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Abstract 

Language is a critical human ability. When impaired, it has significant impacts on everyday life from 

social well being to quality of life. Therefore, understanding of the processes underlying normal, 

impaired and recovered language performance has been a long-standing goal for cognitive-clinical 

neuroscience. The vibrant studies of healthy language and impaired language have generated many 

verbally described hypotheses about language lateralisation and recovery. However, they have not 

been considered within a single, unified and implemented computational framework, and the 

literatures on healthy participants and patients are largely separated. These investigations also span 

different types of data, including behavioural results and fMRI brain activations, that augments the 

challenge for any unified theory. As a result, there are many key issues, apparent contradictions and 

puzzles that need to be solved. Here, we developed a neurocomputational, bilateral pathway model 

of spoken language production, designed to provide a unified framework to assimilate different types 

of data from healthy participants and aphasic patients. The model encapsulates various key 

computational principles (differential computational resources, emergent division of labour across 

pathways, experience-dependent plasticity-related recovery). In doing so, the model provides an 

explanation for the bilateral yet asymmetric lateralisation of language in healthy participants, chronic 

aphasia after left rather than right hemisphere lesions, and the basis of partial recovery of function in 

patients (reflecting a combination of retuning within the damage pathway and a changed division of 

labour across pathways). Also, the model provides a formal basis for understanding the relationship 

between behavioural performance and brain activation. Overall, the unified model is consistent with 

the degeneracy and variable displacement theories of language recovery, and adds computational  

insights to these hypotheses in terms of the neural machinery underlying language processing and 

plasticity-related recovery following damage. 
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Introduction 

Language is a key human ability and when impaired (e.g., after stroke or neurodegeneration), 

patients are left with significant disability in their professional and everyday lives. These language 

impairments are common - around one-third of the 10 million+ patients in the acute phase post 

stroke1. Both studies of healthy and impaired language have a long history, and these vibrant 

literatures have generated many verbally described hypotheses, including notions around healthy 

language, impaired language and how it might partially recover after brain damage. In particular, the 

long-standing literature on language impairment in aphasia dates back to seminal 19th century 

studies2, 3,4. However, a recent review by Stefaniak et al.5 noted that the current situation is confusing 

because there are many individual findings, different types of data (e.g., patients’ language 

performance vs. fMRI activations) yet no unified theory. There is a pressing need for an 

implemented neurocomputational models which can provide: (a) a unified framework in which 

findings from healthy participants and aphasic patients can be assimilated; (b) a computationally-

instantiated framework to formalise and test verbally-described hypotheses; and (c) a framework that 

can bridge between different types of cognitive neuroscience data including language behaviour, 

lesion locations and task-related fMRI. This was the overarching aim of the current study, which was 

designed to explore various key issues and puzzles within a single unified, computationally-

implemented model. These puzzles and targets are set out briefly below. 

 

Lateralisation assumptions from fMRI in healthy participants versus chronic aphasic patients 

The first issue concerns lateralisation assumptions from healthy and impaired language. The 

very strongly held view that language is a left hemisphere function primarily arises from the long-

standing neuropsychology literature showing that chronic aphasia is associated with left hemisphere 

damage but is not generally associated with right hemisphere damage6-8. However, patient data are 

perhaps more graded than often portrayed. Recent evidence has shown that right hemisphere lesions 
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can generate language problems especially in the early phase and some mild remaining deficits can 

be measured in chronic cases9. Moreover, several transcranial magnetic stimulation (TMS) studies of 

semantics10-13 or phonology14, and patient studies of semantics15-17 indicate that left and right areas 

contribute to healthy language performance, and in some cases bilateral damage is required to show 

more substantial deficits.  

In contrast, the rise of functional neuroimaging in healthy participants has shown many 

language tasks such as repetition, picture naming, comprehension and production are bilaterally 

supported18-22. Although the activation patterns are often leftward asymmetric, the degree of 

asymmetry largely depends on the nature of the tasks with a subset showing stronger forms of 

asymmetric bias. For instance, propositional speech production tasks are more left lateralised, and 

involve greater activation in the left inferior frontal gyrus, whereas nonpropositional speech 

production tasks (e.g., counting) involve more bilateral activations23-25. When considering findings 

from both chronic aphasic patients and healthy participants, it appears difficult to reconcile the 

seemingly contradictory findings: how can language network be strongly left lateralised in patients 

but be bilateral, albeit asymmetric, in healthy participants?  

We propose that these results could reflect the outcome of an intrinsically bilateral but 

asymmetric language network for speech production. Functional asymmetry could follow from 

hemispheric asymmetry in language areas26-30. Within the language network, the majority of right-

handed healthy participants show leftward asymmetry of brain volumes and arcuate fasciculus27, 28, 

31, suggesting that more of the computational resources are in the left than the right hemisphere. Such 

resource imbalance should generate a bilateral yet asymmetric lateralisation in simulated Blood 

Oxygen Level Dependent (BOLD) and also greater likelihood of chronic impairment after left than 

right damage. The latter may reflect a combination of the premorbid division of labour for left over 

right in healthy language but also the potential for plasticity-related recovery post damage. This has 

been explored for specific language tasks in past computational work by re-exposing the damaged 
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model to its learning environment, generating plasticity-related recovery via “retuning” of the 

remaining computational resources32, 33. A straightforward hypothesis, from these earlier models, is 

that the potential for such recovery reflects the amount of computational resource available. 

Accordingly, a smaller right hemisphere contribution to language will also mean less potential for 

picking up additional language work post damage. 

 

The computational bases of language recovery 

The second critical issue concerns the computational bases of language recovery. A recent 

review5 considered two mechanisms that may underpin language recovery: degeneracy and variable 

neuro-displacement. Degeneracy suggests that, like other biological systems, brain function might be 

multiply coded across different regions and/or pathways resulting in a partially resilient system. On 

the other hand, borrowing from engineering, variable neuro-displacement suggests that normal brain 

function may be engineered to be resilient to variations in task demand and also to minimise energy 

expenditure, given that the brain is a very metabolically expensive organ. Accordingly, brain 

functions are implemented across neural networks with additional capacity in them that is 

dynamically titrated according to ongoing task performance. Both mechanisms provide the bases for 

some degree of resilience to damage and potential for recovery of function following damage via a 

permanent reformulation of the remaining multiple codes (degeneracy) or upregulation of systems 

(variable neuro-displacement). Previous computational studies32, 33 of plasticity-related recovery 

have provided some support for these principles by demonstrating that re-exposing a damaged model 

to its learning environment leads to two types of experience-dependent learning, depending on 

remaining resources in the system. If the model only has a single pathway to perform the task, re-

learning can retune and upregulate the contribution of ‘perilesional’ units and weights. Secondly, if 

there are multiple routes that support the task, re-learning can also shift the division of labour 

between different pathways in the system, which means that perilesional units would be reformulated 
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along with increased supportive from other regions and pathways. The potential for recovery-related 

changes is likely to be determined by the relative resources available in different pathways and their 

engagement in the task prior to damage (i.e., premorbid status). Though interesting, these 

mechanistic hypotheses about language recovery need to be explored more formally within an 

implemented computational model and preferably one that can simulate healthy and impaired 

language, as well as generate the different measures used to assess recovery of function, such as 

language performance and fMRI activations. 

 

Theories of aphasia recovery  

The long-standing literature on language recovery in post-stroke aphasia has generated a very 

large number of hypotheses. However, most hypotheses are verbally described or verbal descriptions 

of observed phenomena5. Two high-profile well-rehearsed notions can be considered as worked 

examples. First, upregulated activation in perilesional and contralesional areas has been associated 

with recovered performance in post-stroke aphasia34-40. Upregulated activation could be viewed as an 

example of variable neuro-displacement. That is, the broader activation clusters observed in healthy 

fMRI data might be upregulated permanently to support recovered function in patients when tasks 

are made harder or the statistical threshold dropped. For example, van Oers et al.40 showed that 

recovery on picture naming in post-stroke aphasic patients was associated with activation in the left 

inferior frontal gyrus (IFG) while recovery on more cognitively demanding task (e.g., the Token 

Test) was associated with upregulated contralesional activation in the right IFG in addition to the left 

IFG. There is also parallel evidence from combined TMS-fMRI studies in healthy participants that 

inhibition of the left anterior temporal lobe (ATL) upregulates activation in the right ATL to support 

semantic tasks12, 13. 

A second well-rehearsed notion about aphasia recovery is the right hemisphere hypothesis 

(RHH). Despite being a commonly repeated hypothesis dating over a century, as far as we are aware, 
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there are no implemented bilateral language models in which the notion can be formally evaluated. 

RHH can be considered as an example of variable neuro-displacement or degeneracy mechanisms5. 

Numerous fMRI and positron emission tomography (PET) studies have demonstrated that patients 

with chronic damage in the left hemisphere recruit the right hemisphere during language tasks with 

greater right hemispheric activation in patients than in healthy participants34, 41, 42. These findings 

have been interpreted in terms of a right hemisphere juvenile “back-up” language system, which is 

weaker and error-prone. Normally suppressed by the dominance left hemisphere system, it can be 

released to provide some function after significant left hemisphere damage. The picture is made 

more confusing because the hypotheses and data in relation to the RHH are contradictory. Some 

notions suggest that aphasia recovery is supported by this right hemisphere system; when aphasic 

patients have a second stroke in the right hemisphere, their language performance generally becomes 

worse4, 43. There is also evidence that language performance is correlated with activation in the right 

hemisphere44-46. In contrast, the ‘regional hierarchy framework’ proposes that right hemisphere 

activation is maladaptive and good recovery only results from language returning to the left36, 42, 47-49. 

According to a seminal study of post-stroke aphasia by Saur et al.34, left hemisphere activation for 

auditory comprehension greatly decreased a few days after stroke, was followed by increased 

bilateral activation with a significantly upregulated peak in the right hemisphere two weeks after 

stoke, and then the peak activation shifted back to the left hemisphere in the chronic phase. Given 

that the patients in Saur et al.’s study had very mild aphasia and showed excellent recovery of 

function, the finding seems to suggest that right hemisphere activation is associated with initial 

recovery, yet better long-term recovery may require activations to shift back to a more typical left 

lateralised pattern. However, it remains unclear what mechanisms underlie the changes in brain 

activity and what the longitudinal patterns are for moderate and severe aphasia. 

These RHH hypotheses have, in turn, inspired interventions with opposing aims: either  

promoting right hemisphere engagement50 or trying to suppress it in favour of left hemisphere 
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involvement using TMS or transcranial direct current stimulation (tDCS)51-54. Without a better 

understanding of underlying mechanisms and a formal implemented model, various foundational 

issues remain. These include: how a right hemisphere system can develop if it is suppressed by the 

left hemisphere; how the two systems might interact; whether the results of negative associations 

between right hemisphere activation and language is simply a reflection of behavioural severity and 

lesion size, as mild aphasia is associated with small lesions which leaves more of the left hemisphere 

intact and is able to be activated. Our working assumption is that there is an intrinsically bilateral, 

albeit asymmetrically-provisioned single functional network. That is, the left and right hemispheres 

both contribute to speech production with differential contributions arising from the effects of 

imbalanced resources across the hemispheres. An implemented model would permit a proper 

investigation of how this division of labour might shift and under what conditions after brain 

damage. 

Additionally, the hypothesis of the maladaptive right hemisphere activation within the 

regional hierarchy framework supposes that the two hemispheres attempt to inhibit each other 

through transcallosal inhibition47-49. There are several puzzles about this hypothesis including (a) 

why the healthy brain might spend most, if not all, of its lifetime inhibiting regions from working (a 

biologically expensive implementation) and (b) how the less dominant system can even develop 

semi-useful representations if being persistently suppressed. We also note that to the best of our 

knowledge – outside of the motor system55-57 – there are no demonstrations of transcallosal 

inhibitory connectivity. But with an implemented bilateral language model, we can explore the effect 

of including transcallosal connectivity on healthy and impaired function. 

 

Multiple measures 

The last issue concerns different types of data and measures. Classically, explorations of 

brain function relied on relating lesions/brain damage to the pattern of patients’ performance58-60. 
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The advance of functional neuroimaging techniques has allowed healthy and damaged function to be 

explored, in vivo. A corollary is that we now have multiple measures to consider in parallel, 

including lesion location and size, behavioural language measures, observed activations as well as 

connectivity. To make progress, the field needs to begin to understand the relationship between 

observed behavioural performance and brain activation, at different degrees and locations of brain 

damage. It is tempting to assume that activated regions must be contributing to the observed patient 

performance but, like any form of functional neuroimaging, simply observing activation does not 

mean that the region is critically contributing to healthy or impaired performance61. This may explain 

inconsistent findings in which activation in right hemispheric language areas is not always correlated 

with language performance in post-stroke aphasia39, 42, 44-46, 62, 63. Indeed, different types of imaging 

analyses such as multiple voxel pattern analysis (MVPA)64 and representational similarity analysis 

(RSA)65 have started to be used to investigate the information contained in right hemisphere 

activation after stroke and its relationship with recovered performance. For instance, Fischer-Baum 

et al.65 reported that, when a stroke patient with severe written language impairment was asked to 

perform a naming detection task, the orthographic activation patterns in the right fusiform gyrus 

were more similar to stimulus patterns than in the left fusiform gyrus. Thus, it is critical that a 

computational model can be designed to accommodate multiple measures within a single framework 

so that the relative levels of activation across layers (akin to regions of the brain) can also be probed. 

This allows a formal exploration of the relationship between brain activations and contributions to 

the observed behavioural performance. 

To summarise, the primary aim of this study was to develop a unified, bilateral pathway 

model of spoken language production that could assimilate findings in healthy participants and in 

post-stroke aphasia to resolve several puzzles in the literature. Specifically, we investigated four key 

issues: (a) how the system might show bilateral albeit asymmetric activation in healthy participants 

but a very strong lateralisation in post-stroke patients; (b) how activation patterns change 
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dynamically across the hemispheres during recovery; (c) if there is an effect of transcallosal 

connectivity on healthy and impaired function; and (d) the relationship between multiple measures 

including recovered behavioural performance and brain activation. 

 

Results 

Hemispheric asymmetry and language lateralisation 

The bilateral model of language processing was implemented as a simple recurrent network. 

The model consisted of two parallel pathways. The model was trained to perform a repetition task 

(see the Methods section for details). We investigated if the model could simulate language 

lateralisation follows hemispheric asymmetry with all other things being equal. Specifically, we 

varied the proportion of hidden units in the left versus the right pathways in the model (see Fig. 1a) 

while the total number of hidden units remained unchanged. The number of units for the two 

consecutive hidden layers in both the left and right was the same. In each of the five capacity 

conditions, twenty versions of the model were trained with different random initial weights. The 

same training procedure was applied to each condition. After training, the model was tested on both 

the word and nonword repetition tasks. 

In the imaging studies, a lateralisation index is generally estimated using the BOLD signals in 

the left and right homologue language areas, where the right BOLD signals are subtracted from the 

left BOLD signals and then dividing the score by the sum of them66. In our model, two different 

measures can be used to compute the degree of lateralisation, one is functional contribution and the 

other one is output unit activation. Functional contribution is a measure of the relevant contribution 

from the left or right pathway to output activation32, 67. Alternatively, output unit activation measures 

average unit activation at the output layer uniquely from either the left or right pathway. It has been 

used as a proxy of the fMRI BOLD signals in previous simulation work68. In the present study, we 

computed lateralisation indices based on both measures. The positive lateralisation score indicated 
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the model showed a left lateralised pattern; conversely, the negative score indicated the model 

showed a right lateralised pattern. More details about the computations of functional contribution 

and output unit activation were reported in the Methods section. In addition to lateralisation indices, 

we also investigated average unit activation across the hidden layers along the left and right 

pathways separately in different conditions to test if more hidden units (i.e., more processing 

resource) would lead higher activation on average. 

Results are summarised in Fig. 1. All models performed well on word repetition and 

generalised to nonwords (Fig. 1b). There was a clear lexicality effect with the highest accuracy for 

high frequency words followed by low frequency words and then nonwords. Importantly, the 

performance level achieved by the model with differential capacities in the left and right was very 

similar because the total resources were the same. This means that the model was able to exploit the 

computational resources flexibly to learn the task and to generalise. In contrast, the underlying 

processing did change. Fig. 1c shows that the model with more processing resources in the left 

pathway produces a more left lateralised pattern, while an opposite pattern is observed for the model 

with more processing resources in the right pathway. The resulting lateralisation patterns, based on 

function contribution and output unit activation were similar, suggesting that both measures could 

capture the change of resources in the model. Furthermore, we also found that more hidden units 

along the two processing pathways resulted in higher hidden unit activation (Fig. 1d). This suggests 

that the functional division of labour in the model was based not only on there being more units in 

the “dominant” processing pathway but they also resultantly worked harder on average. Together, 

these investigations provide computational evidence to link language lateralisation with imbalance 

processing resources in the left and right language areas, and reveal the consequent change in the 

functional division of labour underlying performance.  
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Figure 1. The model architecture, repetition performance, lateralisation patterns, and average hidden 

unit activation produced by the bilateral model with differential capacity in the left and right 

pathways. (a) The model with five different numbers of hidden units in the left and right pathways 

including 15-75, 30-60, 45-45, 60-30, and 75-15. The number of units in the hidden 1 layer and the 

hidden 2 layer was the same; (b) The repetition performance of the model on high frequency words, 

low frequency words and nonwords; (c) The lateralisation patterns based on functional contribution 

and output unit activation produced by the model; (d) Hidden unit activation produced by the model 

across the hidden layers along the left and right pathways. HF: high frequency; LF: low frequency. 

 

Chronic aphasia as a consequence of left hemisphere stroke but not right hemisphere stroke 

We next investigated whether damage to the left hidden layer in the model would be more 

likely to result in impaired language performance (chronic aphasia) compared to damage to the right. 

In the preceding section, we demonstrated that the model with more computational resources in the 

left pathway produced a bilateral, left-asymmetric activation pattern similar to fMRI brain 
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activations observed in most healthy individuals during language production. Thus, we opted to use a 

model with an asymmetrical structure where the computational capacity in the left was twice as large 

as that in the right (60 vs. 30 units). The 30 units in a hidden layer also met the minimum number of 

units required for the unilateral model to support (though not perfectly) the spoken production task 

(see Supplementary S1 for details).  

Fig 2a also shows the developmental learning trajectory of the model before lesion (the intact 

model) and an example of the recovery profile of the model with a left or right moderate lesion. 

During the developmental learning period, the model learned high frequency words more accurately 

and quickly compared to low frequency words. Generalisation to nonwords was very good though 

lower than performance on words (i.e., a typical lexicality effect). Then, a moderate lesion was 

applied to the left or right hidden layer 1 in the model. The representative moderate lesion 50%[0.5] 

meant that 50% of the units were damaged and noise with the variance of 0.5 was added to the links 

connecting to and from the left hidden layer 1. After damage, the model was re-exposed to its 

learning environment for 100,000 presentations to allow for a period of experience-dependent, 

plasticity-related recovery (based on a re-optimisation of the remaining resources)32. To mimic a loss 

of function and missing activation in the damaged brain regions immediately after stroke observed in 

aphasic patients34, a period of initial inefficient learning for the surviving units in the damaged layers 

was implemented. This meant that for the surviving units in the damaged layers, their learning 

abilities were initially limited and then gradually regained learning efficiency whereas for the units 

in the unaffected layers learning efficiency was normal. The initial inefficient learning was 

implemented by varying unit gain from 0 to 1 in steps of 0.1 over the early stage of retraining (i.e., 

the first 10,000 presentations for recovery). Note that the model behaved similarly without the 

implementation of such a period of inefficient learning time (see Supplementary S.2). During 

recovery, we divided the re-learning time into three recovery periods (acute, sub-acute, and chronic) 

approximating different stages of patient recovery34. In the acute phase, immediately after left 
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damage, the performance of the model was at floor. Then in the sub-acute phase, the model started to 

re-organise the computational resources and re-learned the task. In the chronic phase, performance 

gradually increased up to an asymptote (i.e., partial function recovery as found in chronic aphasia). 

In contrast, the right damage only caused minor disruptions to the performance and it recovered 

rapidly (i.e., full function recovery akin to transient aphasia). 

Obviously, patients may have different lesion severities in the left or right hemisphere, 

leading to different recovery profiles. To capture this, different levels of damage were applied to the 

left or right hidden layer 1. Specifically, ten lesion levels were made by damaging hidden units from 

10% to 100% with step increment of 10%, plus adding Gaussian noise with variance from 0.1 to 1 

with step increment of 0.1 to the links that were connected to and from the target hidden layer. All 

re-training procedures were the same as described in the previous section. Fig. 2b shows the final 

recovered performance with different levels of damage to the left or right hidden layer 1. For the left 

lesion, the recovered performance varied with lesion levels. We divided the models into three lesion 

groups, 10%[0.1]-30%[0.3] for the mild group, 40%[0.4]-60%[0.6] for the moderate group, and 

70%[0.7]-100%[1] for the severe group. The mild group showed the best-recovered performance 

while the severe group was the worst with the moderate group in the middle. The models also 

showed enlarged frequency and lexicality effects. It is worth noting that the relationship between the 

severity of the left lesion and recovered performance is non-linear, suggesting that the model had 

developed some resilient to mild damage but, beyond a “tipping point” the effects of damage cannot 

be overcome through plasticity-related re-learning, leading to more permanent language impairment 

as observed in chronic aphasia. For right lesions, the model generally recovered very well regardless 

of lesion levels. These results demonstrate that, following damage and recovery, performance of the 

left lesioned model was much more impaired than the right lesioned model, consistent with the 

patients’ studies showing a stroke in the left hemisphere is more likely to lead profound, chronic 

language impairment.  
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Fig. 2. (a) The developmental learning trajectory of the model before damage, and the recovery

profile after damage (Moderate lesion 50%[0.5]) to the left or right hidden layer 1, simulating a left

or right hemisphere stroke and recovery. For recovery, the damaged model was re-exposed to its

learning environment resulting in three periods of recovery, resembling the pattern observed in

patients. Note that the unequally spaced time scales for the re-learning period were made to clearly

demonstrate the model’s re-learning in different periods; (b) The recovered performance of the left

lesioned model and the right lesioned model as a function of lesion levels (a combination of unit

damage and noise – see text for details). ‘Intact’ means the model without lesion. HF: high frequency

words; LF: low frequency words; NW: nonwords. 

 

Dynamic patterns of activation shifts in post-stroke aphasia and recovery 

 An important additional aspect of this study was to investigate the relationship between 

simulated behavioural performance and underlying metrics of unit function (to mimic functional 

neuroimaging data). Three levels of the left lesions (20%[0.2], 50%[0.5], and 80%[0.8]) were 

selected to simulate mild, moderate and severe aphasia. Additionally, the severe right lesion 

(80%[0.8]) was included to understand what compensated the effects of right damage. Four measures

were used to reveal the mechanisms underlying recovery in the damaged model. First, as before, the 

damaged model’s accuracy on word and nonword repetition was used to simulate post-stroke aphasic
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patients’ behavioural performance. Second, we used output unit activation in the left and right 

pathways as a proxy of the BOLD activation68 observed in the fMRI studies of post-stroke aphasic 

patients. Third, we measured the perilesional and contralateral hidden unit activations to examine 

which undamaged units in the model were upregulated/reformulated to support during recovery. 

Lastly, we conducted representation similarity analyses (RSA) comparing the activation similarity 

patterns in the hidden layers to the target output similarity for the words (see the Methods section for 

details). In addition to these four measures, there were two measures related to the model’s 

relearning, average weight strength and weight change across the hidden layers in the model. Both 

measures were helpful for understanding how the model re-learned the task during recovery and 

what the links are between recovery performance and re-learning processes. The data are reported in 

Supplementary S.3. 

Fig. 3 summarises several key phenomena. We can first look at performance accuracy and 

output unit activation. For the left lesion, the recovered performance of the model aligned with lesion 

severity with the mild lesion model showing the best performance. Importantly, for the mildest 

lesion there was a transient pattern of output unit activation shifting from left to right and then back 

to left, similar to the finding observed in the mild aphasic patients34. For the moderate and severe 

lesion, the models showed right lateralised activation patterns, and the recovered performance was 

worse than that in the mild lesion. In contrast, even after a severe right lesion, accuracy was only 

slightly disrupted but quickly recovered, and the output activation pattern during recovery largely 

remained unchanged with a small rise in right output unit activation. These simulations seem to 

directly mirror the pattern of patient results reported in the literature: good performance is associated 

with more left lateralised activations while worse performance is associated with more right 

lateralised activations36; and, left-right-left changing brain activation patterns are observed in 

patients with mild brain lesions in the left hemisphere34. 
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We further investigated how undamaged perilesional and contralesional units could support 

recovery. The results showed that, for both mild and moderate lesions, the LH1 perilesional 

activation initially decreased following damage but then gradually increased during re-learning, 

reflecting a re-optimisation process. A similar but larger initial decrement followed by a slower 

increment pattern was observed for LH2 hidden unit activation. For a severe lesion, both the LH1 

and LH2 hidden unit activation decreased following damage but did not rise again, presumably 

because there were insufficient resources available in the LH1 layer for the model to re-optimise. 

This pattern was also observed for the right severe lesion comparison, where both the RH1 

perilesional activation and RH2 hidden unit activation gradually decreased and remained in a low 

activity level. Turning to contralateral activation, for all severities of left lesion, the contralateral 

hidden unit activations at RH1 and RH2 were upregulated very quickly following damage. The 

degree of upregulation was varied and depended on lesion severity, with largest upregulation for the 

severe condition. By contrast, for the right severe condition, there was no clear upregulation of the 

contralateral hidden unit activations at LH1 and LH2. 

For the correct interpretation of the relationship between patient behavioural performance and 

underlying activation, it may be important to note that there were differential associations between 

model accuracy and the various unit metrics. Figure 3 shows that the RSA measure closely 

shadowed the changing model accuracy, quite unlike simple unit activation (a proxy to BOLD 

levels) which show a complex nonlinear relationship. Taking the left moderate lesion as an example, 

even when the right output unit activation was building up quickly during the initial recovery period, 

change in model performance was minimal. Subsequently, long after the point when the right output 

unit activation reached a relatively stable level, there was a much larger and gradual increase in 

model accuracy. By contrast, the change in the RSA pattern was closely aligned with model 

performance. Interestingly, although the right output unit activation was higher than the left output 

unit activation throughout recovery, the RSA results showed the left unit correlation was initially 
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lower than the right unit correlation but returned to a higher level later in recovery. These results 

suggest that, in the behavioural fMRI studies, BOLD signals and RSA measures may provide 

different information: although increase unit activations (cf. BOLD increases) are a necessary pre-

cursor to behavioural recovery, higher unit activations do not necessarily imply that the units are 

contributing to improved performance.                 

To examine, formally, the relationships between model performance with output unit 

activation and the RSA measure, we conducted correlation analyses. Model performance was 

correlated with output unit activation and the RSA scores at hidden layers 1 and 2 separately. 

Correlation analyses were conducted across the developmental learning period in the intact model 

and the re-learning period in the lesioned model. Results are reported in Table 1. The correlations 

between output unit activation and model performance were mostly negative in particular for the 

lesioned conditions, except for the positive correlations for the left output unit activation in the intact 

condition and for the right output unit activation in the left severe lesion condition. When 

considering all intact and lesion conditions, the pattern of change in correlation for output unit 

activation was difficult to interpret. By contrast, the correlation with the RSA scores were more 

interpretable; the pattern of correlation change was moderated by lesion severity, revealing the 

sources of contribution to model performance. For example, left RSA unit correlations were much 

higher than the right unit correlations in the intact and the left mild lesion condition; conversely, the 

right unit correlations increased substantially in the left moderate lesion condition and became 

stronger than the left unit correlations in the most severe left lesion. For the right severe condition, 

the left unit correlations remained higher than the right unit correlations. Collectively, these results 

demonstrated that the RSA provides a more direct measure to relate model performance to the 

underlying computations. This suggests that, in the studies of post-stroke aphasia, multivariate 

pattern analyses might be a better way to explore the neural basis of the patients’ language behaviour 

and how this changes during recovery. 
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Fig. 3. Simulation patterns of post-stroke aphasia and recovery: left mild (20%[0.2]), left moderate 

(50%[0.5]), left severe (80%[0.8]) and right severe (80%[0.8]) conditions. The lesion level means 

the proportion (%) of the units was damaged and the range of noise (bracket) over the links 

connecting to and from the hidden layer. For each lesion condition, the first panel shows model 

performance; the second panel shows output unit activation generated from the left and right 

pathway of the model separately; the third panel shows hidden unit activation for the left and right 

hidden layers 1 and 2. The activation for lesioned and perilesional units are plotted separately; the 

last panel shows the RSA scores obtained in the left or right hidden layers 1 and 2 in the model. HF: 

high frequency words; LF: low frequency words; NW: nonwords; L: left; R: right; LH: left hidden 

layer; RH: right hidden layer. 

 

Table 1. The correlations between model performance and output unit activations and RSA scores 
across the developmental learning period in the intact model and the re-learning period in the 
lesioned models  

 Intact L Mild L Moderate L Severe R Severe 

L Output Unit Act     0.23*** -0.29*** -0.20*** -0.1* -0.23*** 
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R Output Unit Act     -0.48*** -0.37***     -0.04 0.09*     -0.06 

L RSA H2     0.84*** 0.92*** 0.82***   0.33*** 0.42*** 

R RSA H2    -0.08   -0.04 0.40***   0.69***      -0.08 

L RSA H1     0.82*** 0.92*** 0.81***   0.29*** 0.44*** 

R RSA H1    -0.04   -0.05 0.28***   0.64***     -0.08 

p < .05; *** p < .001; L: left; R: right; Act: activation; RSA: representational similarity analysis. 

 

Interconnectivity between the left and right hemispheres  

Thus far, the implemented model did not have interconnections between the left and right 

pathways. Cortical hemispheres, however, are connected by the corpus callosum as well as various 

subcortical routes69. Given that the corpus callosum and interhemisphere connections are complex, a 

detailed neuroanatomically-constrained simulation is beyond the scope of this study. However, we 

explored a simplified simulation by adding direct ‘homotopic’ interconnections between the left and 

right pathways to investigate whether (a) this changed the patterns of simulated recovery reported 

above, and (b) if the model would develop transcallosal inhibitory connectivity as proposed in 

various classical hypothese47-49 (though, to our knowledge, there is no direct evidence of 

transcallosal inhibitory connectivity outside the motor system). Transcallosal connectivity in the 

model was implemented as sparse, bidirectional cross-connections between the left and right 

hemispheres without imposed positive or negative connections. This meant that all the weight 

connections in the model were allowed to develop freely. As there is no prior knowledge about the 

density of connectivity between the two hemispheres, we varied two different levels of connectivity 

sparseness (30% and 70%) of the units in the homologue layers. The training and testing procedures 

were exactly the same as previously described. 

Fig. 4 shows the resulting patterns produced by the left mild, left moderate and left severe 

and right severe lesioned models with different levels of interconnections. For comparison, the 

pattern produced by the model without interconnections is also included in Fig. 4. The resulting 
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patterns were very similar to the model with different levels of interconnections. There were 

transient patterns of output unit activation for the left mild lesion condition but not for more severe 

left lesion conditions. In addition, the model could recover to a similar accuracy level regardless of 

the levels of interconnections. But, when the model had more interconnections, it showed a more 

bilateral pattern following damage and recovery. This suggests that increasing interhemispheric 

connectivity in the model makes it behave more like a single functional pathway model, with a more 

even contribution of left and right pathways. This hypothesis was confirmed by the results from the 

right severe lesion condition, where the model with more interconnections exhibited a more 

pronounced impairment in the early recovery phase. 
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Fig. 4. Simulation patterns of post-stroke aphasia and recovery produced by the model with three 

levels of interconnections (0%, 30% and 70%) between left and right sides for the left mild 

(20%[0.2]), left moderate (50%[0.5]), left severe (80%[0.8]) and right severe (80%[0.8]) lesion -

conditions. The lesion level means the proportion (%) of the units was damaged and the range of 

noise (bracket) over the links connecting to and from the hidden layer. For each lesion and 

interconnection conditions, the first panel shows model performance and the second panel shows 

output unit activation generated from the left and right pathway of the model separately. HF: high 

frequency words; LF: low frequency words; NW: nonwords; L: left; R: right. 

 

Discussion 

Understanding the brain mechanisms underlying language processing is critical both 

theoretically and clinically. To tackle various key issues that appear to be contradictory in healthy 

and impaired language processing, we developed a single, unified neurocomputational model of 

spoken language production with bilateral pathways. The key features of this modelling work 

include: the importance of considering healthy and impaired language within an intrinsically bilateral 

but asymmetric language network; to conceptualise recovery of function after damage as an 

experience-dependent plasticity-related learning process; and, to provide a platform to assimilate 

behavioural and neuroimaging data from different populations.  

In an otherwise computationally-homogenous language model, an initial imbalance in the 

processing resources in the left and right hemisphere pathways was sufficient to explain the pattern 

of data observed in healthy participants and in patients with chronic aphasia. Specifically, the 

imbalance in processing resources drives an emergent division of labour across the pathways such 

that the left hemisphere pathway picks up more of the computational work (i.e., each unit, on 

average, is more highly activated and contributes more to the final spoken output response than each 

corresponding right hemisphere unit). As a result, the undamaged model shows bilateral but 
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asymmetric “activation” as observed in healthy participants. When this resource imbalance is 

combined with plasticity-related recovery, the model provides an explanation for why left 

hemisphere stroke is more likely to result in chronic than right hemisphere stroke. Plasticity-related 

recovery reflects a re-optimisation of the remaining connection weights to maximise behavioural 

performance. This occurs in both ‘perilesional’ units and the contralateral pathway. The greater 

computational resources in the left hemisphere means that, when the right hemisphere is damaged, 

there is greater capacity for the left hemisphere pathway to pick up the extra representational work 

previously undertaken by the (damaged) right hemisphere pathway (meaning that there is only 

transient aphasia). The same recovery process occurs following left hemisphere damage except that 

(a) the greater left hemisphere resources means that, at least for mild levels of damage, there is still 

enough spare capacity in the remaining ipsilateral units to pick up the additional computational work 

(i.e., there is good or recovered function, and left hemisphere activation still dominates, even after 

mild levels of left hemisphere damage) and (b) there are insufficient resources in the right 

hemisphere to compensate completely if the left hemisphere damage is too severe. In such 

circumstances, the model mimics chronic aphasia. In all cases, plasticity-related recovery means that 

there is a dynamic shift in the division of labour to ipsilateral ‘perilesional’ and contralateral areas, as 

is observed in fMRI studies of recovered patients. The model also demonstrates that there can be 

complex, nonlinear relationships between behavioural performance and levels of unit activation (a 

proxy for BOLD) whereas the relationship is much more direct when comparing performance to the 

accuracy of the representations coded in the pathway (implying that MVPA-type imaging analyses 

may be a better way to assess and track the neural bases of recovery in aphasic patients).  

Leftward hemispheric asymmetry has been shown in several brain regions and white matter 

tracts26-30. However, there remains some controversy regarding a positive correlation between 

structural asymmetry and functional lateralisation21, 70, 71. The discrepancy could be related to 

individual differences among participants (e.g., age, education, and gender) or it could be because 
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most studies have relatively small sample sizes72. In a more controlled computational environment, 

our bilateral model with differential pathway resources demonstrated a link between hemispheric 

asymmetry and language lateralisation. The model also shows that this structural difference could be 

fundamentally important for explaining the patient data. By explicitly incorporating a leftward 

asymmetric but bilateral structure in the model, the model synthesises the seemingly contradictory 

patterns observed in both healthy participants and aphasic patients (Fig. 2): specifically, a leftward 

asymmetric but bilateral patterns in the intact model, and the much stronger lateralisation picture that 

is observed in chronic patients after left (aphasic) vs right (recovered) lesions.         

Two potential mechanistic frameworks have been proposed for language recovery: 

degeneracy and variable neuro-displacement5. Both mechanisms provide the computational bases for 

the language system to be at least partially resilient to damage and for recovery of function following 

damage. Recovery can be accomplished by a permanent reformulation of the remaining multiple 

codes (degeneracy) or upregulation of systems/pathways (variable neuro-displacement), or both. The 

present neurocomputational model provides a platform to test the two principles. The simulations 

demonstrate that both mechanisms are not mutually exclusive and they can be utilised as a part of the 

recovery process. Immediately after dominant pathway damage, the model rapidly upregulates 

contralesional activation and also starts to re-formulate the perilesional unit contributions. If the 

perilesional units are capable of re-supporting the function, then later in recovery, both perilesional 

and contralateral activations are up upregulated; otherwise, the perilesional activation is 

downregulated and the contralateral activation continues to be upregulated. As such, it would appear 

from the model that the recovery process follows the two proposed principles but the actual 

mechanisms involved depend on the level of task engagement by the units before damage and 

whether there are sufficient resources in the remaining perilesional or contralateral areas to support 

recovery. As a result, there are differential output activation recovery profiles depending solely on 

lesion severity. With a mild left lesion, the perilesional units are largely persevered and can be re-
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formulated for recovery, leading to good recovery and left lateralised output activation patterns. With 

a more severe left lesion, perilesional support is reduced and partial recovery relies mainly on the 

contralateral units. Accordingly, there is a co-occurrence of slow and imperfect recovered 

performance with right-lateralised activation patterns. The finding emphasises the importance of 

considering lesion severity when interpreting the observations of the association between good 

recovery and left lateralised brain activation patterns34, 36 and the association between imperfect 

recovery and right-lateralised brain activation patterns73. 

The present bilateral model also provides a potential explanation for why the right 

hemisphere provides some but not perfect language support. The classical right hemisphere 

hypothesis (RHH) proposes that the right hemisphere is normally suppressed, via transcallosal 

inhibition, by the dominant left hemisphere system, but it can be released to provide some function 

after significant left hemisphere damage47-49. As noted previously4, 5, 34, 36, 41-46, the RHH leaves many 

puzzling questions open, including: how the RH can develop language representations under lifelong 

suppression; how left and right language systems might contribute to normal function; what bilateral 

yet asymmetric BOLD activations in healthy participants represents; why this biologically expensive 

organisation for all people is an optimal solution for the minority of people who happen to suffer 

from the right kind of brain damage to induce aphasia. The current simulations provide a much more 

straightforward proposal for the data. The initially bilateral albeit asymmetric system supports 

healthy function but can partially re-optimise following damage. This can all be achieved without 

any recourse to notions of juvenile RH language systems and interhemispheric inhibition. Instead, 

the RH subsystem is less efficient because it has less computational resources and, in turn, learning 

in the left hemisphere over-shadows that in the right, resulting in the left hemisphere units taking up 

more of the representational work (Figure 2d). These results follow even without interhemispheric 

connection but, even if included (Fig 4), then (a) they do not become inhibitory and (b) with 

increasing connectivity the model evolves into a single functional system.  Of course, it should be 
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acknowledged that the connections within corpus callosum are much more complex than the simple 

parallel connections implemented in the present model. Whilst interhemispheric connections have 

been shown to be inhibitory within the motor network55-57, to our knowledge, there is currently no 

evidence of transcallosal inhibitory in the language other higher cognitive networks. One study49, 

applied TMS to left inferior frontal gyrus in healthy participants during a verbal fluency task, and 

showed decreased brain activity in the left but increased activity in the right homologue. These 

findings were interpreted as supportive evidence for transcallosal inhibition from the left to right 

hemispheres, however, the changes in the effective connectivity between the left and right inferior 

frontal gyri after TMS was not examined. Alternatively, the upregulation of homologue language 

areas after brain stimulation could be considered as a form of adaptive plasticity based on an 

interhemispheric compensatory mechanism12-14, 74. For example, a recent study of semantic 

processing, combining theta-burst stimulation (cTBS) and dynamic causal modelling (DCM)12 found 

increased right ventral anterior temporal lobe (vATL) in response to cTBS to the left vATL. The 

DCM results revealed an increase in the facilitatory drive from the right to the left vATL. There was 

no evidence of negative inter-ATL connectivity with or without stimulation. Similar results have 

been reported in another brain stimulation study targeting Broca’s area during speech processing14.            

Lastly, the model also investigated multiple measures within a single framework and their 

sometimes complex relationships. In the model, the performance improvement required both unit 

activation and fine-tuning weight connections. Immediately after damage, the activation level of the 

units in the model is generally low. Thus, the first step toward re-learning is to increase the activation 

level via a generalised weight connection increase. This is then followed by re-optimising weight 

connections in order to minimise the errors between the target and actual patterns at the output layer. 

The implication is that fMRI BOLD signals in patients during recovery have an ambiguous 

interpretation; they could reflect the neural basis for recovered performance or alternatively 

generalised but untuned activation. The model suggests that multivariate pattern analysis might 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.21.959239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.959239
http://creativecommons.org/licenses/by/4.0/


 

27

provide a more direct measure to link recovered performance with neuronal pattern information in 

different phases of aphasia recovery. This results is consistent with a growing interest in using 

different types of imaging analyses to investigate the right hemisphere activation patterns in post-

stroke aphasia and how it is related to recovered performance64, 65. By extension, the same techniques 

might also be helpful in clarifying the (dis)advantages of using brain stimulation techniques (TMS or 

tDCS) to alter brain activation for effective treatments.  

The present bilateral model focused on speech production along the dorsal pathway. 

Obviously, there are multiple pathways in the language network8, 27, 75-78. For example, we have not 

considered the ventral pathway that includes a semantic system for comprehension, nor does the 

model specify each layer in the model in corresponding to brain regions involved in language 

processing. A previous neurocomputational model of language processing33 demonstrated that a 

dual-pathway neural network model could simulate different types of aphasia (including receptive 

and expressive language) based on damage to a corresponding lesion site. Future models can merge 

and elaborate these approaches to provide further systematic investigations, thereby elucidating the 

neural bases of healthy language and partial recovery in post-stroke aphasia. 

 

Methods 

Model architecture 

The bilateral model of spoken language production was implemented as a simple recurrent 

network. It had two pathways to simulate the processing in the left and right hemispheres. Each 

processing pathway consisted of two hidden layers and one Elman layer for intermediation between 

input and output phonological layers. The architecture of the model is shown in Fig. 1a. The input 

phonological layer was connected to the first left and right hidden layers with Elman connections and 

then to the second left and right hidden layers and then to the single, final output layer. The Elman 
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layer functioned as a memory buffer to temporarily hold activation patterns generated from the 

previous time ticks79. 

 

Representation 

One hundred three-letter high frequency and one hundred three-letter low frequency 

monosyllabic words with consonant-vowel-consonant (CVC) structures were included in the training 

set. Each word was represented by three phoneme slots, with each slot consisting of 25 phonological 

features (including, for instance, voice, nasal, labial, palatal, round, etc.) following the coding system 

used in previous modelling work80, 81. The nonword list comprised three subsets, with 25 items for 

each of the subsets creating by changing the first consonant, the vowel or the final consonant in a 

word respectively. 

 

Training and testing 

The model was trained on a word repetition task, learning the mapping from phonological to 

phonological representations. In the first three time ticks, each phoneme was presented in the input 

layer sequentially. There was no output target until all the phonemes were presented. From the fourth 

time tick to the sixth time tick, the model was required to produce all of the phonemes sequentially. 

Which word was presented to the model was determined by its logarithmic frequency82. The model 

was trained with a standard learning rate of 0.01 using a standard back-propagation algorithm with a 

negative bias of -2. The weight decay was set to 0.000001. Weight connections in the model were 

updated after each presentation on the basis of the cross-entropy error computed between the target 

and the actual activation of the output units. Note that a simple recurrent network generally has a 

sequential update procedure, which means layers in the network are updated in order. To prevent the 
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order of update from biasing the model’s reliance on one pathway, a counterbalance update sequence 

was used during training.  

After 300,000 presentations, the training was halted and the model was tested on the word 

and nonword repetition tasks. The phonological representation of each phoneme was presented 

sequentially for the first three time ticks. From the fourth time tick, the activation of units at the 

output phonological layer was recorded. Error score was measured by the sum of the squared 

differences between the input representation and its target activation. The accuracy of the model’s 

phonological production was determined by whether the model’s actual production was the same as 

its target phoneme. Twenty versions of the model were trained to prevent the results from generating 

from a particular set of random initial weights. 

 

Lateralisation index 

In the fMRI or PET studies, lateralisation index can be computed by subtracting the Blood 

Oxygenation Level Dependent (BOLD) or cerebral blood flow (CBF) signal obtained in the right 

language areas from the corresponding left language areas and then dividing the score by the sum of 

the BOLD or CBF signals66. Thus the higher the score means activation patterns are more left 

lateralised. For the simulation, we used two measures, functional correlation32, 67 and output unit 

activation68, as a proxy of the BOLD signals. For functional correlation, we recorded the activation 

patterns contributed uniquely from the left pathway by lesioning the links between input and the 

right hidden layer 1; by contrast, the activation patterns contributed uniquely from the right pathway 

was obtained by lesioning the links between input and the left hidden layer 1. Functional correlation 

was obtained by correlating the unique activation patterns from each pathway with activation 

patterns when both pathways were utilised. Regarding output unit activation, it was computed by 

averaging unit activations contributed uniquely from the left pathway and the right pathway 
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separately. Both were used to replace the BOLD signals in the formula to compute the lateralisation 

index. 

 

Representational similarity analysis 

To conduct representational similarity analyses83, we first computed a target representational 

dissimilarity matrix (RDM) based on the correlation distance of target patterns between all of the 

word pairs. We then computed model representational dissimilarity matrices based on the correlation 

distance of hidden unit activation patterns between all of the word pairs at hidden layers 1 and 2 in 

the left and right pathways of the model independently. The RSA correlation scores between the 

target RDM and the RDMs of hidden unit activations were reported. 
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Supplementary 

S1. Explorations of the selection of number of hidden units in the model 

To determine the minimum number of units that were required for the model to perform the 

repetition task, we have developed a unilateral model with different numbers of hidden units. The 

selection principle followed our assumption that the key difference between the left and right 

pathways in the model should be quantitative, in terms of differential capacity, rather than 

qualitative, in terms of function. Thus we ensured that the unilateral model was capable of 

performing the word and nonword repetition tasks to a satisfactory level (i.e., at least 80% accuracy 

for both words and nonwords). The architecture of the model and the performance are illustrated in 

Fig. S1. 

 

 

Fig. S1. (a) The architecture of the unilateral model; (b) The performance of the model with different 

number of units in hidden layers 1 and 2. 

We varied the number of hidden layers 1 and 2 concurrently: 20, 30, 40, and 50. The model 

was trained in the same way as described in the Methods section. After 300,000 presentations, the 

model was tested on both the word and nonword repetition tasks. Fig. S1b shows that the model with 
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more hidden units can perform and generalise better. The result demonstrated that the best number of 

units in each hidden layer was 30 in which the model achieved about 94.1% and 82.8% accuracy on 

word and nonword repetition tasks respectively. This number was used for the right processing 

pathway in the left lateralised model reported in the main text. 

  

S2. Explorations of the model’s recovery without the implementation of inefficient learning of the 

surviving units after damage 

To simulate behavioural patterns in post-stroke aphasia and recovery, we have trained a 

damaged model with initial inefficient learning. This was to mimic a loss of function and activation 

in the damaged brain regions immediately after stroke observed in most patients34. However, to 

demonstrate this implementation is not a critical determinant factor to explain different behavioural 

recovery patterns, we re-trained the damaged model without such an inefficiency period. It means 

that the surviving units in the hidden layer 1 immediately after damage can learn as efficiently as 

other units do in the unaffected layers. The levels of damage and the training time of recovery were 

the same as those described in the Post-Stroke Aphasia and Recovery section. Fig. S2 shows the 

recovery patterns of the damage model without initial inefficient learning in different lesion 

conditions. 

The resulting performance and output activation patterns were broadly similar to those 

produced by the model with initial inefficient learning (Fig. 3). When the left lesion was mild, the 

activation patterns tended to return to be left lateralised during recovery. By contrast, when the left 

lesion was more severe the activation patterns became right lateralised, and this shift in activation led 

to relatively poor performance in particular for nonwords. One difference was that the transient 

pattern from left to right and then back to left previously observed in the left mild lesion condition 

was less pronounced. However, it was clear that that activity in the right pathway rapidly increased 

immediately after damage with decreased activity in the left pathway, though there was no crossover. 
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Regarding all of the other measures, the patterns were very similar to those reported in Fig. 3. These 

results demonstrate that the simulation without initial inefficient learning could capture the general 

patterns of recovery in different recovery phases. However, to better characterise the shift in 

activation patterns in the acute phase, the implementation of initial inefficient learning is critical in 

simulating a loss of function and activation in the damaged brain regions immediately after stroke 

observed in most patients34.  

 

Fig. S2. Simulation patterns of post-stroke aphasia and recovery without initial inefficient training 

for the surviving units after damage: left mild (20%[0.2]), left moderate (50%[0.5]), left severe 

(80%[0.8]) and right severe (80%[0.8]) conditions. The lesion level means the proportion (%) of the 

units was damaged and the range of noise (bracket) over the links connecting to and from the hidden 

layer. For each lesion condition, the first panel shows model performance; the second panel shows 

output unit activation generated from the left and right pathway of the model separately; the third 

panel shows hidden unit activation for the left and right hidden layers 1 and 2. The activation for 

lesioned and perilesional units are plotted separately; the last panel shows the RSA scores obtained 
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in the left or right hidden layers 1 and 2 in the model. HF: high frequency words; LF: low frequency 

words; NW: nonwords; L: left; R: right; LH: left hidden layer; RH: right hidden layer. 

 

S3. A figure for the full simulation patterns of post-stroke aphasia and recover including six 

measures: model performance, output unit activation, hidden unit activation, weight strength, rate 

of weight change, and RSA correlation  

Six different measures illustrated in Figure S3 were used to reveal the underlying recovery 

mechanism of the damaged model. In particular, average weight strength and weight change across 

the hidden layers in the model were useful for us to understand how the model re-learned the task 

during recovery and what was the link between recovery performance and re-learning processes. For 

instance, in the left severe lesion condition, the right output unit activation increased rather quickly 

after damage, and this was also reflected in an initial rise in the rate of weight change. However, the 

performance had not started to improve at the time. When output unit activation reached steady 

status, the weights were continues to be updated and the performance was gradually improved. This 

may indicate two critical steps for re-learning: activation and fine-tuning weight connections. 

Immediately after damage, the activation level of units in the model is generally low. Thus the first 

step toward re-learning is to increase the activation level and weight connections, and this is 

followed by re-optimising weight connections in order to re-learn the task by minimising the errors 

between the target and actual patterns at the output layer. 
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Fig. S3. The full simulation patterns of post-stroke aphasia and recovery: left mild (20%[0.2]), left 

moderate (50%[0.5]), left severe (80%[0.8]) and right severe (80%[0.8]) conditions. The lesion level 

means the proportion (%) of the units was damaged and the range of noise (bracket) over the links 

connecting to and from the hidden layer. For each lesion condition, the first panel shows model 

performance; the second panel shows output unit activation generated from the left and right 

pathway of the model separately; the third panel shows hidden unit activation for the left and right 

hidden layers 1 and 2. The activation for lesioned and perilesional units are plotted separately; the 

fourth panel shows average weight strength, averaged across all of the connections either in the left 

or right side of the model; the fifth panel shows the rate of weight change in strength; the last panel 

shows the RSA scores obtained in the left or right hidden layers 1 and 2 in the model. HF: high 
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frequency words; LF: low frequency words; NW: nonwords; L: left; R: right; LH: left hidden layer; 

RH: right hidden layer. 
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