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Abstract 

Recent advances in experimental biology allow creation of datasets where several 

genome-wide data types (called omics) are measured per sample. Integrative analysis 

of multi-omic datasets in general, and clustering of samples in such datasets 

specifically, can improve our understanding of biological processes and discover 

different disease subtypes. In this work we present Monet (Multi Omic clustering by 

Non-Exhaustive Types), which presents a unique approach to multi-omic clustering. 

Monet discovers modules of similar samples, such that each module is allowed to have 

a clustering structure for only a subset of the omics. This approach differs from most 

extant multi-omic clustering algorithms, which assume a common structure across all 

omics, and from several recent algorithms that model distinct cluster structures using 

Bayesian statistics. We tested Monet extensively on simulated data, on an image 

dataset, and on ten multi-omic cancer datasets from TCGA. Our analysis shows that 

Monet compares favorably with other multi-omic clustering methods. We demonstrate 

Monet's biological and clinical relevance by analyzing its results for Ovarian Serous 

Cystadenocarcinoma. We also show that Monet is robust to missing data, can cluster 

genes in multi-omic dataset, and reveal modules of cell types in single-cell multi-omic 

data. Our work shows that Monet is a valuable tool that can provide complementary 

results to those provided by extant algorithms for multi-omic analysis.  
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INTRODUCTION 
 
Modern experimental methods can measure a myriad of genome-wide molecular 
parameters for a biological sample. Each type of such parameters is called "omic" and 
is measured by a different method. Analysis of omic data improved our understanding 
of biological processes and human disease, and is now used in therapeutic decisions1. 
While each experiment usually measures only one omic, several experiments can be 
performed on the same biological sample, resulting in multi-omic datasets. Large 
consortia such as TCGA and ICGC collected multi-omic data from tens of thousands 
of cancer tumors2,3. Analysis of these data can further improve our understanding of 
cancer biology and suggest novel treatments.  

Many algorithms have been developed in recent years to analyze multi-omic data, and 
most prominently, to detect subtypes of cancer, a task termed multi-omic clustering4,5. 
The vast majority of multi-omic clustering algorithms assume that a common 
underlying structure exists across all omics, and use all omic datasets to reveal this 
structure. Among the algorithms developed under this assumption are SNF and 
NEMO6,7. However, this assumption does not always hold. For example, expression 
and mutation data do not seem to share the same structure. Even more closely related 
omics, such as expression and methylation, differ. This is demonstrated by the low 
agreement in clustering solutions that are produced based on different omics. 
Moreover, in a recent benchmark we performed, we observed that solutions based on 
single omics can sometimes be more clinically relevant than solutions based on 
multiple omics5. Algorithms that can cluster patients while accounting for the 
disagreement between omics are therefore required. 

Several recent methods addressed the distinct structure in different omics by using 
Bayesian statistics and explicit modeling of the different omics and their correlations. 
Savage et al. performed clustering on two omics, while allowing samples to be fused 
or unfused8. A fused sample belongs to a cluster spanning both omics, while unfused 
samples can belong to different clusters in the two omics. PSDF extended this 
framework to support feature selection9.  

MDI supports more than two omics10. Each omic has its own clustering, but clusters in 
different omics match each other. The probability that a sample will belong to matching 
clusters in two different omics has a prior that is higher the more these two omics are 
similar. BCC assumes a model with a global clustering and a clustering for each omic 
separately, and the global clustering serves as a Bayesian prior for each omic-specific 
clustering11. Finally, clusternomics represents the global clustering as a Cartesian 
product of the omic-specific clusters, and can also map several such clusters into the 
same global cluster12. These methods have several limitations. They are based on 
Bayesian statistics, which requires explicit modeling of each omic, and is slow to 
optimize. All methods except PSDF require a sample to belong to a coherent cluster 
in each of the omics, and PSDF is limited to only two omics.  

Here we present MONET (Multi Omic clustering by Non-Exhaustive Types), an 
algorithm for detection of patient modules for multi-omic cancer data. Monet uses ideas 
from Matisse13, an algorithm to detect gene modules, and generalizes its algorithmic 
approach to multi-omic data. In Monet's unique approach to multi-omic clustering, the 
goal is to form patient modules, such that each module can use only a subset of the 
omics. Thus, Monet can detect common structure across omics when it is present, but 
can also disregard omics with a different structure. The solution allows outlier patients, 
who do not belong to any module. We show that Monet finds biologically and clinically 
relevant patient modules in several datasets, giving results that compare favorably to 
those obtained from extant multi-omic clustering methods. Furthermore, we show that 
Monet is useful for other biomedical tasks, as it successfully finds clusters of genes, 
and of cells in single-cell data.   
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METHODS 
Overview. The input to Monet is a set of 𝐿 omic matrices. Matrix 𝑙 has 𝑛 samples and 

𝑝𝑙 features. The output is a set of modules, where each module is a subset of the 
samples. Modules are disjoint, and not all samples necessarily belong to a module. 
Samples not belonging to a module are called lonely. Each module 𝑀 is characterized 
by its samples, denoted 𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀), and by a set of omics that it covers, denoted 

𝑜𝑚𝑖𝑐𝑠(𝑀). Intuitively, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀) are similar to one another in 𝑜𝑚𝑖𝑐𝑠(𝑀).  

Monet works in two phases. It first constructs an edge-weighted graph per omic, such 
that nodes are samples and weights correspond to the similarity between samples in 
that omic. In the second phase, it detects modules by looking for heavy subgraphs 
common to multiple omic graphs.  

Omic graphs. Monet constructs a graph 𝐺𝑙 for each omic 𝑙 separately. 𝐺𝑙 is a full graph 

on 𝑛 nodes. Denote by 𝑠𝑖𝑚𝑙(𝑢, 𝑣) some similarity measure between samples 𝑢 and 𝑣 
in omic 𝑙. We define a binary variable 𝐴𝑙(𝑢, 𝑣) to indicate whether samples (𝑢, 𝑣) belong 

to the same module in omic 𝑙 or not. The weight assigned to edge (𝑢, 𝑣) in omic 𝑙, 
denoted by 𝑤𝑙(𝑢, 𝑣) is: 

𝑤𝑙(𝑢, 𝑣) = log(
Pr(𝑠𝑖𝑚𝑙(𝑢, 𝑣)|𝐴𝑙(𝑢, 𝑣))

Pr(𝑠𝑖𝑚𝑙(𝑢, 𝑣)|𝐴𝑙(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
) 

The weight of a module is defined as: 
𝑤𝑒𝑖𝑔ℎ𝑡(𝑀) = Σ𝑙∈𝑜𝑚𝑖𝑐𝑠(𝑀)Σ𝑢,𝑣∈𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀)𝑤𝑙(𝑢, 𝑣)

= Σ𝑙∈𝑜𝑚𝑖𝑐𝑠(𝑀)Σ𝑢,𝑣∈𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀)log(
Pr(𝑠𝑖𝑚𝑙(𝑢, 𝑣)|𝐴𝑙(𝑢, 𝑣))

Pr(𝑠𝑖𝑚𝑙(𝑢, 𝑣)|𝐴𝑙(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
) 

The weight of the module is therefore the score for a log-likelihood ratio test for whether 
𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀) form a module on 𝑜𝑚𝑖𝑐𝑠(𝑀), under the simplifying assumption that 
modules and sample pairs are independent. A positive weight indicates that this set of 
samples is likely to form a module on the set of omics. Modules with high positive 
weight therefore correspond to likely modules under a hypothesis-testing framework. 

To construct the omics graphs, any weighting scheme can be used. Here, we used 
two schemes. In the first we applied NEMO7, a multi-omic clustering algorithm we 
recently developed, to each omic separately multiple times, each time on randomly 
selected 80% of the samples. We set 𝑐𝑙

𝑟(𝑢, 𝑣) to 1 if samples 𝑢 and 𝑣 clustered together 

in the 𝑟'th run on omic 𝑙, and to 0 otherwise. Denote by 𝑎𝑣𝑔(𝑐𝑙
𝑟) the average value of 

the 𝑐𝑙
𝑟 matrix, and by 𝑅(𝑢, 𝑣) the set of NEMO executions in which both 𝑢 and 𝑣 were 

sampled. We set 𝑤𝑙(𝑢, 𝑣) = 𝑚𝑒𝑎𝑛𝑟∈𝑅(𝑢,𝑣)(𝑐𝑙
𝑟(𝑢, 𝑣) − 𝑎𝑣𝑔(𝑐𝑙

𝑟)) − 𝐶. The constant 𝐶 

controls the balance between modules that cover one omic (higher 𝐶 value) and 

modules that cover multiple omics (lower 𝐶 value). Note that setting 𝐶 is equivalent to 
placing a Bayesian prior on the probability that two samples belong to the same 
module. Here we used 𝐶 = 0.2.  

The second weighting scheme calculates similarity (e.g. correlation) between pairs of 
samples, and considers these values to originate from a Gaussian mixture model of 
two distributions: one distribution for samples that are mates, and the other for samples 
that are not. This modeling has theoretical justifications in certain conditions14. The 
parameters of the Gaussian mixture model are learned from a small sample of the 

data. 𝑤𝑙(𝑢, 𝑣) is set by calculating Pr(𝑠𝑖𝑚𝑙(𝑢, 𝑣)|𝐴𝑙(𝑢, 𝑣)) and Pr(𝑠𝑖𝑚𝑙(𝑢, 𝑣)|𝐴𝑙(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 
from the mixture model, by assuming that 90% of sample pairs in a module are mates, 
while 95% of sample pairs in different modules are not (see MATISSE13). We used this 
weighting scheme only in the classification experiments. 

Heavy module detection. Given all the omic graphs, Monet now detects modules with 
high weight by maximizing the objective function Σ𝑀𝑤𝑒𝑖𝑔ℎ𝑡(𝑀). There is no constraint 
on the number of modules, or an upper bound on module sizes, so the weighting 
scheme must create both positive and negative edges. The problem of detecting heavy 
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subgraphs in this setting is NP-hard even for the case of a single graph13. We therefore 
developed an iterative greedy heuristic for detecting heavy modules. The algorithm is 
initialized with a set of modules termed seeds. After seed finding, at every iteration 
Monet considers several possible actions, described below, that can increase the 
objective function. It then performs an action that provides the greatest improvement. 

 
Figure 1. Actions performed by Monet when detecting heavy modules. Dots represent samples, 
and enclosing circles represent modules. The colors of the enclosing circle represent the omics 
covered by the module. Panel E shows the current state – two modules, where the left module 
(𝛼) is covered by two omics and the right module (𝛽) by one. An additional sample is lonely, 
i.e., does not belong to any module. Each other panel shows one action. B: the grey sample is 
added to module 𝛼. C: the grey sample is removed from module 𝛼. F: the grey sample moves 
into module 𝛽. I: module 𝛽 is split. H: an omic is added to module 𝛽. G: an omic is removed 

from module 𝛼. D: modules 𝛼 and 𝛽 are merged. A: module 𝛼 is discarded. In the shown case 

one of its samples is added to module 𝛽, and the other two become lonely. Actions for splitting 
module with omic or by adding omic are not shown.  

 
Seed finding: Seeds are found iteratively. The first seed is determined by constructing 
a graph where edge weights are the sum of the edge weights in all individual omics, 
randomly selecting a first sample, and constructing a module containing all omics, 
which contains the first sample and its 𝑘 neighbors with highest positive edge weights. 
All samples that were assigned to a module are removed from the graph, and the next 
seed module is sought. The procedure ends once 𝑆 seeds were found. In this work we 

used 𝑆 = 15 seeds for all datasets, and 𝑘 = 𝑓𝑙𝑜𝑜𝑟(
𝑛

15
).  

Optimization actions: Once a set of seeds is found, Monet improves the modules 
iteratively in a greedy manner. In each iteration, a module𝑀′ is selected at random, 
and Monet calculates the gain in the objective function from a set of possible actions 
concerning the module. It then chooses the action with maximal gain. It stops when no 
action provides a gain in any module. The actions considered are (see Fig 1): 

- Add a sample to 𝑀′. All lonely samples are considered. Since we observed that this 
action is commonly chosen in initial iterations when 𝑆 and 𝑘 are both small, we allowed 
up to 10 samples to be added in a single action, to reduce the number of iterations.   

- Remove a sample from 𝑀′. 

- Move sample from module 𝑀′ to another module, or move a sample from another 
module to 𝑀′. All possible samples and modules are considered. Similarly to adding 
samples, we allow up to 10 sample switches in a single action. 

- Add an additional omic to a module. All omics are considered.  

- Remove an omic from a module. All the covered omics of the module are considered. 

- Merge modules 𝑀′ and 𝑀′′. The set of samples for the new module is 𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀′) ∪
𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀′′). The omics for the new module are one of the following: 1. 𝑜𝑚𝑖𝑐𝑠(𝑀′) ∪
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𝑜𝑚𝑖𝑐𝑠(𝑀′′) 2. 𝑜𝑚𝑖𝑐𝑠(𝑀′) ∩ 𝑜𝑚𝑖𝑐𝑠(𝑀′′) 3. 𝑜𝑚𝑖𝑐𝑠(𝑀′) 4. 𝑜𝑚𝑖𝑐𝑠(𝑀′′). All four options are 
considered. 

- Split 𝑀′ into two modules. For this action, a graph is constructed with nodes 
𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀′), and where the weight of the edge between 𝑢 and 𝑣 is 
Σ𝑙∈𝑜𝑚𝑖𝑐𝑠(𝑀′)𝑤𝑙(𝑢, 𝑣). In this graph we find a heavy subgraph 𝑀′′, and create two 

modules, 𝑀′′ and 𝑀\𝑀′′. The omics of both modules are 𝑜𝑚𝑖𝑐𝑠(𝑀′). 

- Discard 𝑀′. Each sample 𝑢 in 𝑀′ is moved to the module 𝑀′′ with the highest sum of 
weights from 𝑢 to 𝑀′′ using 𝑜𝑚𝑖𝑐𝑠(𝑀′′). If all these sums are negative, 𝑢 is made lonely. 

- Create a new module using all lonely samples. Monet finds a heavy subgraph in each 
omic separately, and a module is created from the heaviest subgraph found. 

- Split 𝑀′ by adding an omic. For every omic 𝑙 ∉ 𝑜𝑚𝑖𝑐𝑠(𝑀′), Monet looks at the 

subgraph induced by 𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀′) on 𝐺𝑙, denoted 𝐺𝑙[𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀′)], and detects in it 
a heavy subgraph. Denote the nodes of the heavy subgraph by 𝑈. We then split 𝑀′ 

into two modules. In one module the nodes are 𝑈, and the omics are 𝑜𝑚𝑖𝑐𝑠(𝑀′) ∪ {𝑙}. 
In the second module the nodes are 𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀′)\𝑈 and the omics are 𝑜𝑚𝑖𝑐𝑠(𝑀′). 

- Split 𝑀′ with an omic. As in the previous action, a heavy subgraph with nodes 𝑈 is 

found in 𝐺𝑙[𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀′)], but here for every 𝑙 ∈ 𝑜𝑚𝑖𝑐𝑠(𝑀′). Two modules are 
constructed. In one the nodes are 𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀′)\𝑈 and omics are 𝑜𝑚𝑖𝑐𝑠(𝑀′). In the 

other samples are 𝑈 and the only omic is 𝑙 that produced the heavy subgraph. 
 
Monet uses a parameter 𝜂 for the minimum module size. Actions that reduce the 
number of samples below 𝜂 are not executed, and module splits are considered under 

this restriction. Here we used 𝜂 = 10. 

To find a heavy subgraph in a graph, we use a heuristic based on Charikar's 2-
approximation to the problem of maximum density subgraph15. We iteratively find the 
node with lowest (weighted) degree and remove it from the graph, until no node is left. 
We then choose the heaviest of the sequence of subgraphs obtained during this 

process. The complexity of the heuristic on an 𝑛-node weighted full graph is 𝑂(𝑛2). 

The Monet algorithm is guaranteed to converge to a local maximum, because the sum 
of weights within all modules is increasing in each iteration. The algorithm stops when 
no action on any module improves the objective. 

In each iteration, all actions that do not involve finding heavy subgraphs consider each 
edge in each of the omic graphs a constant number of times. The complexity of all 
these actions is therefore 𝑂(Σ𝑙(𝑛 +|𝐸𝑙|)), where 𝐸𝑙 is the number of edges in 𝐺𝑙. The 
complexity of splitting a module and of creating a new module involves finding a heavy 

subgraph and is thus 𝑂(Σ𝑙(𝑛 +|𝐸𝑙|) + 𝑛2). For the last two actions, for the same 
reason,  the same complexity is needed for each omic considered for the split, and the 

overall complexity is 𝑂(𝐿(Σ𝑙(𝑛 +|𝐸𝑙|) + 𝑛2)), which is therefore the overall complexity 

of each iteration. For full graphs, this gives a worst case complexity of 𝑂(𝐿2𝑛2). The 

space complexity is 𝑂(𝐿𝑛2). 

In a post-processing step we perform empirical significance testing to filter modules. 
Given a module, we sample 500 modules of the same size and omics, and only keep 
the module if its weight is in the highest 1%. In practice we only performed the testing 
for modules of minimal size (𝜂 = 10 here), as we never found larger non-significant 

modules. Samples that do not belong to any module after filtering are marked as lonely. 

 
Additional Monet features.  
Partial datasets: Monet can handle datasets where only a subset of the omics were 
measured for some samples. Such samples are added to all omic graphs, but in omics 
where these samples were not measured their nodes have no edges. This way, omics 
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in which no data were measured for a sample do not affect the decision of assigning 
the sample to a module. 

Sample classification after clustering: Once modules were calculated from the data, 
Monet can naturally classify new samples into modules. For each module 𝑀, Monet 
calculates the gain in 𝑤𝑒𝑖𝑔ℎ𝑡(𝑀) from adding the new sample 𝑢 to 𝑀: 
Σ𝑣∈𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑀)𝑤𝑙(𝑢, 𝑣), and classifies the sample to the module with maximal gain. If the 

gain is always negative, the sample is not classified to any module. This computation 
takes 𝑂(𝑛𝐿) given that the edge weights were already calculated.  
 
Testing methodology.  
We applied Monet and several other algorithms to simulated, image and cancer 
datasets that are described later. Here we outline the way we evaluated the results. 

Clustering assessment: To assess a clustering solution where the true clustering of 
the data is known, we used the Adjusted Rand Index (ARI)16. On cancer datasets from 
TCGA we performed survival analysis to assess the distinction in survival between the 
different groups of samples. We used a permutation-based approach to perform the 
log-rank test, since the widely used asymptotical version of this test tends to overstate 
significance, and specifically for TCGA data17–19. 

Partial datasets experiments: For cancer datasets, we sampled 40% of the patients, 
partitioned them into three equal groups, and removed every group from one of the 
omics. For the image dataset we removed 20% of the samples in each omic 
independently. We then applied Monet to the data and calculated ARI with Monet's 
solution on all data. We repeated this experiment 10 times. 

Classification experiments: to perform experiments on a dataset we first applied 
Monet to it. Denote Monet's solution by 𝑆𝑜𝑙𝑎𝑙𝑙. We then partitioned the samples in the 

dataset into 10 equal folds. For every fold 𝑖, we applied Monet to all samples except 
those in the fold, and denote the solution by 𝑆𝑜𝑙𝑖. We define the stability of the fold to 

be 𝐴𝑅𝐼(𝑆𝑜𝑙𝑎𝑙𝑙 , 𝑆𝑜𝑙𝑖) where the ARI is computed using only samples that appear in both 
𝑆𝑜𝑙𝑎𝑙𝑙 and 𝑆𝑜𝑙𝑖. We then classified the held out samples to the modules from 𝑆𝑜𝑙𝑖, and 

denote the solution after classification by 𝑆𝑜𝑙𝑖̂ . We define the Rand Index following 

classification (RFC) of the fold to be 𝐴𝑅𝐼(𝑆𝑜𝑙𝑎𝑙𝑙 , 𝑆𝑜𝑙𝑖̂ ), where the ARI is now measured 
across all samples. For datasets where the ground truth is known we also measured 

𝐴𝑅𝐼(𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ, 𝑆𝑜𝑙𝑖), and 𝐴𝑅𝐼(𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ, 𝑆𝑜𝑙𝑖̂ ), and term them the pre-
classification accuracy (preCA) and post-classification accuracy (postCA) respectively. 

Simulations: The simulations are described in the appendix. 

 

RESULTS 
Simulated datasets. We first performed two simulations to test Monet's approach to 
multi-omics clustering. In the first, we simulated 300 samples from five equal-size 
modules in two omics. Modules 1-3 cover both omics, module 4 only the first omic, and 
module 5 only the second omic (SFig 1). We added five outlier samples that do not 
belong to any module. Monet correctly identified the modules and their corresponding 
omics (SFig 2, 3). In another experiment, we simulated 150 samples from five modules 
in three omics (SFig 4). Module 1 is present in all omics. Modules 2-4 all cluster 
together in the first omic, but belong to different clusters in omics 2 and 3. The 
clustering structure in omic 2 is weak. When presented with only omics 1 and 2, Monet 
chose to treat modules 2-4 as one module that only covers the first omic (SFig 5, 6). 
When faced with omic 3 as well, Monet identified these samples as coming from 
different modules that cover all omics (except for one module with very weak clustering 
in omic 2, which does not cover that omic) (SFig 7, 8). These simulations highlight 
Monet's approach to multi-omic integration, where sample modules can cover only a 
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subset of the omics, based on the strength of the clustering structure in these omics. 
Full details on the simulations are in the appendix. 
 
Digits dataset. We next tested Monet in a dataset where the ground truth is known. 
The dataset20 contains six types of features ("omics") of 2000 images of the 
handwritten digits 0-9. For performance reasons, we used 400 images. See additional 
details in the appendix.  
We applied Monet and five other methods to the data. We chose BCC, MDI and 
clusternomics, which model disagreement between omics. We also chose SNF and 
NEMO to represent general multi-omic clustering methods. SNF is widely used, and 
we recently showed NEMO's high performance7. Each method clustered the data into 
10 groups. Fig 2a shows that Monet outperformed the other methods modeling omic 
disagreement, and was comparable to SNF and NEMO. When ignoring lonely 
samples, Monet was slightly better than SNF and NEMO. Several modules found by 
Monet covered only a subset of the omics, highlighting the different structure in 
different omics (SFig 9). Methods modeling omic disagreement were much slower than 
SNF, NEMO and Monet, which required a few seconds or minutes (Fig 2b).  
 
Cancer datasets. We next executed the same six methods on real cancer datasets 
from TCGA, each containing three omics: mRNA expression, DNA methylation and 
miRNA expression. We used ten cancer types: Acute Myeloid Leukemia (AML), Breast 
Invasive Carcinoma (BIC), Colon Adenocarcinoma, Glioblastoma Multiforme (GBM), 
Kidney Renal Clear Cell Carcinoma (KRCCC), Liver Hepatocellular Carcinoma, Lung 
Squamous Cell Carcinoma, Skin Cutaneous Melanoma, Ovarian serous 
cystadenocarcinoma and Sarcoma. Dataset sizes ranged from 170 to 621 patients. 
Full details on the datasets are available in our recent benchmark5. We used differential 
survival between clusters as an assessment criterion for the quality of a clustering 
solution (see Methods).  
As we can see in Fig 2c, Monet and NEMO had the highest number of cancer types 
with significantly different survival (at significance level 0.05), with 6 such types. MDI 
came next with 5, and the other methods had 3-4. Remarkably, in our recent 
benchmark, eight other multi-omic clustering methods achieved significance for at 
most five cancer types. The cancer types for which Monet and NEMO obtained a 
significant difference in survival were not identical. While both had different survival in 
AML, GBM, liver hepatocellular carcinoma and Sarcoma, NEMO found differential 
survival in BIC and melanoma, and Monet in KRCCC and ovarian cancer. These 
results suggest that NEMO and Monet can be used complementarily. In terms of 
runtime, SNF and NEMO required seconds per dataset, Monet a few minutes, and the 
methods that rely on Bayesian statistics were an order of magnitude slower (Fig 2d). 

 

Figure 2. Performance results. 
A-B: Digits dataset. A: ARI of 
methods for multi-omic 
clustering. B: Run time. C-E: 
Results on ten TCGA cancer 
datasets. C: Number of cancer 
subtypes for which each 
method found a clustering with 
statistically different survival. 
D: Run time. E: Mean number 
of clusters found by each 
method. 

The number of clusters chosen varied considerably among algorithms (Fig 2e). SNF 
had a mean of 2.8, NEMO, Monet and BCC  4-5, MDI 8.9 and clusternomics 26.5. The 
high numbers of MDI and clusternomics are possibly due to attempting to model 
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clustering in each individual omic. The log-rank p-value, running time and number of 
clusters for each method and dataset are presented in STables 1-3. 

Monet discovered modules that use different combinations of omics (SFig 10). Most 
of the modules were based on only a single omic, and for several cancer types all 
modules covered only one omic. For some cancer types, this omic was the same for 
all modules, signifying a strong clustering structure in that omic. In none of the cancer 
types the solution contained only modules that covered all omics. Monet also reported 
several (between 0 and 12) lonely samples per cancer (SFig 11).   
 
Additional analysis of the cancer results. We examined in more detail the clustering 
solution of Monet on the 287-patient ovarian cancer dataset. Monet found four modules 
in this dataset, with sizes 77, 115, 22 and 63, named M1-M4, and identified 10 samples 
as outliers. While SNF and MDI seek to integrate structure across all omics (Fig 3a), 
Monet chooses the omics covered by each module. In its solution all modules cover 
the gene expression omic, and M3 also covers miRNA expression (Fig 3b). To assess 
the clinical relevance of Monet's modules, we examined the distribution of different 
clinical parameters across the modules. The modules showed significant differential 
survival (p=0.038, Fig 3c), with M3 showing significantly better survival than the others 
(p=4e-3). The clusters showed differential survival even after correcting for age at 
diagnosis and clinical stage (p=2e-4 using a Cox proportional hazards model). None 
of the other clustering algorithms found a solution with a significant difference in 
survival (Fig 3d). The clusters were not significantly dependent of the clinical stage 
(0.056, chi-square test, 0.08 for Kruskal-Wallis), and they were enriched for venous 
invasion status (8e-4, chi-square test, STable 4) and for age at initial diagnosis (p=7e-
3 by Kruskal-Wallis, SFig 12). No module was enriched for any mutation from a list of 
known driver mutations, or from the top 30 most frequently mutated genes in the data 
(see STable 5).  
We next characterized each module in more detail using clinical parameters and GO 
enrichment analysis of highly expressed genes (performed with GOrilla21). M1 was 
characterized by older samples (p=4e-3, Wilcoxon test) without venous invasion 
(p=2e-4, chi-square), and upregulation of genes involved in microtubule-based 
process (e.g. TUBB2B, TUBB4A). Samples in M2 were enriched for venous invasion 
(p=0.02, chi-square) and high expression of immune response and extracellular matrix 
organization related genes (e.g. MMP9 and multiple collagen subunits). M3 had 
younger patients (p=0.02, Wilcoxon test). It was the only module that included the 
miRNA omic. We found 20 miRNAs that were highly expressed in M3's patients (Fig 
3e, STable 6), including mir-514, which was far higher on samples in M3 compared to 
all other samples (Fig 3f). It was recently reported to regulate proliferation and cisplatin 
chemoresistance in ovarian cancer22. Finally, M4 had significantly better survival, and 
its highly expressed genes were also enriched for immune response. To understand 
the differences between M2 and M4, we found genes differentially expressed between 
them. M2 had higher expression of genes related to cell adhesion (e.g. collagen 
subunits), extracellular matrix (ECM) organization, and regulation of developmental 
process (e.g. WNT7A, WNT7B). Both the extracellular matrix and WNT signaling were 
previously reported to regulate ovarian cancer progression23,24, and may explain the 
difference in venous invasion and survival between the modules. The high expression 
of ECM proteins may link M2 with the previously reported Mesenchymal subtype25.  

When clustering each omic separately into four clusters using spectral clustering we 
found a significant difference in survival for mRNA, but not for methylation or miRNA 
(p=0.045, 0.20 and 0.84 respectively). This demonstrates Monet's ability to select 
effectively clinically relevant omics. We observed this behavior for other cancer types 
as well. For example, Monet's solution on GBM used only methylation in all modules. 
Indeed, running spectral clustering and NEMO on each GBM omic separately found a 
solution with significant difference in survival only for the methylation dataset. Note 
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however that Monet's solution often uses multiple omics (see SFig 10 for all cancer 
datasets and SFigs 13-16 for the solutions on BIC and Sarcoma). 

We also executed NEMO and Monet on each individual omic in the ovarian cancer 
data. Monet found a significant separation in survival for all omics individually, while 
NEMO did not find such separation for any. This shows Monet's effectiveness as a 
single-omic clustering approach (in this setting it is very similar to Matisse). 

Monet's solution can be used to create for every sample and module a score for the 
linking of the sample to that module: the sum of weights between the sample and all 
the module's samples across all omics covered by the module. We observed that these 
scores could have clinical relevance. For example, for one GBM module, the linking 
scores of its samples were significantly associated with survival (Cox PH model, 
p=7.7e-3), even though the module did not have significantly different survival from 
other modules. We found a similar case for the Colon data, where even though 
modules did not have significantly different survival, the linking score for samples in 
one module to their module was significantly associated with survival (p=0.015). 

 
Figure 3. Analysis of Ovarian cancer. A. t-sne26 visualization of the solutions obtained by SNF, 
MDI and Monet on the data. Samples are colored by their assigned module. In Monet's panels, 
lonely samples are black. B. Omics covered by each Monet module. Columns are omics and 
rows are modules. C. Kaplan-Meier plot for the different Monet modules. D. p-value of the log-
rank test for the clustering solutions of different methods. E. Comparison of miRNA expression 
for samples in Monet's Module 3 (x axis) and other samples (y axis). Genes that are significantly 
highly expressed in Module 3 are colored in red. F. Distribution of mir-514 expression in 
samples in Module 3 (red) and in other samples (black). 

Partial datasets. Often in multi-omic datasets, some samples have measurements for 
only a subset of the omics. Such datasets are called partial. Monet can address such 
datasets by assigning edge weight 0 to samples in the omics that were not measured. 
We tested this ability using the Sarcoma dataset, which had modules covering all 
omics, and using the digits dataset. In each dataset we randomly removed samples 
from some omics (see Methods), applied Monet, and compared its solution to the 
solution using all samples, and to the ground truth in case of the digits dataset. The 
results are presented in Fig 4a and Fig 4b.  
Monet's output on the digits dataset was quite robust, with only a slight deterioration in 
performance. The Sarcoma results were less stable, but still had an ARI of about 0.5. 
Interestingly, samples removed from the gene expression omic had higher ARI 
compared to samples removed from other omics, possibly indicating that Monet's 
solution is less affected by that omic for the Sarcoma dataset. The ARI slightly differed 
for samples in the digits dataset as well depending on the omic from which they were 
removed (SFig 17, 18). These results suggest that Monet can be robustly applied to 
partial datasets. 
 
Classification. Given a clustering solution, Monet's probabilistic framework allows 
classification of new samples into modules (see Methods). We tested Monet's 
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robustness and classification on the Sarcoma and digits datasets. For each dataset 
we performed an unsupervised version of 10-fold cross validation. We define the 
stability of a fold as the ARI between Monet's solution on all samples and Monet's 
solution for the current fold (which excludes 10% of the samples). We define the Rand 
Index following classification (RFC) of a fold as the ARI between Monet's solution on 
all samples and its solution on the fold following the classification of the 10% held out 
samples (see Methods). For the digits dataset, we also compared the result of every 
fold to the ground truth, with and without the 10% of held out samples, and term them 
the pre-classification accuracy (preCA) and post-classification accuracy (postCA). 
Note that we used here the Gaussian mixture weighting scheme, as in order to perform 
classification Monet calculates the edge weights for the new samples. 
The results are presented in Fig 4c and Fig 4d. In all the runs the stability and RFC 
remained high, suggesting that the classification is highly accurate, and that decrease 
in performance stems largely from the different clustering structure that is obtained 
from sampling the datasets. Overall, these results show that Monet's framework can 
be used to perform classification given new samples. 

  

Figure 4. Performance of Monet on partial datasets and in classification. A. ARI on a partial 
version of the digits dataset compared to its solution on the full dataset and to the ground truth. 
B. ARI on a partial version of the Sarcoma dataset compared to its solution on all samples. 
Shown is the ARI when samples were dropped from one of the omics (three left boxplots), and 
from all samples together (rightmost boxplot). C. Performance in classification experiments on 
the digits dataset. See Methods for the assessment criteria. D. Performance in classification 
experiments on the Sarcoma dataset. All boxplots are distributions over 10 random runs. 

Other biological tasks: gene and single cell clustering. We next tested Monet on 
additional biological tasks. We used Monet to cluster 1532 genes measured by both 
RNA-seq and microarrays of the BIC TCGA dataset that exhibited high variance in 
both these omics. Monet reported six main gene modules (Fig 5a, SFig 19). We used 
GOrilla21 to perform enrichment analysis for these gene modules. Reassuringly, we 
found enrichment of biological processes that vary across breast cancer patients in 
several modules, including "mitotic cell cycle process", "immune system process", and 
"extracellular matrix organization". As expected, all gene modules covered both omics.  
Finally, we applied Monet to single-cell data. Argelaguet et al. recently developed 
scNMT, a method that measured gene expression, DNA methylation and DNA 
accessibility at single cell resolution, and applied it to mouse embryos at embryonic 
days 4.5-7.527. We applied Monet to the gene expression and promoter methylation 
data of 619 single cells (Fig 5b, 5c). The modules obtained were highly enriched for 
specific cell types and embryonic days of development (STables 7-9). Several 
modules, across different cell types and stages of development, covered both omics, 
reflecting the widespread changes in expression and methylation during the onset of 
gastrulation28,29. Other modules used only gene expression, suggesting an overall 
stronger distinction between cell types at the expression level. One module covered 
only DNA methylation. This module comprised cells from different cell types at E7.5, 
again highlighting that while the transcriptional signatures of different cell types differ 
at that stage, the promoter methylation profile of the different germ layers is still quite 
similar27. Overall, these results demonstrate that Monet can be applied and lead to 
insights in diverse biological scenarios. 
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Figure 5. Using Monet to 
cluster genes and single 
cells. A. Gene clustering. t-
sne visualization of Monet's 
gene modules on the BIC 
dataset. Genes are colored 
by Monet's output. Lonely 
samples are colored in 
black. B-C. Single cell 
clustering based on gene 
expression and DNA  
methylation of promoters, 
using  the scNMT mouse 
embryonic development dataset. B. Like A, for Monet's solution on the dataset. C. Module 
omics identified by Monet. Rows represent modules and columns correspond to omics. 
Colored panels indicate that the module covers the omic. PS: primitive streak. 

DISCUSSION 
We presented Monet, a novel multi-omic clustering algorithm. Monet can identify 
modules with structures present in some of the omics, without imposing these 
structures on other omics. Monet can also identify samples that do not fit any detected 
module. State-of-the-art methods that seek clusters across all omics often perform 
quite well. We view these approaches as complementary to Monet, and suggest using 
both for multi-omic analysis. 

The edge weighting in Monet's omic graphs can be done by schemes tailored to the 
omic and data, allowing flexibility in the analysis. The weighting schemes used here to 
cluster patients, genes, and single-cells show Monet's ability in different biomedical 
domains. The weighting scheme can also shift the balance between modules with 
single or multiple omics, or place more emphasis on one particular omic.  

Most multi-omic analysis methods assume that samples are present in all omics. This 
is rarely the case in extant datasets, such as TCGA. It is also likely that partial datasets 
will be prevalent in single-cell analysis, where measuring multiple omics from a cell is 
just beginning and is experimentally challenging. Monet's ability to analyze partial 
datasets will make it valuable in this setting. 

Monet has several limitations. Using different weighting schemes allows flexibility, but 
it can be challenging to choose one that balances finding omic-specific signals and 
signals reinforced by different omics. The optimization problem Monet solves is NP-
hard, so the algorithm is heuristic. Adding new actions to Monet's heavy subgraph 
algorithm can improve its output. While Monet is faster than methods modeling 
disagreement between omics, it is currently slower than SNF and NEMO. Future work 
can improve Monet's runtime, for example by removing edges in the omic graphs. 
Finally, as Monet does not model the features in the dataset, understanding the 
molecular differences between modules requires additional analysis.  
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