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ABSTRACT

Clinical staging and prognosis of muscle-invasive bladder cancer (MIBC) routinely includes assess-
ment of patient tissue samples by a pathologist. Recent studies corroborate the importance of image
analysis in identifying and quantifying immunological markers from tissue samples that can provide
further insights into patient prognosis. In this paper, we apply multiplex immunofluorescence on
MIBC tissue sections to capture whole slide images and quantify potential prognostic markers related
to lymphocytes, macrophages, tumour buds, and PD-L1. We propose a machine learning based
approach for the prediction of 5 year prognosis with different combinations of image, clinical, and
spatial features. An ensemble model comprising several functionally different models successfully
stratifies MIBC patients into two risk groups with high statistical significance (p value < 1e− 05).
Critical to improving MIBC survival rates, our method classifies correctly 71.4% of the patients who
succumb to MIBC within 5 years, significantly higher than the 28.6% of the current clinical gold
standard, the TNM staging system.

Keywords immuno-oncology · tumour microenvironment · tumour budding · PD-L1 · macrophages · lymphocytes ·
prognosis · survival analysis

∗Equal contribution

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2020. ; https://doi.org/10.1101/2020.02.24.963181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.24.963181
http://creativecommons.org/licenses/by-nc/4.0/


A PREPRINT - FEBRUARY 24, 2020

Introduction

Urothelial cancer of the bladder (bladder cancer) is one of the most prevalent cancers worldwide with approximately
430,000 new diagnoses each year [1]. High morbidity and mortality rates as well as high socioeconomic burden
make bladder cancer a debilitating and often fatal disease [2, 3]. Even though the majority of bladder cancer patients
are diagnosed with non-muscle-invasive bladder cancer (NMIBC), recurrence and progression of the disease may
lead to muscle-invasive bladder cancer (MIBC) [4]. Approximately 25% of newly diagnosed patients have MIBC,
and unlike NMIBC, these tumours are biologically aggressive with limited therapeutic options. Although radical
cystectomy with bilateral pelvic lymph node dissection is the current gold-standard treatment for MIBC, more than
50% of MIBC patients die from metastatic disease within 5 years [5]. To decrease the mortality rates, patients with high
risk of disease-specific death need to be identified more precisely, thereby allowing better patient management and new
treatments to be tested in the high risk group.

Due to the intra- and inter-tumoural heterogeneity of MIBC, evident from the phenotypic and molecular diversity
of tumour cells, choosing the most effective treatment for each patient is very challenging [6, 7]. Currently, clinical
assessment of bladder uses the Tumour-Node-Metastasis (TNM) staging system [8, 9], where T describes the depth of
invasion into the bladder wall, and N and M the presence or lack of node and distant metastasis, respectively. MIBC
ranges from tumours which invade the detrusor muscle (T2), to tumours which spread to nearby organs (T4) [10, 1].
Although TNM has a critical role in guiding treatment planning, it remains an anatomy-based classification tool with
patients of the same tumour stage experiencing a high variability in disease outcome [11, 12, 13, 14].

The tumour mass comprises a heterogeneous population of cancer cells, and together with a diverse group of resident
and infiltrating host cells, they make up the tumour-immune microenvironment [15, 16, 17]. With the emergence
of immuno-oncology, many cancer researchers have investigated the importance of the intra-tumoural host immune
response within what is often an immunosuppressive tumour microenvironment [18, 19]. Analysing the location,
density, functional state, and organisation of the immune cell populations within the tumour landscape, often termed
as the immune contexture, has become a fundamental step in identifying immune system characteristics that may be
beneficial to patients [20]. In particular, an increasing number of studies has shown the critical role of the immune
contexture on patient survivability, suggesting that it could be a valuable determinant of patient prognosis [21, 19].
Motivated by multiple papers [22, 23, 24, 25], we investigate the prognostic role of tumour infiltrating lymphocytes
(TILs), tumour-associated macrophages (TAMs), tumour buds (TBs), and programmed cell death-ligand 1 (PD-L1) in
MIBC patients.

Lymphocytes and macrophages are generally found either infiltrating into or surrounding the tumour mass, both the core
and the invasive front. TILs can be divided into subpopulations by virtue of their specialised functions, surface cluster
of differentiation (CD) molecules and, in certain circumstances, morphological features. Cytotoxic T-cells are the main
effector cells in anti-tumour T-cell response, with a large volume of studies showing that their presence in the tumour-
immune microenvironment is strongly associated with prolonged survival in various types of cancers [26, 27]. TAMs
have also been identified as decisive factors in orchestrating the tumour-immune microenvironment [28, 29]. They can
exhibit polarised phenotypes, with classically activated M1 and alternatively activated M2 subpopulations possessing
anti-tumoural and pro-tumoural capabilities, respectively [30]. In particular, during metastasis, M2 macrophages are
recruited at distinct pre-metastatic niches where they can promote tumour cell dissemination and disrupt the function of
TILs [28].

Tumour budding is generally considered to be the first step of cancer metastasis, defined as the dissociation of isolated
single cancer cells or discrete clusters of up to four cancer cells predominantly from the invasive front of the tumour [31].
Over the last decade, tumour budding has been widely investigated as a marker of aggressive tumour behaviour due to its
association with adverse clinicopathological characteristics and with the epithelial-mesenchymal transition [32, 33, 34].
As a result, tumour budding has been added to TNM as a supplementary prognostic factor for colorectal cancer [35].
However, without reliable quantitative methods, tumour budding quantification becomes challenging due to poor
inter-observer consistency. [36, 37].

Immune checkpoints are cell surface receptors expressed by immune cells that modulate immune responses [38].
Complex interactions between the immune system and cancer, including manipulation of immune checkpoints such
as programmed cell death 1 (PD1), enable tumour cells to evade immune surveillance. Specifically, PD-L1, which is
secreted by tumour cells, binds to PD-1 expressed on the surface of TILs and suppresses their function to ensure the
growth and development of tumour cells [39]. Although our understanding of the intricate and dynamic relationship
between tumour cells and host cells is increasing, further characterization of the precise impact of tumour cells on their
surroundings is needed.

In recent years, machine learning (ML) methodologies have been widely utilized for constructing predictive models
based on biological features [40, 41, 42]. Nevertheless, the number of papers which have adopted ML methodologies
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for survival analysis is limited [40, 42, 43, 44]. In this paper, we employ a ML methodology to investigate the role
of TILs, TAMs, TBs, PD-L1, and other clinicopathological factors in MIBC patient prognosis. The contribution of
this paper is fourfold. To the best of our knowledge, this is the first study reporting the labelling of entire MIBC tissue
sections with multiple fluorescence immune markers as well as the quantification of immunological features across both
the tumour core and the invasive front of whole slide immunofluorescence images. In addition, using image, spatial,
and clinical features, our ML methodology improves the accuracy of 5 year prognosis for MIBC patients by a large
margin when compared to the current gold standard, TNM. And lastly, our findings reinforce the importance of the
immune contexture in cancer prognosis, thereby further supporting its adoption into the clinic.

Results

Patient characteristics. A total of 78 patients diagnosed with MIBC were included in this study. Median age of
the patients was 68 years (range 29–87 years) with 43 males and 35 females. According to the TNM staging system
guidelines [9], our cohort consists of 17 stage II, 29 stage IIIA, 5 stage IIIB, and 27 stage IV patients. Twenty seven
patients had distant metastasis at time of surgery. No positive lymph nodes were found in 57 patients and 1–2 lymph
nodes contained tumour cells in 21 patients. Of the 78 patients, 53 patients died due to bladder cancer. Follow-up
information was available for all the patients (range 1–113 months). The clinicopathological characteristics of the
cohort are summarised in Table 1.

Table 1: Patient cohort characteristics.

Characteristics Summary
MIBC patients N = 78
Median survival (range) 19 (1-113) months

Age 66± 11 years
Gender 55% Male; 45% Female

TNM stage
II 17 (22%)
IIIA 29 (37%)
IIIB 5 (6%)
IV 27 (35%)

Tumour (T)
T2 18 (23%)
T3 39 (50%)
T4 21 (27%)

Node (N)
N0 57 (73%)
N1 13 (17%)
N2 8 (10%)

Metastasis (M)
M0 51 (65%)
M1 27 (35%)

Fully automated feature extraction. The entire formalin-fixed paraffin-embedded (FFPE) tissue section of each
MIBC patient was digitized into a WSI, encompassing both muscle-invasive urothelial carcinoma as well as adjacent
benign tissue. Multiplex immunofluorescence, using tyramide signal amplification (TSA), enabled the detection of TILs
(general CD3 and cytotoxic CD8 T-cells), TAMs (total CD68 macrophages and M2 CD163 macrophages), PD-L1+

cells, cell nuclei (Hoechst), and epithelial cancer cells (Pancytokeratin) including TBs across the WSI of each patient.
Machine learning-based image analysis allowed for the localization of each cell, subsequently classified depending on
its immunofluorescence (IF) signal as either a: 1) TB, 2) M1 macrophage, 3) M2 macrophage, 4) total macrophage,
5) general T cell, 6) cytotoxic T cell, or 7) PD-L1+ cell. Based on the above seven classes, a total of 186 quantitative
features were extracted from the tumour core and invasive front of each WSI including the number and density of
different cell types, the total size of tumour areas, as well as the pairwise spatial distributions between immune and
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cancer cells. The tumour core is defined as the main tumour mass and the invasive front as the border of the tumour
core with a width of 1000µm (500µm inside and 500µm outside of the border defining the invasive frontin and
frontout, respectively) as shown in Supplementary Figure S2. Feature extraction was performed using Definiens Tissue
Phenomics R© software (Definiens AG, Munich, Germany) [45, 46, 47]. A list of all extracted features is provided as
Supplementary Information.

Feature space and feature selection. In order to capture multiple aspects of the disease, features from both clinical
reports and whole slide immunofluorescence images were quantified. Herein, the number and density of PD-L1 positive
and negative immune cell populations, as well as of TBs from the WSIs are labelled as “image features”. The pairwise
spatial distributions between immune cells and TBs are termed “spatial features”. And lastly, clinicopathological
features such as age, gender, and TNM stage are termed “clinical features”. Altogether 201 features were quantified –
126 image, 60 spatial, and 15 clinical features (the complete feature list is provided as Supplementary Information). To
investigate whether smaller feature spaces result in better ML models, we ran the same ML workflow over different
feature sets. In particular, our experiments were based on the following 7 feature sets: (i) image, (ii) spatial, (iii) clinical,
(iv) image and spatial, (v) image and clinical, (vi) spatial and clinical, (vii) image, spatial, and clinical.

Machine learning models and optimizing metric. Five ML algorithms with different theoretical underpinnings
were selected to investigate whether the extracted features could predict 5 year survivability in MIBC patients; decision
tree (DT), random forest (RF), support vector machine (SVM), logistic regression (LR), and k nearest neighbours
(KNN). The optimizing metric throughout experimentation was the area under the receiver operating characteristic
(AUROC). At the final evaluation phase, classification accuracy, sensitivity, specificity, F1 score, and hazard ratios were
also computed for ease of comparative analysis, as shown in Table 2. In order to compute the aforementioned metrics,
optimal threshold values were automatically selected at the final stage based on the training set performance. Hazard
ratios and the confidence intervals were calculated using univariate Cox regression.

Table 2: Comparison between our ensemble model and TNM staging. ∗ 95% Confidence Interval.

Training set Testing set
Evaluation metrics Ensemble model TNM staging Ensemble model TNM staging
AUROC 98.398.398.3 71.6 89.389.389.3 64.3

Accuracy 94.894.894.8 65.5 80.080.080.0 50.0

Sensitivity 89.589.589.5 89.589.589.5 100.0100.0100.0 100.0100.0100.0

Specificity 97.497.497.4 53.8 71.471.471.4 28.6

F1 score 83.383.383.3 67.7 83.383.383.3 44.0

Hazard ratio 45.945.945.9 4.4 32.532.532.5 3.3
(6.26.26.2, 341.1341.1341.1)∗ (2.3, 8.6)∗ (3.93.93.9, 270.3270.3270.3)∗ (1.0, 11.0)∗

Proposed ensemble model. Nested cross validation was implemented to avoid overfitting while maximizing the
predictive performance of ML classifiers. In addition, a separate test set was held aside to estimate the generalization
performance of the final classifier.

For each of the tested feature sets, the classifier with the highest average AUROC was selected. In case of similar
average AUROC between two ML classifiers using the same feature set, we selected the one exhibiting the least variance.
The results are shown in Supplementary Table S3. Since multiple classifiers exhibited similar performance across the
different feature sets, instead of employing a single classifier, we combined the best ones into an ensemble model. In
particular, our ensemble model consists of a LSVM that uses image features (72.80± 0.30 AUROC), a DT that uses
image and clinical features (68.80± 0.80 AUROC), a LR that uses image and spatial features (70.20± 14.70 AUROC),
and a RF that uses all features (67.30± 5.80 AUROC). Following hyperparameter tuning for each one of the selected
classifiers on the whole training set, without cross validation, our ensemble model was evaluated on the independent
testing set achieving 89.3% AUROC and a highly significant separation of patients into low and high risk groups (p
value= 7e− 06). Patients were classified as high risk by the ensemble model if two or more of the submodels predicted
a bad prognosis.

Pessimistic bias. The large difference between the generalization estimates of algorithm selection and performance
evaluation (see Supplementary Table S3 and Table 2) can be mostly attributed to pessimistic bias [48]. Given an already
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(a) (b)

(c) (d)

Figure 1: Kaplan-Meier and ROC curves on the testing set for our ensemble model and TNM. Separation was significant
based on the (a) ensemble model (p value = 7e − 06, NLowRisk = 10 & NHighRisk = 10) and (c) TNM (p value
= 0.04, NLowRisk = 16 & NHighRisk = 4).

small data set, withholding half of the training data set for evaluation, due to twofold cross validation, increases the
chance that a ML model will underfit, i.e. its maximum representation capacity will not be reached [48]. Therefore, the
generalization estimate from performance evaluation (Table 2) is more reliable since the whole training set was used.

Comparing against TNM staging. In order to compare against the gold standard in clinical practice, TNM, patients
had to be stratified into low and high risk groups. Based on a pairwise log-rank test comparison in the training data set
(results shown in Supplementary Tables S8, S9, and S10), stage II and III patients were considered as the low risk group
whereas stage IV patients were considered as the high risk group. The Kaplan-Meier and ROC curves of TNM staging
and our ensemble model on the testing set are shown in Figure 1. To allow further comparative analysis, Kaplan-Meier
curves of other clinicopathological features such as age and gender are shown in Supplementary Figure S4. In addition,
the Kaplan-Meier and ROC curves of each submodel of the ensemble model are shown in Supplementary Figure S5.

Post-hoc analysis of features. For each classifier of the ensemble model, post-hoc analysis was conducted to reveal
the features guiding survivability prediction. The feature considered at each node of a DT is readily interpretable (see
Supplementary Figure S8). For the LR, its coefficients determine the importance as well as the positive or negative
effect of each feature on patient prognosis. Mean decrease in Gini index was calculated for each feature of the RF
based on the underlying decision trees [49]. Finally, since the selected SVM had a linear kernel, feature ranking
coefficients were readily available [50]. A threshold was set to filter out features with low feature importance. In
particular, the threshold was set to two times the mean importance of all features for the DT, LR, and RF, whereas two
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times the median importance was used for the LSVM. There were 8, 10, 25, and 16 important features for DT, LR, RF,
LSVM, respectively (the complete feature lists for LR, LSVM, and RF are provided as Supplementary Information). A
visualization of the number of intersecting features between the various submodels of our ensemble model is shown in
Supplementary Figure S6.

For the LR and LSVM submodels, high density of TBs in both the invasive frontin and tumour core is highlighted as an
indicator of bad prognosis. On the contrary, high density of CD8+, CD3+ and CD68+ cells is consistently identified as a
marker of good prognosis. In addition, high number of CD3+, CD68+PD-L1+ and CD163+PD-L1+ cells in the invasive
front as well as the presence of CD3+ cells within a distance of 20µm from TBs are associated with good prognosis. For
the DT submodel, low density of CD68+, high PD-L1+ expression, and high number of TBs (all in frontout) lead to bad
prognosis, whereas, given a low density of CD68+ and PD-L1+ expression in frontout, prognosis depends on the number
of CD68+ in frontin. Finally, the majority of the patients with good prognosis had high CD68+ in frontout, nonzero
PD-L1+ expression in core, low CD163+ in frontout, and high CD3+ in frontout. Similar to the previous submodels,
TBs and CD68+ cells were the most important predictors of 5 year prognosis for RF. In addition, RF employed more
spatial features than any of the other submodels including but not limited to PD-L1+ expression within a distance of
20µm from TBs and 150µm from M2 macrophages as well as the presence of CD3+ and CD8+ cells within a distance
range of 20− 50µm from TB. All of the important features are listed in Supplementary Tables S1 and S2.

Discussion

In the last decade, advances in the rapidly growing field of tumour immunology have provided further insights into
the dynamic nature of the multifaceted immune response throughout the various stages of cancer initiation, evasion,
and progression. Concomitantly, multiple research groups have successfully leveraged this new knowledge to improve
cancer prognosis, thereby providing evidence for the clinical relevance of immuno-oncology [12]. Accurate patient
prognosis is crucial for improving the survival rates of cancer patients since it is a prerequisite to delivering the
most effective treatment for each patient. In fact, multiple papers have shown that the quantitative characterization
of the tumour-immune microenvironment components, including TILs, TAMs, and immune checkpoints, can yield
information of prognostic relevance [51, 52, 53]. Particularly, tumour cells surrounded by a large number of prominent
intra-tumoural and peri-tumoural TILs and M1 macrophages have been related to better prognosis in several types of
cancer [54, 55], whereas a high content of M2 macrophages and TBs has been associated with poorer outcome [52, 56].
In addition, related research has reported the significance of PD-L1 expression on tumour tissues as an independent
poor prognostic factor [57, 58]. In this paper, we have investigated the clinical relevance of immune system biomarkers,
TILs, TAMs, TBs, and PD-L1, in MIBC patient prognosis.

Haematoxylin and Eosin (H&E) is still the most important and commonly used histochemical staining method for
studying and diagnosing tissue diseases in histopathology. However, imaging of H&E stained FFPE tissue has limitations
including the inability to quantify the complex cellular states as well as to identify distinct cell populations in the
tumour-immune microenvironment. With the advent of whole slide imaging and the increasing adoption of digital
pathology in the clinic [59], multiplex methodologies have the potential to provide significantly more information about
the underlying tumour-immune microenvironment than single-marker (i.e. single label immunohistochemistry) and
conventional histochemical staining based methodologies [60]. The development of single protein-based biomarkers
to explain patient-level behaviour is hindered by the vast signalling network mediating the heterotypic cell-cell
crosstalk between cancer, stromal and immune cells. Instead, with multiplexed methodologies, various proteins can be
simultaneously captured on a single tissue sample, encapsulating the tumour-immune architecture from the cellular
level down to the subcellular, ultimately providing more information about the microenvironment.

In our approach, multiplexed immunofluorescence was used to visualize TBs, general and cytotoxic T-cells, M1, M2,
and total macrophages, and their co-expression of immune checkpoint ligand PD-L1 in order to quantify their numbers
and densities, as well as their pairwise spatial distributions across defined areas (tumour core, invasive frontin and
frontout) within a WSI. Over the last decade, multiple studies have investigated the topographical distribution of the
immune cells within the tumour microenvironment [61, 62, 63, 64]. It is known that tumour-infiltrating immune cells
are scattered in the tumour core and the invasive front whereas their density in each tumour region is correlated with
patient outcome [62]. Furthermore, the analysis of multiple tumour regions (tumour core and invasive front) was
shown to improve the prediction accuracy of patient survival compared to single-region analysis [11, 62]. In addition,
Immunoscore, a classification system based on the quantification of two lymphocyte populations (CD3 and CD8) within
the tumour core and the invasive front of tumour, has been shown to have a prognostic significance superior to that of
the TNM staging system in patients with colorectal carcinoma [65, 11]. The image, spatial, and clinical features contain
a multitude of information about the state of the disease and collectively portray a more holistic view of each patient
pathophysiology. We hypothesized that these features can predict the aggressiveness of MIBC, and therefore suggest
whether a patient should be considered low or high risk of disease-specific death.
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ML contains a plethora of classifiers that have been employed with success in multiple instances, including diagnosis,
segmentation, prognosis, and even therapy planning [41]. In our methodology, survival analysis is turned into a binary
classification problem, thus enabling traditional ML algorithms and workflows to be readily employable. In addition,
to counter the possibility of overfitting due to having a small data set yet high dimensional feature space, nested
cross validation with a separate testing set was adopted. The proposed ensemble model significantly surpasses under
all metrics – AUROC, Accuracy, Specificity, F1 score, Hazard ratio – (89.3%/80.0%/71.4%/83.3%/32.5) the gold
standard, TNM staging (64.3%/50.0%/28.6%/44.0%/3.3), as summarized in Table 2. It consists of a LSVM that uses
image features, a DT that uses image and clinical features, a LR that uses image and spatial features, and a RF that uses
all features.

The results of our study suggest that the characterization of a broad immune cell population, as well as their spatial
organization in relation to cancer cells, enables a better estimation of survival compared to TNM staging system in
MIBC patients and provides further biological insights. In particular, we found that high content of TBs in the invasive
frontin, frontout, and tumour core as well as low number of CD68+ cells and high PD-L1 expression in the invasive
frontout are indicators of bad prognosis. This supports previous findings in the literature [33, 36, 66, 53]. High density
of CD8+, CD3+, and CD68+ cells in the invasive frontin, frontout, and tumour core was associated with good prognosis
by our models, as similarly reported in other studies [23, 67]. In addition, high number of CD3+ and CD68+ cells
as well as high number of CD3+ cells clustered within a distance of 20µm from TBs were linked to good prognosis,
similar to previous findings in the literature [37]. Finally, we found that high density of CD163+ cells without PD-L1
expression in frontout is associated with bad prognosis by the DT submodel, whereas the LSVM submodel employed
high number of CD163+PD-L1+ cells in frontout as an indication of good prognosis.

In summary, we have demonstrated that ML classifiers using image and spatial features from WSIs combined with
clinical features from medical records can separate MIBC patients into low and high risk groups based on a 5 year
prognosis. The present approach outperforms the current clinical staging system, TNM, utilized by pathologists to
determine patient prognosis. Our findings show that investigating features from the tumour-immune microenviroment
in relation to survival can provide further insights for histopathological studies, thereby contributing to better ways for
predicting survivability and enabling better quality of care.

Methods

Patients and tissue samples. Tissue specimens from patients with MIBC who underwent radical cystectomy at Royal
Infirmary and Western General Hospital in Edinburgh between the years 2006 to 2013 were collated into a cohort.
Patients were excluded from this study either due to incomplete clinical records, extensive tissue section artefacts,
or data censoring. The final study cohort was comprised of 78 patients. Archived FFPE tissue blocks presenting the
deepest invasion of cancer were selected for each patient based on the assessment of haematoxylin and eosin (H&E)
stained slides by a pathologist and a research scientist. The corresponding unstained tissue sections were collected from
the NHS Lothian NRS BioResource Research Tissue Bank (Ethical status/approval ref: 10/S1402/33), conforming
to protocols approved by the East of Scotland Research Ethics Service. Clinicopathological data that included age,
sex and TNM stage status along with survival data was retrieved from available electronic medical records. Patients
were followed up for a total time of 113 months with a median survival time of 23.6 months. In order to maintain the
anonymity of the patient information, the samples had been de-identified prior to conducting this study.

Multiplex immunofluorescence and whole slide imaging. For each patient, automated tyramide-based immunoflu-
orescence was performed on two de-paraffinised serial 3µm thick sections of FFPE tissue mounted on superfrost plus
slides using a Dako link 48 autostainer (Dako, Agilent Technologies). Primary antibodies against Pan-cytokeratin
(PanCK), CD3, CD8, CD68, CD163 and PD-L1 were used to label urothelial cells, general T-cells, cytotoxic T-cells,
M1/M2 (total) macrophages, M2 macrophages and immune checkpoint ligand PD-L1, respectively (see Supplementary
Table S5 for further details about the primary antibodies). To increase the detection sensitivity and to visualise the
target protein, TSA reagents FITC, CY3 and CY5 were used for CD3, CD8, and PD-L1 respectively. Alexa Fluor 750
conjugated streptavidin antibody was used for the detection of PanCK. See Supplementary Table S6 for the detection
and visualization reagents. Nuclei were counterstained with Hoechst (Hoechst 33342, Cat# H3570, ThermoFisher
Scientific) and ProLong Gold Antifade mountant (Cat# P36930, ThermoFisher Scientific) applied directly to the tissue
samples. The multiplex immuno-labeled tissue slides were scanned at 20× magnification and digitized into whole slide
fluorescence images using a Carl Zeiss AxioScan.Z1 scanner (Zeiss, Göttingen, Germany). Examples are shown in
Figure 2. Supplementary Table S7 and Supplementary Figure S7 show the excitation and emission wavelengths along
with the exposure time for each antibody used for multispectral imaging.
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(a)

(b)

Figure 2: Examples of (a) TILs (Nuclei: Cyan, Cancer: Red , PD-L1: Green, CD3: Purple, CD8: Yellow) and (b)
TAMs (Nuclei: Cyan, Cancer: Red , PD-L1: Green, CD68: Purple, CD163: Yellow) visualized using multiplexed
immunofluorescence.
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Detection of cell nuclei. For nucleus detection, the methodology described by Brieu and Schmidt [68] was adopted.
For completeness, a high level description of this methodology is provided. The methodology is comprised of four
distinct stages: (a) A classification RF was trained with long-range spatial context features [69] extracted from
manually annotated epithelial and non-epithelial regions (n = 4, resolution=1200× 1200 pixels). Subsequently, the
RF generated an epithelial mask for all IF images [70]. (b) A regression RF was trained to generate proximity maps
using coordinates from manual annotations of cell nuclei (n = 750 from 19 fields of view, resolution=1485× 1485).
Intuitively, a proximity map encloses the distance to the closest nucleus center for each pixel of the input image. (c)
A regression RF was trained to generate surface area maps using manual annotations (n = 250 from 8 fields of view,
resolution=580× 580 pixels) [68]. A surface area model provides a mask of the initial image wherein each pixel is
either zero, if it is not a part of a nucleus, or a positive real number, if it is part of a nucleus. The positive real number is
the area of the corresponding nucleus. (d) At this stage, nuclei centers (see Supplementary Figure S3) are localized
based on the proximity and surface area maps that were generated in (b) and (c) [68]. Note that both the original image
and the corresponding epithelial mask (produced in (a)) are given as inputs to the models in (b) and (c) using only the
PanCK and Hoechst IF channels. Data augmentation with varying scale, rotation, as well as intensity for both PanCK
and Hoechst IF channels was implemented in all stages. Finally, regions with necrotic tissue and any type of artefact,
such as autofluorescence, were not included in any of the training data.

Segmentation of epithelial cells for the identification of tumour buds. For the quantification of tumours buds,
segmentation of the epithelial cells was required. The CNN-RF methodology described by Brieu et al [71] and extended
in [36] was adopted. Briefly, a convolutional neural network (CNN) was trained on an annotated data set of epithelium
and non-epithelium IF images. The data set comprised of 142× 142 pixel regions that were selected by an expert. The
Hoechst, PanCK, CD3 and CD8 IF channels were normalised following the approach described by Brieu et al. [71]. An
intensity interval was imposed for the PD-L1, CD163, and CD68 IF channels by computing minimum and maximum
values from the segmented epithelium regions of each slide. Once trained, the CNN produced a coarse segmentation
mask of epithelium regions. Normalized PanCK, Hoechst, CD3, and CD8 channels of the IF images were used as
input to the CNN. The predicted epithelium probability layer was used together with the original IF channels as input
to a RF. Finer-grained segmentation masks were produced by the RF, enabling a more accurate segmentation of the
epithelium. As detailed in previous work [36], the output of the CNN-RF is finally ensembled with the output of a
semantic segmentation network [72] to generate the final epithelium segmentation results. Tumour buds were classified
as epithelium objects containing one to four nuclei [36]. A total number of 97262 patches were used for training and
9742 patches for validation of the CNN-RF model. The semantic segmentation network was trained with 19093 patches
and validated with 6987 patches with 256× 256 pixels.

Cell classification. For cell classification, given the normalised IF channels, a circular neighbourhood of each cell
nuclei is defined (11× 11 pixel radius) and the mean normalised intensity of the neighbourhood is computed for each
IF marker (CD3, CD8, CD68, CD163, PD-L1 and PanCK). Cells are classified as positive or negative for a given IF
marker if the corresponding mean normalized intensity is above or below a determined threshold, respectively. In our
experiments, the threshold for all the IF markers was set to 32/256 = 0.125.

Pairwise spatial distributions of lymphocytes, macrophages, tumour buds and PD-L1. The extracted point
coordinates of cell nuclei and immune checkpoint ligand PD-L1 expression were localized across the WSIs as shown
in Supplementary Figure S1. The Ripley’s K function [73] was adopted for investigating how TBs, PD-L1, and the
different populations of immune cells are distributed around each other. In particular, given two populations X and Y ,
Ripley’s K function estimates the density of Y within a circle of radius r around points X . As illustrated in Figure 3,
assuming a Poisson distribution, the Ripley’s K function can identify whether a population Y is dispersed, randomly
distributed, or clustered around another population X . The K function is given as:

Kxy(r) =
1

λy
E[number of points y within a distance r around a point x] (1)

where E[·] encloses all of the points of type y within a distance r of a randomly selected point of type x. Theoretically,
if the point pattern of points Y around X follows complete spatial randomness, also known as a homogeneous Poisson
process, the value of K function is πr2. The L function [74] is a modification of equation 1, so that the expected output
value is r, i.e. :

Lxy(r) =

√
Kxy(r)

π
(2)

This enables a more intuitive interpretation of the function’s output value in relation to r. The L function was calculated
for TAMs, TILs, and PD-L1 surrounding TBs as well as PD-L1 surrounding TAMs and TILs for a series of increasing
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distances r where r ∈ {20, 50, 100, 150, 200, 250} µm. While some approaches calculate the area under the curve of
the L function against different r values [75], we provided the pairwise spatial distributions between PD-L1, TBs, and
the immune populations directly to the ML classifiers as distinct features.

(a)
(b)

(c)
(d)

(e)
(f)

Figure 3: Schematic representation of different immune cell distributions from the nuclear centre of a tumour bud (a,
c, e), and their corresponding L function values at different radii (b, d, f). The immune cell population is either (a–b)
dispersed, (c–d) randomly distributed, or (d–e) clustered around the TB.
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Binary survival analysis. Survival analysis is broadly defined as the analysis of data that involve the time to the
occurrence of an event of interest [76]. Herein, the event of interest was the death of an individual due to MIBC. A
characteristic of survival analysis is censoring. In our cohort, some patients were right-censored either because the end
of study was reached and the event of interest did not occur, or because the patients succumbed to a cause other than
MIBC (abbreviated as OTD-censoring) [76].

Patient survivability was binarized based on a specific time cutoff. Similarly to previous work, a 5 year prognosis
was investigated [42, 77, 78]. Patients that succumbed to MIBC within 5 years were denoted as patients with a bad
prognosis whereas those that survived the 5 year cutoff were denoted as patients with a good prognosis. Inevitably,
patients that died to an unrelated cause prior to the prognostic cutoff, i.e. they were part of the OTD-censored data, had
to be excluded (19% patient exclusion). It is worth mentioning that removing these patients does not introduce bias
since time to censoring was random, i.e. OTD-censoring was not known a priori. A consequence of this approach is that
survival analysis was turned into a binary classification problem. Furthermore, due to removing censoring, traditional
ML models were readily employable.

Model selection, algorithm selection, and performance evaluation. Both model selection and algorithm selection
attempt to collectively maximize the predictive performance of the final ML model. However, ML algorithms are prone
to overfitting, i.e. in finding and using patterns which arise from noise in the data. Such noisy patterns do not generally
extend beyond the specific data set since noise is typically random. With both a small data set and a complicated model,
the likelihood of overfitting increases. Testing the performance of a trained ML model on unseen data constitutes the
mainstay in evaluating the generalizability of a ML model, and therefore, in identifying whether a model has overfitted.
As such, a subset of the initial cohort was kept aside as the testing data set. In particular, using stratified random
sampling, two subsets were created, the training set with 75% of the initial data (58 patients), and the testing set with
25% (20 patients). The testing set was only used at the performance evaluation stage to avoid introducing bias to the
generalization performance estimate.

Traditionally, model selection is the process in which a ML algorithm is configured. Most ML algorithms come with a
number of configuration variables, commonly referred to as hyperparameters. Even though common hyperparameter
configurations can be employed, it has been observed that hyperparameter tuning for a specific task can be the key
between chance and state-of-the-art models [79]. Since manual tuning can be time consuming and counter-intuitive in
high dimensional spaces, most ML methodologies adopt automated hyperparameter tuning.

One of the most popular approaches to model selection constitutes grid search where each hyperparameter is given a
predefined list of values, and the best hyperparameter configuration is selected after evaluating all the combinations. For
example, given hyperparameters A and B, and lists VA = [1, 10, 100] and VB = [0.1, 0.5], the following combinations
were evaluated under grid search: ∀(A,B) ∈ [(1, 0.1), (1, 0.5), (10, 0.1), (10, 0.5), (100, 0.1), (100, 0.5)]. However,
as shown by Bergstra and Bengio [80], random sampling provides a better tuning strategy.

In random search, a number of hyperparameter configurations are evaluated by sampling from predefined hyperparame-
ter distributions and densities. For example, given hyperparameters A and B with DA ∼ N(0, 1) and VB = [0.1, 0.5],
where DA is a standard Gaussian distribution, the following five combinations could have been sampled and evaluated
under random search: ∀(A,B) ∈ [(−0.12, 0.1), (−0.14, 0.5), (−0.94, 0.5), (0.44, 0.1), (−1.3, 0.5)]. In our methodol-
ogy, 200 hyperparameter configurations were randomly sampled and evaluated for each ML algorithm. A table of the
distributions and densities used is provided in Supplementary Information S4.

Not every ML algorithm will perform equally well on different problems and different data. In addition, there is
no theoretical ranking suggesting that one algorithm is better than another [81]. Hence, similar to hyperparameter
tuning, algorithm selection is yet another meta-optimization task that needs to be performed for maximizing predictive
performance. However, as argued by Bergstra et al. [79]: “Since the performance of a given technique depends on
both the fundamental quality of the algorithm and the details of its tuning, it is sometimes difficult to know whether a
given technique is genuinely better, or simply better tuned.” Consequently, algorithm selection should involve model
selection. Therefore, each ML algorithm was first tuned using fivefold cross validation and then compared against
each other using twofold cross validation. This nested cross validation translates to optimizing the hyperparameters of
each ML algorithm twice, and then measuring their performance on the corresponding evaluation folds (see Figure 4).
Subsequently, the ML algorithm which performed better than the rest across two different training and validation folds
is selected. It is important to highlight how in most cases each ML algorithm is evaluated based on two different
hyperparameter configurations. Nevertheless, once the ML algorithm has been selected, yet another hyperparameter
tuning phase is implemented to find an optimal hyperparameter configuration based on the whole training data set.
Five ML algorithms with different theoretical underpinnings were selected to compete against each other; Decision
Tree (DT), Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), and k nearest neighbours
(KNN). Finally, a preprocessing step of feature normalisation was added to all classifiers except DT and RF.
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Figure 4: Pictorial representation of nested cross validation with an independent testing set. (A) Performance Evaluation:
The best ML algorithm (selected by the outer cross validation, see B) was trained on the training data set and subsequently
evaluated on the testing data set. (B) Algorithm Selection: Each ML algorithm (with hyperparameters tuned based on
the inner cross validation, see C) was trained and tested on the corresponding training and evaluation folds respectively.
The best ML algorithm was selected based on the average performance of both evaluation folds. (C) Model Selection:
ML models with randomly sampled hyperparameter configurations were trained and tested based on a fivefold cross
validation. The best hyperparameter configuration for each ML algorithm was selected based on the performance on all
five evaluation folds.

Stratified sampling. In order to avoid sampling subsets with different class distributions (classes are based on survival
with a 5 year cutoff) than the original cohort, stratified sampling was used. Intuitively, when sampling from a data set
with stratification, proportionally many patients from each class are sampled. Given a data set with 75 patients of class
C1 and 25 patients of class C2, a 20% sample would contain 15 patients from class C1 and 5 patients from class C2.

Data availability

The data and the code of this study are available from the corresponding authors upon request.
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