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Abstract 

Achieving precision oncology requires accurate identification of targetable cancer vulnerabilities 

in patients. Generally, genomic features are regarded as the state-of-the-art method for 

stratifying patients for targeted therapies. In this work, we conduct the first rigorous comparison 

of DNA- and expression-based predictive models for viability across five datasets encompassing 

chemical and genetic perturbations. We find that expression consistently outperforms DNA for 

predicting vulnerabilities, including many currently stratified by canonical DNA markers. Contrary 

to their perception in the literature, the most accurate expression-based models depend on few 

features and are amenable to biological interpretation. This work points to the importance of 

exploring more comprehensive expression profiling in clinical settings.  
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Introduction 

Decades of work have confirmed cancer as a disease of the genome ​[1]​. With this recognition 

has come the hope that the specific oncogenic mutations of cancer will confer equally specific 

vulnerabilities to therapeutic intervention. In the last decade, these vulnerabilities have been 

exhibited dramatically with compounds targeting known oncogenes such as B-RAF, EGFR, and 

ALK​[2]​. Driven by these early successes, the precision oncology paradigm has focused on 

sequencing patient tumors to determine the appropriate therapy​[3]​. However, 

genomically-indicated therapies have yet to benefit the majority of patients. Small proportions of 

patients have genomic indicators for a targeted therapy, and most that do respond for only a 

limited time, or in some cases do not respond at all ​[4]​.  

 

Disappointing results with genome-based biomarkers have driven calls to look beyond the 

cancer genome to other possible indicators of cancer-specific vulnerabilities​[5]​. A major 

alternative for tumor characterization is the transcriptome. Although RNA is more difficult to 

interrogate in the clinic than DNA, studies have found that gene expression supplies the most 

significant predictive features for patient prognosis​[6]​. Previous work on predicting cell viability 

after compound treatment suggests that expression may be more powerful than DNA features 

for predicting drug response ​[7–9]​. Additionally, several studies have combined individual gene 

expressions into gene set activation scores and found success in predicting compound 

response ​[10–12]​. Despite these promising results, expression-based models are widely treated 

as undesirable either because they are considered trivial proxies for tissue-type ​[13]​ or because 

they are seen as uninterpretable ​[14]​. However, Geeleher ​et al.​ demonstrated the potential 

clinical utility of expression data by showing that expression-based models trained on cell line 
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drug response could predict clinical response to therapy​[15]​. More recently, the WINTHER trial 

of personalized cancer treatment included an arm to match patients to therapies based on their 

transcriptomic profile if they could not be matched using genomic alterations​[16]​. Including the 

transcriptomic arm increased the number of patients matched to therapies from 23% to 35% 

with no statistically significant difference in progression-free survival ratios between the genomic 

and transcriptomic arms.  

 

These studies point to the need for a comprehensive comparison of expression and genomic 

molecular features as models of cancer vulnerability and a deeper interrogation of the 

interpretability of expression models. Here we present a study across five large datasets of 

cancer cell viability including both genetic and chemical perturbations. We find that RNA-Seq 

expression outperforms DNA-derived features in predicting cell viability response in nearly all 

cases, including many perturbations with known genomic biomarkers. The best results are 

typically driven by a small number of interpretable expression features. Our findings suggest 

that both existing and new cancer targets are frequently better identified using RNA-Seq gene 

expression than any combination of other cancer cell properties.  

Results 

Data and Methodology 

We attempted to predict cell line viability in response to perturbations measured in five large ​in 

vitro​ cell viability studies, including CRISPR gene knockout (Cancer Dependency Map and 

Project Score ​[17]​), arrayed oncology drug treatment experiments (GDSC​[13]​), pooled drug 

treatment experiments (PRISM Repurposing ​[18]​), and RNAi knockdown studies 
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(DEMETER2 ​[19]​). ​( Fig. 1a-b ​). Many perturbations do not produce differential viability effects 

across cell lines, indicating that no predictive model is likely to succeed. To assess performance 

specifically for cases where strong differential viability signal exists, we identified a subgroup of 

100 perturbations in each dataset that appear to have the greatest biological signal based on 

their viability distributions across samples. We labeled these Strongly Selective Vulnerabilities 

(SSVs). 

 
Fig. 1 ​:​ Overview of datasets analyzed​. ​a. ​ Breakdown of lineages covered by each dataset. ​b. 
Perturbations in each dataset where prediction was attempted. ​c​. Number of CCLE features in each 
feature category. GSEA: Gene set enrichment analysis. CFE: Cancer Functional Events. 
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Molecular characterizations were drawn from the Cancer Dependency Map. They encompassed 

181,951 ​ total features, including mutation calls from whole-exome sequencing, RNA-Seq 

expression (protein-coding genes) at the single-gene and gene-set level, copy number 

alterations, reduced representation bisulfite sequencing (RBBS) methylation profiling, gene 

fusions, and tissue annotations (​Fig. 1c​). We refer to the union of all these measured properties 

as cell features. To see whether curation improved DNA performance, we adapted the Cancer 

Functional Events (CFEs) defined by Iorio ​et al​. and introduced these as an additional genomics 

feature set​[13]​, which we examine separately from the larger genomics feature sets in later 

analysis. After filtering for cell lines with characterization for mutation and RNA-seq expression 

data, the perturbation datasets spanned a set of 1,432 unique cell lines with 241-649 cell lines 

per dataset.  
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Fig. 2: Prediction performance with DNA and expression features ​. ​a. ​Outline of the predictive 
algorithm used. Models are scored by the Pearson correlation of the concatenated out-of-sample 
predictions with observed values. ​b.​ Distribution of model predictive performance using all features for 
all perturbations (green) or SSVs (maroon). Dotted lines indicate the threshold to call a result minimally 
predictive (r=0.4). ​c.​ Performance distributions of the best of two models, one using all expression and 
one all genomic features. On top is shown the performance for cases where expression is best, on the 
bottom cases where genomics is best. ​d​. Number of perturbations that can be predicted with a Pearson 
correlation of at least 0.4 with all expression or all DNA features. The cross-hatched overlap indicates 
the number of perturbations predictable at this threshold by either feature set.  
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To evaluate the power of different cell properties for identifying the vulnerabilities of cancer 

cells, we trained a regression model individually for each perturbation. Our pipeline consisted of 

two components: a Pearson correlation filter to reduce the feature list to the top 1,000 features 

showing the strongest linear relationship to the viabilities, and a random forest model which 

produced the predictions using the selected 1,000 features (​Fig. 2a​). We found that not 

including a feature selection filter led to a slight drop in predictive performance due to the large 

number of irrelevant features included, along with a large increase in computation time. As in 

Iorio ​et al​.​[13]​ and Li ​et al.​[20]​, model predictions were scored using the Pearson correlation of 

the measured and out-of-sample predicted cell line viability measurements in each dataset, 

which we call the model’s Pearson correlation. A comparison of this random forest model with 

another commonly used machine learning model (elastic net) found that they produced similar 

performance on predicting SSV perturbations, but with a consistent edge for the random forest 

model (88.75% (355) of 500 SSVs better predicted by random forest; ​Fig. 2 - figure 

supplement 1 ​).  
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Fig. 2 - figure supplement 1: Comparison of random forest with feature preselection and elastic 
net.​ For each dataset, the Pearson score for SSV perturbations. 

 

RNA-Seq Expression Features Outperform DNA-based Features 

To establish baseline performance, we first examined predictive performance across all 

perturbations, using both DNA-based and RNA-based features in addition to annotations of 

primary tissue. Predictive performance varies strongly with the chosen dataset (​Fig. 2b​). Models 

predicting GDSC17 drug sensitivity data, which are focused on anti-cancer compounds, had the 

best overall performance (median Pearson correlation 0.387; 46.3% of perturbations predicted 

with a Pearson correlation greater than 0.4). Only 112 out of 4,686 compounds in the PRISM 

dataset had oncology as an annotated disease area, and unsurprisingly PRISM had the lowest 

overall Pearson correlations (median 0.048 and 2.2% above 0.4). As expected, prediction 
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performance is improved and has less extreme variation across datasets among SSVs: 30% 

(Project Score) to 65% (Achilles) of SSVs were predicted with Pearson correlations above 0.4, 

with median Pearson correlations ranging from 0.265 (Project Score) to 0.490 (Achilles).  

 

We then directly compared the performance of models supplied only expression features, which 

included RNA-Seq expression of individual genes and single-sample gene set enrichment 

analysis (GSEA) of MSigDB​[21]​ gene sets against models supplied only DNA-based features: 

mutation, methylation, copy number, and gene fusions. Both feature sets included tissue 

annotations. Expression consistently outperformed genomics (​Fig 2c​). The benefit is especially 

pronounced when considering perturbations meeting some minimum threshold of predictability: 

using all expression features, a total of 1,641 perturbations across all datasets can be predicted 

with Pearson correlation at least 0.4, of which 1,001 (61%) cannot be so predicted by DNA 

features. Conversely, only 784 perturbations can be predicted with a Pearson correlation of at 

least 0.4 with DNA, and all but 144 (18.4%) can also be predicted by expression (​Fig. 2d​).  
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Fig. 2 - figure supplement 2: Predictive performance of dependency on OncoKB oncogenes ​. ​a. 
Comparison of predictive performance using either DNA (x-axis) or expression (y-axis) features in 
Achilles. ​b.​ Similar for Score. ​c​. Similar for RNAi. 

 

The selective killing profile of some perturbations is likely related to tissue-of-origin-specific 

rather than cancer-specific dependency. Accordingly, we compared performance in the Achilles 

CRISPR dataset specifically for the 278 genes with non-expression-based variants listed by 
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OncoKB as “likely oncogenic” or “oncogenic”​[22]​. Even for the majority of these genes, 

expression features outperformed genomics for predicting viability after CRISPR knockout (​Fig. 

2 - figure supplement 2 ​). The notable exceptions were BRAF, KRAS, NRAS (best predicted 

with their own mutation statuses), and SHOC2 (best predicted by NRAS mutation status). A 

similar pattern holds in the Project Score CRISPR and the RNAi gene dependency datasets, 

with most genes better predicted by expression but RAS genes and BRAF notably better 

predicted by their own mutation statuses.  
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Fig. 2 - figure supplement 3: Benefits of including expression or DNA features ​. ​a. ​For the 
perturbations best predicted with DNA features, the change in model performance when expression 
features are added. ​b​. The reverse.  
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Given that there is likely substantial redundancy between these DNA and RNA-based feature 

sets, we next asked what was the value of adding one feature set to the other for improving 

predictions. To address this question, we first took the twenty CRISPR perturbations best 

predicted with DNA features (​Fig. 2 - figure supplement 3a ​) or expression (​Fig. 2 - figure 

supplement 3b ​). We evaluated the change in performance when both feature sets were used 

for prediction. Adding expression improved the strongest DNA-based model performance by a 

median of 8.1% across datasets. In contrast, adding DNA features to the top expression models 

usually degraded performance by small amounts (due to the models overfitting slightly to noise 

in the datasets). Only RNAi showed a positive median change in performance when adding 

DNA features to expression (by 0.43%).  

 

To further isolate each feature type’s contributions to the predictions, we next built models using 

each type of feature individually or in combination with single gene expression. All feature 

combinations included tissue annotations to ensure every model could identify the tissue of 

origin. Across all data sets, any feature combination that included single-gene expression 

produced equal or more minimally predictive (Pearson correlation greater than 0.4) models than 

any feature set that did not (​Fig. 3a ​). For a given perturbation with at least one minimally 

predictive model using any feature set, the best model included expression in 76.3% (Project 

Score) to 99.2% (PRISM) of cases (​Fig. 3b ​). These results make it clear that expression 

features are the key elements for successfully predicting viability responses to most 

perturbations, and are beneficial even when DNA features suffice for successful prediction. 
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Fig. 3: Performance of individual feature combinations ​. ​a. ​Number of predictive models achieving 
greater than 0.4 Pearson correlation with different feature combinations. CFE stands for Cancer 
Functional Events, a curated set of DNA features​[13]​. Expression includes only single-gene RNASeq 
profiles, while All Expression includes ssGSEA scores for MSigDB gene sets as well. ​b.​ For 
perturbations with at least one model with Pearson correlation above 0.4, percentage of models where 
each feature combination produced the best model. 
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Specificity and Interpretability of Features 

Models that utilize ‘diffuse’ sets of hundreds or thousands of features may be difficult to 

understand and act on. In contrast, models that use only a handful of features (sparse models) 

are generally easier to interpret, less vulnerable to overfitting, and potentially easier to measure 

in a clinical setting. We found that the most successful models trained with all features generally 

utilized a small number of features as indicated by the high importance they assigned to the top 

two features vs. the rest (​Fig. 4a ​). Although predictive models using gene expression features 

are perceived as more diffuse and therefore less tractable than genomic models​[14]​, we did not 

find this to be necessarily the case for either SSVs or minimally predictable perturbations. 

Sizeable fractions of both were dominated by one or more key features (features with more than 

10% of total feature importance as assessed by sklearn’s Random Forest Regressor). Key 

features were often the expression of individual genes, even for models trained with all features 

including gene sets (​Fig. 4bc​). For the genetic dependency datasets only, we investigated how 

often key expression features were either the target gene’s own expression, that of a 

paralog ​[23]​, a strongly interacting protein ​[24]​, or of a complex co-member​[25]​.  Combining these 

three measures, the median number of related genes per gene perturbation was only 29. 

Nonetheless, key single gene expressions were found to have a known relationship to the target 

in as much as half of gene dependencies (50.1% for Achilles, 29.3% for Project Score, and 

40.7% for RNAi). 
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Fig. 4: Sparsity of models ​. ​a. ​ For models using all features, the combined importance of the top two 
features vs model performance. Perturbations are binned by top feature importance (dashed lines). ​b​. 
For all-feature models with Pearson correlation above 0.4, fraction of models where the top feature is a 
single gene’s expression with at least 10% of total feature importance. For genetic perturbations, 
subcategories indicate the fraction known to be related to the target or the target itself. ​c.​ Similar results 
for SSV perturbations. ​d. ​The ratio of model accuracy using only the top feature (selected using 
random forest feature importance) or all features. Only models with Pearson correlation above 0.4 with 
a key feature are included. ​e. ​Similar for models with no key feature.  
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Fig. 4 - figure supplement 1: Model performance with variable numbers of features provided ​. 
Each line represents the performance of models using all feature types for a specific perturbation. 
Perturbations were restricted to those originally predicted with Pearson correlation greater than 0.4. For 
each cross-validation fold, the 1000 features with highest correlation to the target variable were first 
selected and a random forest trained. Features were ranked by importance in the trained model and 
additional models trained with only the indicated subset of features. 
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To confirm that apparently sparse models do not require many features to perform well, we 

examined how model performance varied with the number of features provided. For each 

training fold, we trained a model with the 1,000 features selected by Pearson correlation, ranked 

them by importance, and then trained using the top one, two, five, ten, or hundred features (​Fig. 

4 - figure supplement 1 ​). We were specifically interested in whether models that appear to rely 

heavily on key features would retain their performance if they were supplied only a few features. 

We took models with at least a 0.4 Pearson correlation and at least one key feature with more 

than 10% of total importance among all features and examined performance with only the top 

feature (​Fig. 4d ​). 62% of these single-feature models achieved at least 80% of their Pearson 

correlation using all features. Among perturbations predicted with greater than 0.4 Pearson 

correlation without a single key feature, only 14.0% could be similarly well-predicted with their 

top feature (​Fig. 4e ​). With two features retained, 83.6% of models with key features achieved at 

least 80% of all feature performance (median performance ratio: 89.3%), while only 31.4% of 

models without a key feature achieved the same threshold (median performance ratio: 73.9%; 

Fig. 4 - figure supplement 2 ​).  We confirmed that these results were not a product of either the 

feature filtering strategy or the choice of random forest model by repeating this analysis with 

elastic net (EN) models for SSVs. We found that for perturbations where the random forest had 

identified a key feature, EN models using only the top feature achieved a median of 89.9% of 

their performance with all features (​Fig. 4 - figure supplement 2 ​). Taken together, these results 

suggest that the most predictable cancer vulnerabilities often require only one or two features 

for reasonable prediction. 
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Fig. 4 - figure supplement 2: Additional ablation performance measures ​. ​a. ​ The ratio of random 
forest predictor scores using all features or using only two features selected using random forest 
feature importance. Only predictors scoring above 0.4 are included. ​b. ​Similar, using elastic net 
predictors with one or all features. ​c. ​Score of the elastic net as a function of number of features used. 
Each line represents the performance of a predictor using all feature types. For each cross-validation 
fold using all features, features were then ranked by normalized coefficient in the trained model and 
additional models trained with only the indicated subset of features. 
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Since single-gene expressions are highly structured and intercorrelated ​[26]​, some key 

expression features we identified are likely sufficient but not necessary for good prediction. We 

selected expression-only based models with at least one feature having greater than 10% of 

total importance and examined how performance changed when we removed that feature. 

Median predictive performance decreased by -1.8% (GDSC) to -26.7% (Project Score) (​Fig. 5​). 

The pattern of outcomes was very different for the different datasets, with nearly all PRISM 

perturbations showing some decline in performance while many GDSC perturbations appeared 

unaffected. In the two CRISPR datasets Achilles and Project Score, there was a clear trend 

where the best-predicted perturbations suffered the worst decrease in performance without their 

key features (Pearson correlation ​p​ = 3.98 x 10 ​-3​, 7.36 x 10 ​-7​ and ​N​ = 505, 290 respectively). All 

datasets showed a strong correlation between loss of performance and the importance of the 

top removed feature, with Pearson’s ​R​ ranging from -0.229 (RNAi) to -0.584 (Project Score) and 

the largest ​p​ value being 1.26 x 10 ​-5​ (RNAi, ​N​ = 66). Overall, 1,133 out of 1,260 (89.9%) 

expression models with a key feature lost performance when that feature was removed. 

 

 By examining the models with the most severe performance loss after removing a top feature, 

we can learn which expression features are indispensable. In CRISPR, the most striking loss of 

performance generally occurred when a paralog’s expression was removed (e.g., FAM50A 

dependency with FAM50B gene expression removed). For the top five worst losses in GDSC17, 

the removed feature was either the expression of the multi-drug resistance gene ABCB1 

(QL-VIII-58, BI-2536, YM155) or the expression of DNA helicase SLFN11 (camptothecin, 

BMN-673), whose expression is known to sensitize cell lines to DNA damaging agents​[27]​. In 

contrast, the most indispensable expression features for PRISM perturbations were more  
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Fig. 5 ​: Effect of removing key expression features. For expression-only models with at least one key 
feature, we trained new models for the same perturbation that excluded all key features. We measured 
the change in the Pearson correlation (y axis) vs. the importance of the top feature in the original 
model.  
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varied. For example, SULT1A1 expression was critical for predicting oncrasin-1 response, as 

would be expected from work by Huang ​et al​..28 Expression of GSTA1, which protects cells 

from oxidative stress, is essential for predicting sensitivity to the putative ubiquitin-specific 

protease inhibitor P22077.  

Interpreting models 

To demonstrate how sparse models can be made interpretable, we trained individual regression 

trees using only features with importance greater than 0.08. This threshold and other tree 

hyperparameters were chosen to balance the tradeoff between simplicity and accuracy. In 

cases where the tree used only one feature, we illustrated the top feature’s relationship with the 

target. Some examples are discussed below. 
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Fig. 6: Interpretable models ​. ​a-c ​. Simple models for Achilles and Project Score viability post TP53 
knockout and Achilles MDM2 knockout. ​d​. Decision tree for PRISM dabrafenib response. ​e-f​. 
Relationship between PARD6B knockout effect on viability and its own expression in Achilles and 
Project Score.  
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TP53 Pathway  

Dataset Target Feature Context ρ p N 

Achilles TP53 EDA2R Exp All 0.637 4.54×10 ​-80 693 
Score TP53 EDA2R Exp All 0.546 3.74×10 ​-20 241 
RNAi TP53 EDA2R Exp All 0.620 6.70×10 ​-71 655 

Achilles MDM2 EDA2R Exp All -0.661 1.61×19 ​-88 693 
Score MDM2 EDA2R Exp All -0.465 2.40×10 ​-14 241 
RNAi MDM2 EDA2R Exp All -0.616 9.56×10 ​-70 655 

GDSC17 Nutlin-3 EDA2R Exp All -0.495 1.34×10 ​-34 538 
PRISM Nutlin-3 EDA2R Exp All -0.358 7.31×10 ​-18 544 
PRISM Idasanutlin EDA2R Exp All -0.578 9.73×10 ​-52 566 

BRAF and BRAF Inhibitors 

GDSC17 Dabrafenib RXRG Exp BRAF Hot -0.443 3.52×10 ​-4 61 
PRISM Dabrafenib RXRG Exp BRAF Hot -0.418 9.81×10 ​-4 59 
PRISM Vemurafenib RXRG Exp BRAF Hot -0.495 3.70×10 ​-5 63 

GDSC17 Dabrafenib RXRG Exp Melanoma -0.0182 0.922 61 
PRISM Dabrafenib RXRG Exp Melanoma -0.411 0.0103 38 
PRISM Vemurafenib RXRG Exp Melanoma -0.253 0.106 38 
Achilles BRAF RXRG Exp Melanoma -0.374 0.0113 45 
RNAi BRAF RXRG Exp Melanoma -0.386 0.0106 43 

PARDB6 

Achilles PARD6B PARD6B Exp All -0.444 7.73×10 ​-35 693 
Score PARD6B PARD6B Exp All -0.365 5.12×10 ​-9 241 
RNAi PARD6B PARD6B Exp All -0.309 2.78×10 ​-8 309 

Achilles PARD6B PARD6B Exp OV+PANC -0.544 2.80×10 ​-6 65 

Score PARD6B PARD6B Exp OV+PANC -0.434 2.89×10 ​-3 45 
RNAi PARD6B PARD6B Exp OV+PANC -0.559 0.249 6 

Table 1: Relationship between selected perturbations and features ​. All ​p ​-values are calculated for 
the observed strength of Pearson correlation ​ρ​. 

 

TP53 loss-of-function mutation is one of the key molecular characteristics of cancer across 

lineage types. Surprisingly, for both Achilles and Project Score data, the top two markers of 

viability response to TP53 knockout did not include TP53 mutation status but the mRNA 

expression of EDA2R (a p53 transcriptional target), along with a gene set defined by the 
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transcriptional response of skin cells to ionizing radiation ​[28]​ (​Fig. 6ab​). For RNAi-based 

suppression of TP53 the top model was a similar gene set defined by the response of primary 

blood mononuclear cells​[29]​. Both ionizing radiation gene sets include EDA2R. These results 

indicate that TP53 functional status is more cleanly inferred by these models from the 

transcription of its targets than directly from existing TP53 mutation calls. This may be due to 

failures in mutation calling or the complexity of possible causes of TP53 loss of function ​[30]​.  

 

In cases where TP53 is functionally intact, cancers often depend on MDM2, a negative regulator 

of p53,  to continue proliferation ​[31]​. EDA2R expression was the top model of MDM2 

dependency in Achilles (​Fig. 6c​) and was a top association in Project Score and RNAi data 

(​Table 1 ​). There was ​a clear gradation of response to either TP53 or MDM2 knockout according 

to the magnitude of EDA2R expression observed in all of these datasets (​Fig. 6 - figure 

supplement 1 ​). ​Response to the MDM2 inhibitor nutlin-3 also exhibited negative correlation 

with EDA2R expression in GDSC17 (​Fig. 6 - figure supplement 2​)​. The more potent MDM2 

inhibitor idasanutlin was present only in the PRISM Repurposing dataset, where it also showed 

a strong relationship with EDA2R expression (​Table 1​). Given the significance of TP53 status in 

cancers, incorporating the expression of EDA2R and other TP53 targets for stratifying patients 

has considerable potential for clinical benefit. 
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Fig. 6 - figure supplement 1: Relationship of EDA2R expression with post-perturbation viability 
of TP53 and MDM2 in genetic datasets.  
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Fig. 6 - figure supplement 2: Relationship of EDA2R expression with post-perturbation viability 
after MDM2 inhibitors.  

 

Many canonical oncogenic gain-of-function mutations occur in the RAS-RAF pathway. We 

showed earlier that mutations in members of this pathway (BRAF, NRAS, HRAS, and KRAS) 

stood out in providing a signal of dependency that cannot be recovered from gene expression. 

However, it does not follow that gene expression has no value for predicting response to 

compounds targeting members of this pathway. For example, an interpretable model of the 

BRAF inhibitor dabrafenib in PRISM showed it is first stratified by BRAF mutation status, but the 

strength of response in BRAF-mutant lines is further stratified by expression of the nuclear 

factor Retinoid X Receptor Gamma (RXRG), which has been found to drive a neural crest stem 

cell state in melanoma ​[32,33]​ (​Fig. 6d, Fig. 6 - figure supplement 3 ​). The association of 

dabrafenib response with RXRG expression in BRAF-mutant lines was strong in both PRISM 
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and GDSC17 (​Table 1​). A similar result was obtained in PRISM with the BRAF inhibitor 

vemurafenib (​Table 1​). As RXRG expression is enriched in melanoma, we checked whether 

these associations were still robust within the context of melanoma rather than BRAF hotspot 

mutations alone (​Table 1​). RXRG expression was significantly associated with increased 

dabrafenib sensitivity within melanoma in PRISM, but not in GDSC17. Additionally, vemurafenib 

sensitivity was negatively correlated with RXRG expression within PRISM melanoma lines, 

albeit not significantly (Pearson’s ​r​ = -0.253, ​p ​ = 0.106). On the other hand, in both Achilles and 

RNAi, higher RXRG expression significantly predicted greater BRAF dependency within 

melanoma (​Table 1​). Project Score had only three annotated melanomas and was excluded. 

Overall, the evidence suggests that RXRG is a marker for increased BRAF dependency even 

within melanomas, but more screens in melanoma lines are needed to make a definitive 

conclusion. 

 
Fig. 6 - figure supplement 3: Relationship of viability after treatment with BRAF inhibitors with 
RXRG expression in the cell lines with hotspot BRAF mutations ​. 
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In addition to stratifying patients for existing therapies, gene expression features could be critical 

for identifying sensitive populations for many new selective dependencies. Among these Par-6 

family cell polarity regulator beta (PARD6B) which is predicted by its own expression. Cell lines 

with high expression show increased dependency in Achilles​, Project Score, and RNAi (​Table 1, 

Fig. 6gh ​). The effect is particularly pronounced within the ovarian and pancreatic cell lines: all 

three datasets increase correlation when restricting cell lines to these lineages (​Table 1, Fig. 6 - 

figure supplement 4 ​).  

 
Fig. 6 - figure supplement 4: Relationship of viability after knockout of PARD6B with PARD6B 
expression in pancreatic and ovarian cancer cell lines ​. 
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Discussion 

Measurement of gene expression is a potent and still under-utilized method for identifying 

vulnerabilities, with superior performance over genomic features in both genetic and compound 

response prediction. The advantage of expression-based features over DNA-based features 

held consistently across five high-throughput experimental platforms using three different 

perturbation technologies; multiple different subsets of perturbations, including cancer genes 

with known genomic indications; and multiple combinations of feature sets. Critically, 

expression-based models need not be black boxes. Many high-performing expression-based 

models we identified leveraged a small number (i.e., 1 or 2) of individual gene expression 

values and could be converted to easily interpretable models suitable for stratifying patients.  

 

Iorio ​et al.​ also found that single-gene expression outperformed DNA-based features, but 

attributed this to the fact that RNA encodes tissue of origin ​[13]​. When they attempted prediction 

within lineages using DNA-based Cancer Functional Events (CFEs) they found greater 

performance than with expression features. However, Rydenfel ​et al​. found that expression and 

proteomics were more predictive than DNA even within tumor types​[34]​. We believe the 

discrepancy between these two studies can be explained by the strong curation applied by Iorio 

et al.​ to their DNA features. They identified a total of 1,063 DNA-based CFEs observed in at 

least one cell line ​[13]​. This curation is quite successful in enriching for established drug targets: 

for example, 20.4% (54) of the compounds assayed in GDSC17 target a gene represented 

among the 472 cancer genes identified by Iorio ​et al​. It is therefore reasonable that curated, 

binarized DNA features outperform uncurated, continuous, genome-wide expression in the 

context of very small sample sizes and compounds specifically developed against known 
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genomic drivers. In such cases, it is more likely for a model to identify a genuine relationship if 

the number of irrelevant features is reduced through curation. Developing a similar curation 

strategy for expression features is expected to be fruitful for finding models in the context of 

limited sample sizes. 

 

Some studies have suggested that the expression of gene sets, such as pathway activations​[11] 

or inferred transcription factor activity​[35,36]​, are more robust and interpretable predictors than 

expression of individual genes. We found that single genes’ expression data produced notably 

better results than gene set enrichment scores overall, despite having many more presumably 

irrelevant features. This result may be contingent on our particular choice of gene set 

enrichment algorithm (ssGSEA) and the gene sets considered (MSigDB). However, our study of 

the necessity of individual gene features found many cases in which missing a single key gene 

expression significantly undermined performance. Furthermore, predictive models for many 

vulnerabilities exhibit relationships we would expect to be specific to a single gene’s expression, 

such as when loss of a paralog’s expression predicts dependency or expression of the drug 

transporter ABCB1 predicts insensitivity to multiple agents. Overall, our study suggests at a 

minimum that single gene expression profiles have a value for predicting many perturbations 

that is not easily captured by simple measures of gene-set level expression. 

 

We found in both PRISM and GDSC that elevated RXRG is a highly significant model of 

sensitivity to BRAF inhibition even within the setting of BRAF-mutated cancers. A study by 

Rambow ​et al.​ found using single-cell RNA-Seq that RXRG expression increases in melanoma 

BRAF​V600E/K​ patient-derived xenografts (PDXs) in response to anti-BRAF therapy and drives 

them into a neural crest stem cell state.​[32]​ However, the authors identified this response as a 
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key resistance mechanism to BRAF inhibitors, in contrast to results seen in PRISM, Achilles, 

and RNAi within melanoma. It may be that RXRG upregulation is a broadly protective response 

for stressed melanoma cells. In that case, constitutively high RXRG expression could indicate 

existing stress that leaves the cells with less reserve for additional challenges such as 

anti-BRAF therapy. Alternatively, the difference between studies may relate to the difference 

between PDXs and established cell lines or the difference between the ​in vivo​ and ​in vitro 

settings. 

 

Although RNA-Seq is not yet a standard clinical diagnostic tool, it is rapidly advancing towards 

maturity. Widespread adoption of this technology has positive implications for assigning existing 

therapies to patients and finding new targets. However, this work suggests that a full RNA-Seq 

profile of tumors is not necessary to gain substantial benefits for precision therapy. Since many 

new or established vulnerabilities can be identified with just one or two expression features, 

cheaper technologies such as qPCR or FISH imaging against identified biomarkers would still 

unlock considerable benefits.  

Methods 

Data and Code Availability 
The input matrices for the predictive models and all results needed to reconstruct the figures will 

be available on Figshare on publication. The code for the filtered random forest model and a 

jupyter notebook that generated the figure panels will be made available on github on 

publication.  
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Preprocessing of Perturbation Data 

CRISPR data were taken unaltered from the gene_effect file in avana_public_19Q2. RNAi data 

were taken from gene_effect in the combined RNAi dataset​[37]​. PRISM data were taken from 

Corsello ​et al​.​[18]​ GDSC17 data were downloaded using the GDSC data repository and 

processed using the gdscIC50 repository​[38]​ following the “gdsc_17” vignette until data were 

normalized by dose such that negative controls were 0 and positive controls 100. For each 

compound, a single dose was chosen that had the greatest variance over cell lines for that 

compound, subject to the requirement that at least 100 cell lines have scores for that dosage in 

that compound. Cell lines were mapped to CCLE names using their COSMIC IDs. Project Score 

data were taken from CERES-processed gene effect scores​[39]​.  

Preprocessing of Cell Features 

Cell features were taken from the Cancer Dependency Map 19Q2 dataset.​[40]​ Cell lines that did 

not have all four of RNA-Seq expression, mutation, copy number, and disease annotations were 

dropped. Categorical features were expanded in one-hot encodings. Features with zero 

variance in the remaining cell lines were dropped. Continuous features were Z-scored 

individually. Finally, all remaining missing values were filled with 0. Thus, the number of cell 

lines used for evaluating perturbations is the same regardless of the combination of features 

chosen for training. 

 

Mutation data were divided into three cell-by-gene binary matrices with the following logic: 

- Damaging: True if the gene has a deleterious mutation in the cell line. 

- Hotspot: True if the gene has a non-deleterious mutation in a TCGA or COSMIC hotspot. 
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- Other: True if the gene has a mutation not falling in the other categories 

-  

For each MSigDB gene set, the R method GSVA::gsva was used on TPM RNA-Seq expression 

for CCLE lines released as of 19Q1.  

 

To develop a curated set of genomic Cancer Functional Events similar to those identified by 

Iorio ​et al.​[13]​, we did the following: 

- We took the 461 genes identified by Iorio et al. as high confidence cancer driver genes 

(level A, B, or C) and filtered both damaging and other matrices to only these genes. 

- We took the recurrent copy number alterations (CNA) identified by Iorio et. al. and 

estimated the mean copy number of the corresponding segment in each cell line, using 

the WES-prioritized segmented copy number file from CCLE. We then produced a 

line-by-segment continuous matrix with the mean copy number values. 

- We took the informative CpG islands identified by Iorio ​et al.​[13]​ and produced a 

line-by-island matrix with the RBBS methylation values 

CFE features with no results for any cell lines in CCLE were dropped. Cell lines with any 

missing values in any of the remaining features were dropped when training models using CFEs 

only. 

Identifying Interesting Perturbations 

For CRISPR and RNAi data, we generated probabilities of dependency for each gene in each 

cell line using the methodology described in Dempster ​et al​.​[41]​ Only genes with at least five 

lines with greater than 0.5 probability of dependency and five lines with less than 0.5 probability 

of dependency were retained for training. 
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We identified strongly selective vulnerabilities (SSVs) in CRISPR, RNAi, and PRISM using the 

NormLRT score method developed by McDonald ​et al.​ ​[13,42]​ This test compares the quality of 

the fit of the perturbation’s distribution with a normal and skewed-t distribution, with higher 

scores indicating less normally-distributed data. The 100 perturbations with the highest scores 

in each dataset were labeled SSVs for the purposes of the following analyses. As noted above, 

GDSC data is scaled and clipped to the interval [0, 100], and therefore tests for normality on 

these data are inappropriate. Instead, we selected the 100 compounds with the greatest 

variance as SSVs for this dataset. 

Standard model Pipeline 

For each perturbation evaluated, cell lines with missing perturbation scores or no feature values 

were removed. We then selected features belonging to the feature types being evaluated and 

split cell lines into ten equal folds, choosing one fold to leave out for evaluation and taking the 

rest for training.  

 

Next, if the number of features was greater than 1,000, we filtered for the 1,000 features with 

highest absolute Pearson correlation to the perturbation scores in the training cell lines. We 

trained sklearn random forests with max depth eight, 100 trees, and a minimum of five cell lines 

per leaf using the training data and predicted perturbation viabilities for the held-out fold.  

 

We repeated this process again, choosing a different fold to hold out evaluation, until we had 

out-of-sample predictions for all cell lines. We scored the model using the correlation of these 

out-of-sample predictions to the original perturbation scores.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.02.21.959627doi: bioRxiv preprint 

https://paperpile.com/c/zAd9h6/Znel+Vc44
https://doi.org/10.1101/2020.02.21.959627
http://creativecommons.org/licenses/by-nd/4.0/


36 

 

For genes found to be predicted with Pearson correlation above 0.4, we repeated the training 

process, but this time additionally selected the top 1, 2, 5, 10, and 100 most important features 

per fold and trained models on just those features, saving their predictions on the held-out fold.  

Elastic Net model Pipeline 

For each dataset, we adjusted all post-perturbation viabilities and all features to have mean 0 

and variance 1. To reduce the cost of training the models, we chose fixed hyperparameters for 

each dataset in the following way: we took a random set of 20 SSVs and used the python 

implementation of glmnet to find the optimal value of lambda (the overall strength of 

regularization) with the ratio between L1 and L2 priors held fixed at 0.5, and nine specified 

lambda values spaced logarithmically in the interval [0.05, 50]. The optimal value of lambda was 

highly bimodal, with SSVs successfully predicted tending to small lambda values while those 

that could not be predicted using the maximum available value of lambda. We chose the mode 

of the smaller lambda values for training the dataset. This was 0.5 for Project Score data and 

0.2 for all other datasets. 

 

Training and scoring models proceeded as with the standard model pipeline, except that only 

SSVs were used and the magnitude of the coefficients was used to rank features instead of 

importance. 

Feature Importance 

To assess feature importance for a perturbation, we performed Pearson feature filtering and 

trained a random forest using all available cell lines with feature and perturbation data. Feature 
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importance was taken from the resulting model using sklearn’s default method, which measures 

gini importance. The resulting importance is normalized so that the sum of the importance of all 

features (of the thousand retained after Pearson filtering) is 1. Features with at least 0.1 

importance were considered key features. 

Gene Relationships 

Gene relationships were taken from the union of four relationships: the gene itself, its complex 

comembers, its protein interactors, and its paralogs. Complexes were taken from the CORUM 

file coreComplexes_03.09.2018_Corum_3.0.txt​[25]​. Protein-protein interactions were taken from 

InWeb_IM​[24]​. Paralogs were found with Ensembl Compara, and filtered for genes that 

underwent a duplication rather than speciation event​[23]​. 

OncoKB Oncogenes 

A table of all cancer gene variants and their significance was downloaded from oncokb.org on 

May 9th, 2018 ​[22]​. This table was filtered for genes with variants that were oncogenic or likely 

oncogenic and for which there was at least one non-expression based indication.  

Interpretable Models 

We formed interpretable models of selected perturbations using single decision trees. We took 

the top three features identified by random forest. For each of the three chosen features, if it 

was continuous, we trained a depth-1 sklearn RegressionTree to predict the perturbation and 

used the resulting optimal split to binarize the feature. We then trained an sklearn 

RegressionTree with max depth 4 and minimum samples per leaf 5, and the results visualized 

as in ​Fig. 6 ​. The trees were additionally regularized to require a minimum impurity decrease per 
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split of 0.02 * ​S​. ​S ​ is a standard deviation found by taking all successfully predicted 

perturbations in the given dataset with a key feature, ravelling all their viability measurements 

into a single long vector, and calculating the standard deviation. 

Data and Code Availability 

All supplementary data needed to reproduce these results, a python package for training and 

evaluating the described elastic net and filtered random forest models with various feature 

subsets, and an interactive jupyter notebook that generates all plots shown in this manuscript 

will be made available with publication. 
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