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Abstract 

Background: Pan-cancer genomic analyses based on the magnitude of pathway activity 

are currently lacking. Focusing on the cell cycle, we examined the DNA mutations and 

chromosome arm-level aneuploidy within tumours with low, intermediate and high cell 

cycle activity. 

Patients and methods: Matching mRNA, gene mutational status, chromosomal arm-

level aberrations and clinico-pathological data was assembled from pan-cancer studies of 

9,515 patients with 32 different cancers. Cell cycle activity was estimated from mRNA 

data using the cell cycle score (CCS) signature. Barplots were used to visualise mutation 

and chromosomal aberration frequency within CCS subgroups. Kaplan-Meier and 

multivariable Cox-regression analyses were used to determine survival differences 

between CCS subgroups. 

Results: Cell cycle activity varied broadly across and within all cancers. TP53 and 

PIK3CA mutations were common in all CCS subgroups but with increasing frequency as 

cell cycle activity levels increased (P < 0.001). Mutations in BRAF and gains in 16p were 

less frequent CCS high tumours (P < 0.001). In Kaplan-Meier analysis, patients whose 

tumours were CCS Low had a longer PFI relative to intermediate or high (P < 0.001) and 

this significance remained in multivariable analysis (CCS intermediate: HR = 1.37; 95% 

CI 1.17 – 1.60, CCS high: 1.54; 1.29 – 1.84, CCS Low = Ref). 

Conclusions: Cell cycle activity varies across and within cancers and whilst similar DNA 

alterations can be found at all activity levels, some notable exceptions exist. These data 

also demonstrate that independent prognostic information can be derived on a pan-cancer 

level from a simple measure of cell cycle activity. 
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Introduction 

The Nobel prize winning research of Hartwell [1], Nurse [2,3] and Hunt [4] in the 

nineteen seventies and eighties fundamentally changed our understanding of the cell cycle 

and provided broad insight into the molecules governing its regulation. These seminal 

discoveries have shaped our modern view of the cell cycle and its separation into four 

distinct phases commonly referred to as G1, S, G2 and M. Transitions between these 

phases are governed by the cyclin family of proteins along with their binding partners the 

cyclin dependent kinases (CDKs) [5]. Disruptions to the function of cyclin-CDK 

holoenzymes or other cell cycle pathway members can lead to impaired control over the 

cycle and sustained proliferation - a hallmark of cancer [6]. 

 Large scale pan-cancer studies have sought to understand human malignancies at 

a molecular level through the integration of multiple high-throughput data types. This 

approach has yielded a number clinically relevant findings including the coalescence of 

lung squamous, head and neck, and some bladder cancers into a single pan-cancer subtype 

and the ability to classify tumours into prognostic subgroups at a pan-cancer level [7]. 

More recently, data from over eleven-thousand patients has shown actionable mutations 

in up to fifty-seven percent of tumours [8], a positive correlation between aneuploidy and 

cell cycle genes [9], and frequent co-alterations in the p53 and cell cycle pathways [10]. 

To date, the analysis of genomic aberrations in these studies have typically focused on all 

pan-cancer tumours at once [8], within subgroups of tumours that have clustered together 

on the basis of DNA, RNA and protein expression – termed the iClusters [8], or within 

tumours with a common genetic alteration such as chromosome 3p loss [9]. Given the 

varying degrees of oncogenic pathway activation/suppression across cancer types [10], 

we hypothesized that basing genomic analyses on the magnitude of pathway activity may 

also provide important biological information and clinical insight. In view of the 
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fundamental biological role of the cell cycle in cancer and the frequent genomic 

alterations of its pathway members, it represents a compelling choice for a pathway 

activity-based analysis. 

Here, in order to test our hypothesis, we compare the most prevalent genomic 

alterations in tumours with low, intermediate and high levels of cell cycle activity by 

integrating data from multiple genomic platforms in over nine-thousand tumours from 

The Cancer Genome Atlas (TCGA). Specifically, we examine gene expression levels, 

gene mutational frequency and chromosome arm-level alterations across pan-cancer 

tumours grouped into tertiles of cell cycle activity on the basis of our cell cycle score 

(CCS) gene signature [11,12]. Finally, we also determine the clinical relevance of this 

signature across and within cancer types using survival analyses including Kaplan-Meier 

graphs and multivariable Cox proportional hazards modeling adjusting for patient and 

tumour characteristics. 

 

Patients and Methods 

Study population and specimens 

The Pan-Cancer Atlas (PanCanAtlas) project compared and contrasted genomic and 

cellular differences between tumour types profiled as part of TCGA. The project consists 

of 11,069 patients with primary tumours from 32 different cancer types, including 

Adrenocortical carcinoma (ACC), Bladder Urothelial Carcinoma (BLCA), Brain lower 

grade Glioma (LGG), Cervical squamous cell carcinoma and endocervical 

adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma 

(COAD), Esophageal carcinoma (ESCA), Glioblatoma multiforme (GBM), Head and 

Neck squamous cell carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal 

clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Liver 
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hepatocellular carcinoma (LICH), Lung adenocarcinoma (LUAD), Lung squamous cell 

carcinoma (LUSC), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC), 

Ovarian serous cystadenocarcinoma (OV), Pancreatic adenocarcinoma (PAAD), 

Pheochromocytoma and Paraganglioma (PCPG), Prostate adenocarcinoma (PRAD), 

Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin Cutaneous Melanoma 

(SKCM), Stomach adenocarcinoma (STAD), Testicular Germ Cell tumours (TGCT), 

Thymoma (THYM), Thyroid carcinoma (THCA), Uterine Carcinosarcoma (UCS), 

Uterine Corpus Endometrial Carcinoma (UCEC) and Uveal Melanoma (UVM). 

From the original 11,069 patients, 9,515 were included in our study and reasons for 

exclusion were missing or no matching gene expression data (n = 795), copy number data 

(n = 498) or clinico-pathological information (n = 261). A CONSORT diagram showing 

the exclusion criteria for this study is shown in Supplemental figure 1. All clinical, gene 

expression, mutation and chromosome arm-level data from the PanCanAtlas study were 

taken from the publicly available database of the National  Institutes of Health (NIH) 

(https://gdc.cancer.gov/about-data/publications/pancanatlas).  

 

mRNA data, clustering and the Cell Cycle Score (CCS) 

Fully processed, batch corrected, RNA-sequencing data were accessed from NIH 

genomic data commons (GDC) database (https://gdc.cancer.gov). All data quality 

control, normalisation and gene level counts were performed by the PanCanAtlas 

investigators as described in the their original publication [13]. Integrative Cluster 

(iCluster) were also retrieved from the same publication. Cluster of cluster assignments 

(COCA) were performed by the pan-can investigators as described in Hoadley et al. [7], 

resulting in 32 different tumour clusters. Clusters with less than 20 tumours were 

excluded from further analysis. Cell Cycle Score (CCS) signature was applied as 
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previously published [11,12]. Briefly, we extracted gene expression data from 433 of 463 

signature CCS genes from all pan-cancer tumours and summed their values on an 

individual tumour basis to derive a single score of cell cycle activity for each sample. 

This continuous variable was further divided into tertiles in order to classify tumours as 

having Low, Intermediate or High levels of cell cycle activity on a broad, pan-cancer 

level.  Cancer types where the pan-cancer CCS demonstrated independent prognostic 

information in multivariable Cox proportional hazard models were also assessed using 

within (intra-) cancer CCS tertiles: KIRC, LGG, LUAD, PAAD, SARC, UCEC and 

UVM. 

 

Mutational analysis 

Fully processed mutational data derived from exome sequencing was taken from GDC 

database in a mutation annotation format file (MAF) (https://gdc.cancer.gov). All data 

quality control, processing and mutation calling was performed by the PanCanAtlas 

investigators as described in the their original publication [8]. We limited our analysis to 

299 cancer driver genes manually annotated by experts in the pan-cancer field [8]. The 

MAFtools package in the R-statistical environment was used for mutation count 

calculations within CCS subgroups. A gene was counted as mutated (1) or not (0) for 

each tumour regardless of the number of mutations within that gene. 

 

Chromosomal arm-level alterations and Aneuploidy score 

Fully processed chromosome arm-level alteration data and tumour aneuploidy scores 

were accessed from GDC database (https://gdc.cancer.gov) and were derived from 

Affymetrix SNP 6.0 arrays. All data quality control and processing was performed by the 

PanCanAtlas investigators as described in the original publication [14]. Chromosome 
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arm-level alterations are presented as estimated ploidy values of +1, 0 and -1 for gains, 

non-aneuploidy and losses, respectively [9]. 

 

Statistical Analysis 

To assess differences among clinico-pathological characteristics of tumour samples and 

CCS subgroups χ2 tests were employed. Clinical and survival data were retrieved from 

the GDC database (https://gdc.cancer.gov/about-data/publications/pancanatlas). 

Univariate Kaplan-Meier analysis was performed for the CCS in all pan-cancer tumours 

together and in individual cancer types with Progression Free Interval (PFI) censored at 

15 years as the clinical endpoint, as previously recommended [15]. PFI is defined as the 

period during or after the course of a treatment given to patients in which the disease does 

not show any progression until a loco-regional recurrence and/or second malignancy 

occurs, or the patients die from any cause. Multivariable Cox proportional hazard models 

were used to determine the independent prognostic capacity of the CCS subgroups in all 

pan-cancer tumours together and in individual cancer types adjusting for cancer type, age 

(grouped in tertiles), gender, radiation therapy and pathological stage. To compare the 

prognostic capacity of pan-cancer vs. intra-cancer CCS cutoffs we used the likelihood 

ratio (LR) which can be interpreted as a goodness-of-fit test. LR and concordance index 

(c-index) measures were extracted from the output of the coxph function of the survival 

package in R. All statistical analyses were performed using R statistical software version 

3.5.3 [16]. 
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Results 

Cohort clinico-pathological characteristics in relation to CCS subgroups 

In line with our aim to compare genomic alterations in tumours with differing levels of 

cell cycle activity we applied our CCS signature to gene expression data from the tumours 

of 9,515 pan-cancer patients. Clinico-pathological characteristics for the pan-cancer 

cohort split by CCS classifications are shown in Table 1. Statistically significant 

associations were found between patient age, gender, pathological stage, radiotherapy 

and CCS subgroups (Table 1, Chi-squared test: P < 0.001 for all comparisons). After 

adjusting for cancer type, only stage and radiotherapy remained statistically significant 

whereby CCS high tumours were more likely to be stage IV and to have received 

radiotherapy (data not shown). 

 

Broad variation in cell cycle activity across cancers and COCA subtypes 

We next assessed tumour cell cycle activity by creating pan-cancer, COCA and iCluster 

boxplots using the continuous CCS. We found the highest levels of cell cycle activity in 

DLBC, TCGT, HNSC and CESC tumours the lowest in KICH, PCPG, KIRP and PRAD 

tumours (Figure 1A). Similar results were found using the COCA algorithm - a 

classification strategy that clusters samples by integrating information from multiple 

individual cross platform technologies, with CA17 (TCGT) and CA4 (PAN-SCC, mainly 

HNSC, LUSC and CESC tumours) forming the top two subgroups with the highest cell 

cycle activity (Figure 1B). CA10 (BRCA, basal-like) and CA25 (Hematologic/lymphatic, 

mainly THYM and DLBC tumours), also showed high cell cycle activity, whilst CA1 

(CNS/Endocrine, mainly PCPG tumours), CA14 (PRAD) and C21 (PAN-Kidney) 

showed the lowest levels of all COCA subtypes (Figure 1B). Analogous results were 

noted using the iCluster classification strategy (Supplemental Figure 2). Examining cell 
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cycle activity clusters using heatmap analysis demonstrated that tumours with low levels 

of cell cycle activity (and thus classified as CCS Low) show low expression of the 

majority of genes in all cell cycle phases (G1 to M), whilst the opposite is true for tumours 

with high levels of cell cycle activity (Figure 1C, compare tumours with black column-

side colour to those with yellow). 

 

TP53 and PIK3CA mutations display increasing frequency across cell cycle activity 

subgroups 

To more clearly delineate the frequency of DNA mutations in relation to the magnitude 

of cell cycle activity we next examined the mutational frequency of 299 well defined 

oncogene and tumour suppressor driver genes within CCS subgroups. TP53 was found to 

be the most mutated gene in all three CCS subgroups and displayed an increase in 

mutational frequency with increasing CCS activity (Figure 2A, Supplemental Table 1, 

Chi-squared test:  P < 0.001). In CCS Low tumours 40% of TP53 mutations were found 

in LGG, whereas in CCS high tumours TP53 mutations were most common in HNSC 

(18%), LUSC (17%) and BRCA (13%) (Highlighted in Figure 2A).  PIK3CA was the 

second-most commonly mutated gene in CCS intermediate and high tumours and fifth 

most common in CCS Low tumours (Figure 2A). It is also more frequently mutated in 

CCS Intermediate and High tumours relative to CCS Low (Supplemental Table 1, P < 

0.001). PIK3CA mutations in BRCA and UCEC were common across all CCS subgroups 

and were additionally found in HNSC and CESC in CCS high tumours (Figure 2A). Of 

interest, whilst BRAF mutations were prominent in Low and Intermediate subgroups as 

the third and eleventh most mutated gene respectively, it was absent from the top 15 in 

CCS High tumours (Figure 2A, red arrows, Supplemental Table 1, P = 0.001). This 

suggests that other genes are more commonly mutated in tumours with high cell cycle 
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activity. The top 50 most frequently mutated genes in all CCS subgroups are shown in 

Supplemental Table 2. 

 

Higher levels of chromosomal gains and losses in CCS intermediate and high 

tumours 

We next performed the same subgroup analysis, but this time focusing on chromosome 

arm-level gains and losses. All CCS subgroups showed a high number of gains to arms 

20q, 8q and 7p and losses to arms 17p and 8p (Figure 2B and C, respectively, all CCS 

subgroups). Moreover, these chromosomal aberrations all displayed an increase in 

frequency with increasing CCS activity (Supplemental Table 1, Chi-squared test:  P < 

0.001 for all comparisons, not adjusted for multiple testing).  Overall, gains in KIRP 

(Figure 2B, highlighted) and losses in PCPG cancers (Figure 2C, highlighted) were more 

common CCS Low tumours relative to CCS Intermediate and High subgroups, as could 

be anticipated given the low cell cycle activity levels displayed by these tumour types and 

their grouping into the CCS Low tumour subgroup (Figure 1A). Analogous to our BRAF 

mutation findings, gains to 16p (Figure 2B, red arrows) were more common in CCS Low 

and Intermediate subgroups relative to the CCS High subgroup (Supplemental Table 1, P 

< 0.001). The frequency of chromosomal arm gains and losses in all CCS subgroups are 

shown in Supplemental Table 3.  

Next, we examined genomic alterations more broadly within CCS subgroups and 

found the frequency of gene mutations and chromosomal arm gains and losses  to be 

greater in CCS Intermediate and High groups relative to Low (Figure 3 A - C, Tukey 

HSD test, 3A top 50 DNA mutations: P < 0.001 and P < 0.001, 3B chromosomal gains: 

P = 0.018 and P < 0.001 and losses 3C: P < 0.001 and P < 0.001 for Low vs. Intermediate 

and High, respectively). Similarly, using the recently derived aneuploidy score [9] - a 
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measure of the total number of chromosome arms with arm-level copy number changes 

in a given sample, we also found a statistically significant increase with increasing CCS 

activity levels (Figure 3 D, P < 0.001 for all comparisons).  

 

CCS signature provides independent prognostic information at pan-cancer level 

We next assessed the relationship between CCS and PFI using Kaplan-Meier and 

multivariable Cox proportional hazard regression model analyses. In univariate Kaplan-

Meier analysis patients whose tumours were classified as CCS Low had a significantly 

longer PFI relative to those classified as CCS Intermediate or High (Figure 3 E, log-rank 

test: P < 0.001). This significance remained when adjusting for tumour type, age, gender, 

pathological stage and radiotherapy in Cox proportional hazard analysis (Table 2, CCS 

intermediate: HR 1.37 95% CI 1.17 – 1.60, CCS high: HR 1.54 95% CI 1.29 – 1.84, 

tumour type not shown). The upper Age tertile (³ 66) remained statistically significant in 

the same model (HR 1.19 95% CI 1.05 – 1.35 vs. Ref), as did all pathological stages vs. 

the Stage I model reference group. 

 In order to determine if the prognostic capacity of the CCS was similar in all 

cancer types, we again performed Kaplan-Meier and Cox proportional hazard modelling 

but this time focusing on individual cancers. CCS provided significant independent 

prognostic information in seven cancer types: KIRC (P = 0.006), LGG (P < 0.001), 

LUAD (P  = 0.031), PAAD (P  = 0.026), SARC (P  < 0.001), UCEC (P = 0.012) and 

UVM (P  = 0.001, Supplemental Figure 3, alphabetical ordering, unadjusted for multiple 

testing). Finally, as the CCS subgroups are based on a tertile split of cell cycle activity on 

a pan-cancer level, we hypothesised that deriving subgroups in this manner may provide 

superior prognostic information to a simple tertile split within (intra) each cancer type. 

To test this hypothesis, we compared our pan-cancer CCS tertile subgroups to intra-
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cancer CCS tertile subgroups. We found that whilst both cut-offs provide significant 

prognostic information in the above seven cancer types (Compare Kaplan-Meier curves 

for pan-cancer CCS to intra-cancer CCS, Supplemental Figure 4), a pan-cancer cut-off 

provides more prognostic information in KIRC (LR = 24.7), LGG (LR = 31.1), SARC 

(LR = 18.5) and UVM cancers (LR = 17.1, Table 3, compare pan-cancer column to intra-

cancer). These findings suggest that deriving transcriptional biomarker cut-points on a 

pan-cancer level may be advantageous relative to deriving them in a single cancer type. 

 

Discussion 

The present study integrates gene expression, DNA mutation, DNA copy number and 

clinico-pathological data from 9,515 pan-cancer patients in order to better understand the 

DNA level alterations present in tumours with low, intermediate and high cell cycle 

activity. Our main findings show first, that cell cycle activity varies broadly across and 

within cancer types; second, that TP53, PIK3CA and chromosomal alterations (including 

gains to 20q, 8q, 7p and losses to arms 17p and 8p) occur with increasing frequency in 

tumours with increasing cell cycle activity; third, whilst in general similar mutations/ arm 

level alterations are present within tumours with low, intermediate and high cell cycle 

activity, mutations in BRAF, gains in 16p and losses in 6q were less frequent in tumours 

with high cell cycle activity; and fourth, that deriving cut-points for biomarkers on a pan-

cancer level may provide more prognostic information than deriving them within specific 

cancer types. These analyses are the first to provide broad insight on the genetic 

alterations occurring within tumours grouped on the basis of cell cycle activity in order 

to advance our understanding of a pathway that is frequently dysregulated in human 

malignancies. 
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 In pan-cancer analyses, TP53, PIK3CA, KRAS, PTEN and ARID1A genes have all 

been previously demonstrated to be mutated in over 15 different cancer types [8]. These 

genes also featured heavily in our mutational analysis with TP53 and PIK3CA mutations 

showing the high mutational frequency across CCS subgroups. This implies that 

mutations in these genes are found in tumours with a broad range of cell cycle activity 

and are not just associated with highly cycling cancers, despite their very clear links to 

cell cycle progression [17,18]. Whilst we found the ARID1A gene to be mutated in all 

CCS subgroups BRAF was notable for only being found in the top 15 of the CCS Low 

and Intermediate subgroups, implying that other genes are more commonly mutated in 

tumours with high cell cycle activity, such as TP53 and PIK3CA. 

It has recently been demonstrated that tumour aneuploidy is inversely correlated 

to immune signalling genes and positively correlated to cell cycle and pro-proliferation 

pathways [9]. Our findings are in line with these showing a step wise increase in 

aneuploidy score with increasing CCS activity levels. Related to this, whilst most of 

predominant chromosome arm-level alterations we observed overlapped with those from 

the pan-cancer publication [9], our within subgroup analysis yielded some novel findings. 

In particular, and analogous to our mutational results, we found that specific gains (16p) 

and losses (6q) were present in the CCS Intermediate and high subgroups only (Figure 

2B and C, red arrows). This raises the possibility that these chromosomal alterations could 

potentially be used as novel clinical biomarkers for more indolent tumours on a pan-

cancer level. 

We found that our cell cycle score gene expression signature, previously 

established in a breast cancer setting [11,12], provided independent prognostic 

information on a pan-cancer level. This signature was originally conceived as simple 

biological measure of cell cycle activity in response to the dependence of more 
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established commercial gene expression signatures on multiple cell cycle/cell 

proliferation genes for their prognostic capacity [19]. In keeping with its descriptive 

nature, we have not attempted to maximise the signature’s prognostic capacity through 

selection of genes that are the strongest predictors of the study’s clinical endpoint - 

progression free interval. Despite this, the signature performed well in both Kaplan-Meier 

and multi-variable analyses, likely owing to its ability to select for faster growing, more 

aggressive tumours. Following on from these results we also noted that deriving CCS 

tertiles of activity on a pan-cancer level may provide more prognostic information than 

deriving them within a specific cancer type. This may be of utility in a clinical setting 

where a gene transcript is being used as a biomarker for treatment response, such as the 

recent example of cyclin E expression and Palbociclib efficacy in metastatic breast cancer 

patients [20]. In this instance it is conceivable that re-defining a cyclin E cut-point on the 

basis of pan-cancer expression levels of the gene may more clearly delineate which 

patients are likely to be resistant to the drug. 

 There are three main strengths to our study; first, we utilise a novel methodology 

to examine the DNA alterations in subgroups of tumours that is based on the magnitude 

of cell cycle activity both across and within cancer types; second, our analysis provides 

an expansive overview of the frequency of DNA mutations and chromosomal gains and 

losses in subgroups of low, intermediate and high cell cycle activity; and third, we 

demonstrate the translational relevance of our work by relating our CCS signature to a 

clinical survival endpoint – PFI. The limitations are as follows; first, our analysis focuses 

on DNA and RNA technologies only, with no protein or methylation array data included; 

second, we chose to study broad chromosomal gains and losses rather than gene-centric 

copy number changes – this was to avoid a situation where the most changed genes within 

a given CCS subgroup would all come from the same chromosomal location; and third, 
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no external validation was performed for the CCS signature, although we are not aware 

of any other pan-cancer dataset where it could be validated and more importantly, we are 

not currently proposing it for use in a clinical setting – rather as a general tool to examine 

the cell cycle activity of a given tumour.  

 In summary, this study describes the DNA mutations and chromosomal alterations 

found in tumours with low, intermediate and high levels of cell cycle activity and also 

demonstrates the ability of a simple cell cycle gene expression signature to provide 

independent prognostic information at a pan-cancer level. 
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tumours; THYM: Thymoma; THCA: Thyroid carcinoma; UCS: Uterine Carcinosarcoma; 

UCEC: Uterine Corpus Endometrial Carcinoma; UVM: Uveal Melanoma. 
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Table 1.       

Clinical characteristics of all patients split by CCS 

Variables 

Pan-cancer (n = 9515)  

Low  Intermediate  High  

n (%)  n (%)  n (%)  

3145 (33)   3184 (33.5)   3186 (33.5) p 

Age       

 ≤ 54 1290 (41)   876 (28)   1061 (34)  < 0.001 
 54 - 66 1044 (33)   1062 (33)   996 (31)   

 ≥ 66 808 (26)   1236 (39)   1119 (35)   

 Missing cases = 23      

Gender       

 Male 1771 (56)   1372 (43)   1494 (47)  < 0.001 
 Female 1374 (44)   1812 (57)   1692 (53)   

Pathological stage       

 Stage I 859 (45)   601 (26)   444 (20)  < 0.001 
 Stage II 480 (25)   820 (35)   768 (35)   

 Stage III 419 (22)   639 (28)   575 (27)   

 Stage IV 150 (8)   260 (11)   382 (18)   

 Missing cases & excluded casesº = 3118    

Radiotherapy       

 No 1954 (73)   2047 (73)   1820 (65)  < 0.001 
 Yes 709 (27)   770 (27)   993 (35)   

 Missing cases = 1222       

º : I/II NOS-Stage 0/IS/X, , In bold significant p < 0.05  
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Table 2.      

Multivariable Cox-regression analysis of the CCS signature across pan-cancer patients 

 
 Pan-cancer (n = 5421)*  

Variables 
 

N (%) HR 95% CI p  
      

Age      

≤ 54  1679 (31)  Ref  -   -  

54 - 66  1761 (32) 1.04    0.91 - 1.18 0.551 

≥ 66   1981 (37) 1.19    1.05 - 1.35 0.008 
Missing cases = 23      

Gender      

Male  2757 (51)  Ref  -   -  

Female  2664 (49) 0.96    0.87 - 1.07 0.483 

Pathological stage      

Stage I  1561 (29)  Ref  -   -  

Stage II  1852 (34) 1.60    1.38 - 1.86 < 0.001 
Stage III  1378 (25) 2.41    2.08 - 2.79 < 0.001 
Stage IV  630 (12) 5.04   4.21 - 6.03 < 0.001 

Missing cases = 3118      

Radiotherapy      

No  3997 (74)  Ref  -   -  

Yes  1424 (26) 0.97    0.84 - 1.11 0.658 

Missing cases = 1222      

Cell cycle score      

Low  1505 (28)  Ref  -   -  

Intermediate   2013 (37) 1.37    1.17 -    1.60 < 0.001 
High  1903 (35) 1.54    1.29 -    1.84 < 0.001 

*: adjusted for cancer types, Ref: Reference groups, N: Number of patients, HR: hazard ratio, CI: confidence interval, In bold significant p < 0.05 
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Table 3. 
Comparison of the prognostic value of pan-cancer vs intra-cancer cutoffs for the CCS signature 

Models 

 Cell cycle score 
 

Total Events 

 
Pan-Cancer 

 
Intra-cancer    

Univariate   C-index LR-X2 p  C-index LR-X2 p 
            

KIRC  480 148  0.589 24.7 < 0.001  0.567 9.9 0.002 
LGG  507 192  0.609 31.1 < 0.001  0.627 21.9 < 0.001 

LUAD  498 188  0.556 6.6 0.010  0.560 7.7 0.006 
PAAD  158 90  0.588 9.7 0.002  0.611 13.7 < 0.001 
SARC  242 124  0.610 18.5 < 0.001  0.614 14.3 < 0.001 
UCEC  514 105  0.555 5.5 0.019  0.589 9.9 0.002 
UVM  80 24  0.732  17.1 < 0.001  0.707 11.5 < 0.001 

KIRC: Kidney renal clear cell carcinoma; LGG: Brain Lower Grade Glioma; LUAD: Lung adenocarcinoma; PAAD: Pancreatic adenocarcinoma; SARC: Sarcoma;  

UCEC: Uterine Corpus Endometrial Carcinoma; UVM: Uveal Melanoma; Events: Number of deaths from each cancer type; CCS: Cell cycle score; LR-X2: Likelihood ratio; 

 C-index: Concordance index; In bold significant p < 0.05 
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Figure legends 

 

Figure 1. CCS score across cancer types and COCA subgroups  
Boxplots comparing CCS across (A) pan-cancer types and (B) COCA subtypes. (C) 

Heatmap of CCS genes across pan-cancer tumours. Heatmap colside colours 

(horizontal, above heatmap) represent cell cycle score, cancer types and COCA groups 

as indicated in figure legend. Rowside colours (vertical, left hand side of heatmap) 

represent cell cycle phases. 

 

Figure 2. Top 15 most commonly mutated genes or chromosomal arm-level 
alterations within CCS subgroups 
Pan-cancer tumours were divided into tertiles on the basis of low, intermediate or high 

CCS. Within each subgroup the Top 15 (A) Most frequently mutated oncogenes and 

tumour suppressor genes, (B) Arm-level gains and (C) Arm-level losses are shown. 

Cancer type colour key is are shown at the bottom of the figure. Red arrows indicate 

BRAF mutations and 16p gains in CCS low and intermediate subgroups. 

 
Figure 3. Boxplots comparing frequency of DNA alterations across CCS 
subgroups  
Pan-cancer tumours were divided into tertiles on the basis of low, intermediate or high 

CCS. Within each subgroup the number of (A) Total mutations in the top 50 most 

mutated oncogenes or tumour suppressor genes, (B) Total chromosomal arm-level 

gains, (C) Total chromosomal arm-level losses and (D) Aneuploidy score are shown. 

(E)  Kaplan-Meier analysis of CCS subgroups with Progression-free Interval (PFI) as 

clinical endpoint. Low/Inter/High = Low/Intermediated/High CCS subgroups, p values 

in boxplots (based on ANOVA with post-hoc Tukey HSD test) = NS > 0.05, * < 0.05, 

** < 0.01, *** < 0.001; p value in the Kaplan-Meier curves refer to long-rank tests. 
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