (i.e., principle component 
1) capturing the shared co-variation of these five 
variables can help quantify the technical component 
and overcome the noise in individual variables. We 
thus define the per-cell background technical noise as 
the eigenvector λi  through µ1 and the isotype control 
counts in each cell i. If users do not include isotype 
controls in their experiment, the background for each 
cell inferred by the Gaussian mixture model can be 
used alone, with the assumption that each cell would 
be negative for a subset of proteins in the antibody 
panel. Thus, including isotype controls can mitigate 
noise and potential biases inherent in this assumption. 
 
Based on empirical assessment of canonical human 
immune cell surface markers, the DSB method shows 
improved signal-to-noise compared to several 
standard transformations (Figs 1E–F, S1C–D, S2) and 
can increase the separation between negative and 
positive populations (Figs 1E and S1B).  
 
IV. DSB normalization improves interpretation of 
high dimensional protein clusters  
 
While increased separation in positive and negative 
populations after DSB normalization can facilitate 
more robust manual gating (Fig S2), a major 
motivation for using CITE-seq is to take advantage of 
all proteins to perform unbiased high-dimensional cell 
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clustering. DSB normalized protein expression 
separated cells into clusters that were delineated by 
major lineage defining protein markers (Fig 2A–B). 
When examining individual clusters, we found it 

useful to compare the protein distribution of empty 
droplets to the cells in a given cluster to visually 
assess the relative contribution of the ambient counts. 
For example, with a log transformation alone, cells in 

Figure 2. A. A UMAP visualization of clusters of single cells color labeled by the cluster number. Cells were clustered using a distance 
matrix derived from protein expression normalized by the DSB method (Seurat clustering parameters: resolution 3.0, k = 50). UMAP 
parameters: min.dist = 0.6, n_neighbors = 35. B. Distribution of a subset of lineage defining markers labeled by DSB counts – each 
protein is visualized on the same continuous normalized DSB scale, illustrating the quantitative nature of the DSB normalized units 
interpreted as the number of standard deviations from the mean of the empty droplets. C. The median count (in natural-log (count+1) 
space without DSB transformation) of each protein in cells from cluster 1 in (A) are plotted versus that of from the empty droplets; 
proteins along the diagonal (identity line) have non-zero counts, but are not significantly greater than the corresponding counts in the 
empty droplets. D. Similar to C, but the y axis is showing the DSB normalized counts (in natural log +10 space); proteins in red are 
corrected to levels around zero reflecting their concordance with mean counts in the empty droplets. Note that to compare DSB to the 
simple log transformation, here a pseudocount of 1 was added before natural log transformation to avoid the log of zero. Other 
pseudocounts can also be used.   
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cluster 1 from Fig 2A have relatively high values for 
proteins such as IgA, IgM, and CD57, yet these 
proteins have counts at similar levels in empty 
droplets (they have high values but small residuals 
along the diagonal identity line when plotting against 
empty droplets (Fig 2C)). After DSB normalization, 
by design, these proteins with high counts in the 
empty droplets were corrected to levels near or below 
zero (Fig 2D, red proteins), whereas certain lineage-
defining markers, such as CD16, CD244, and CD56, 
have high DSB values (e.g., more than 8 standard 
deviations from the mean of empty droplets [+/- the 
small technical factor correction applied during 
denoising]). This cluster is thus consistent with the 
known surface protein expression phenotype of NK 
cells, which do not express typical B-cell markers 
such as IgM or IgA. Without accounting for the 
ambient background, these cells might be 
misannotated as CD57+ NK cells even though CD57 
did not deviate significantly from the expected noise 
level according to DSB normalization (see CD57 in 
Fig 2C–D, Fig S1 C–D).  
 
Discussion 
 
Here we experimentally revealed two types of protein 
expression noise in CITE-seq data and developed a 
simple method to correct them: 1) protein-specific 
ambient background captured by empty droplets or 
unstained cells; 2) technical factor reflected by shared 
signal between droplet/cell-specific background and 
isotype controls. Our normalization method allows 
quantification of protein expression above 
background levels in single cells, which in turn 
enables more accurate assessment of cell types and 
states.  

Two recent publications used negative 
binomial8 and Gaussian mixture9 models to identify 
protein-specific negative “noise” populations. These 
mixture models were fitted to the counts for each 
protein, while we used empty droplets to account for 
protein-specific background and mixture models to fit 
counts from all proteins within each droplet/cell to 
infer the technical component reflective of library size 
(Figs 1B–C). Another recent method defined protein 
expression as a mixture of biological cell state-
dependent foreground and noise-associated 

background10. It uses variational inference to learn the 
parameters of a probabilistic model that incorporates 
both latent cell-state variables and noise/technical 
factors. For example, it also revealed a trimodal CD4 
distribution as we reported here (Fig S1B). It 
leverages information from both mRNA and protein 
counts and is thus distinct from our simpler protein-
centric approach. Extending our approach to use both 
mRNA and protein data is of interest for future 
development; it would be interesting to compare 
normalization/denoising using protein only versus 
using both protein and mRNA in future studies. 
However, our normalization method is compatible 
with joint analysis of protein and mRNA: e.g., DSB 
can provide protein-level normalization before 
downstream integration with mRNA data. Protein-
centric high-dimensional cell population 
identification followed by assessing mRNA 
profile/state within individual cell clusters provides a 
complementary approach. For example, we had 
performed such analyses to dissect the cellular origin 
and circuitries behind predictive immune signatures 
in humans4. Clusters of immune cells defined by 
protein expression are often interpretable by using 
knowledge accumulated from years of efforts in 
studying such cells11 using surface protein markers.  
 One important caveat of the DSB method is 
that the inferred technical component (step 2 of our 
approach) used for denoising may encompass signal 
from non-specific binding to Fc receptor on the cell 
surface. Thus, cell types with higher Fc receptor 
expression may on average receive more correction 
than cells with lower Fc receptor expression. In 
peripheral blood samples such as those examined 
here, DSB can render monocytes, which have higher 
levels of Fc receptor expression, with lower relative 
protein expression. Since the overall technical factor 
correction is small and does not solely rely on signal 
from isotype controls, however, empirically we have 
not found this to have adverse effects on downstream 
analysis such as cell type identification. A future 
extension of our method could account explicitly for 
Fc receptor differences.  

The developers of CITE-seq also noted 
distinct background noise for each protein3. They 
attributed the observed background to non-specific 
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antibody binding and accounted for it in their 
experiments and statistical analysis. By spiking in 
mouse cells in their human study, they set a human-
specific threshold for each protein after CLR 
transformation, defined as one standard deviation 
from the mean CLR value of the mouse cells (see Fig 
S5A in ref. 3). This species-based thresholding 
method helped to remove signal from non-specific 
binding and enabled delineation of canonical immune 
cell populations. However, measurement of cells from 
multiple species can entail more complex 
experimental designs and some cross-species 
antibody reactivity is expected, the extent of which 
can depend on the antibody panel. The DSB method 
may eliminate the need for external cross-species 
controls. However, it remains to be determined 
whether there are additional major sources of 
background noise not captured by the empty droplets 
and the technical factor we inferred here.  

Our method is implemented in an open source 
R package “dsb” with a single function call operating 
on a cell by protein count matrix. The output can be 
integrated with diverse single cell RNA-seq software 
workflows, including those available through 
Bioconductor12 or Seurat13 (see vignettes in package 
documentation). 
 
 
Methods 
 
CITE-seq data  
The CITE-seq data used here is reported in ref. 4, in 
which the data were generated to assess the cellular 
origin and circuitry of baseline signatures predictive 
of vaccination responses; the DSB method was used 
therein to normalize the protein data4. See the 
“Methods” section in ref. 4 for experimental details 
on data generation.  
 
Bioinformatic pipeline and normalization 
We used CITE-seq Count14 for HTO and ADT read 
mapping and Cellranger for UMI mapping. We 
demultiplexed cells as previously described4,15,16. 
UMAP17 plots were generated with config parameter 
n.neighbors = 35, min.dist = 0.6. Clustering was 
performed using Seurat (resolution 3.0, k = 50) 
directly on a distance matrix formed on the protein vs 

cells data matrix of CITE-seq proteins (without 
isotype controls) after normalizing with the DSB 
method.  In equation II, the model parameters (the 
mixing parameter, mean and variance of each 
Gaussian distribution) were fitted with the mclust 
package18 . In future versions, we will also 
incorporate checking the quality of this fit to flag cells 
with poor separation of negative and positive 
distributions. The technical factor was accounted for 
per cell as a covariate with the removeBatchEffect 
function in limma19. All analysis was performed with 
R version 3.5. 
 
Code availability 
 
Open source R software implementing the DSB 
method can be downloaded from the repository below 
including relevant package documentation and 
vignettes for usage and integration with Seurat:  
https://mattpm.github.io/dsb/  
 
Data availability 
 
The data can be found in the figshare repository of 
ref. 4: https://doi.org/10.1038/s41591-020-0769-8 
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Supplemental Figure 1. A. UMAP plot as shown in Fig 2A labeled by experimental batch. B. distribution of DSB normalized CD4 
counts across all cells.  C. CLR transformed protein counts (without applying the human specific threshold set based on mouse cells) 
for cells in cluster 1 (see Figs 2A,C) D. Same as (C) but for DSB normalized counts.  
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Supplemental Figure 2. A. Biaxial gating strategy for canonical monocyte subsets with the DSB normalized values. B. The 
corresponding plots with CLR transformed protein counts. Cells are not hexagonal binned or transformed except for using the 
normalization methods indicated. The color of the points represents density. No "jitter” was added to plots and the values shown 
on each axis are the same as those used in the unbiased protein-based clustering result shown in Fig 2.  
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