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Abstract  33 

Achieving high titer rates and yields (TRY) remains a bottleneck in the production of 34 

heterologous products through microbial systems, requiring elaborate engineering and many 35 

iterations. Reliable scaling of engineered strains is also rarely addressed in the first designs of 36 

the engineered strains. Both high TRY and scale are challenging metrics to achieve due to the 37 

inherent trade-off between cellular use of carbon towards growth vs. target metabolite 38 

production. We hypothesized that being able to strongly couple product formation with growth 39 

may lead to improvements across both metrics. In this study, we use elementary mode analysis 40 

to predict metabolic reactions that could be targeted to couple the production of indigoidine, a 41 

sustainable pigment, with the growth of the chosen host, Pseudomonas putida KT2440. We 42 

then filtered the set of 16 predicted reactions using -omics data. We implemented a total of 14 43 

gene knockdowns using a CRISPRi method optimized for P. putida and show that the resulting 44 

engineered P. putida strain could achieve high TRY. The engineered pairing of product 45 

formation with carbon use also shifted production from stationary to exponential phase and the 46 

high TRY phenotype was maintained across scale. In one design cycle, we constructed an 47 

engineered P. putida strain that demonstrates close to 50% maximum theoretical yield (0.33 g 48 

indigoidine/g glucose consumed), reaching 25.6 g/L indigoidine and a rate of 0.22g/l/h in 49 

exponential phase. These desirable phenotypes were maintained from batch to fed-batch 50 

cultivation mode, and from 100ml shake flasks to 250 mL ambr® and 2 L bioreactors.  51 

 52 

 53 

 54 

 55 

  56 
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Introduction 57 

Heterologous production of bioproducts has been demonstrated for a very large number of 58 

compounds and in a wide variety of microbial hosts1,2. Yet, even the most well-designed 59 

heterologous pathway requires considerable additional work to reach titers, rates and yields 60 

(TRY) necessary for the adoption of these systems by industry3,4. In addition, the production 61 

parameters of a strain at lab-scale is often not predictive of its performance and robustness 62 

when cultivated in different modes or at larger scales. As a result, only a small fraction of 63 

bioproduction strains have been successfully scaled and deployed2.  64 

 65 

Here we explore if it is possible to rewire the metabolism of the host strain such that production 66 

of a final product or a key intermediate is coupled with the carbon source, and used to maximize 67 

and maintain productivity at scale. Native microbial processes that take such growth coupled 68 

routes include the generation of ethanol and organic acids during fermentation. Production of 69 

these metabolites are required for carbon utilization during fermentative growth, and 70 

correspondingly these compounds represent the most prominent examples of successful high-71 

volume bioproduction5,6. We hypothesized that coupling production to growth is implementable 72 

for a heterologous product, and that such a dependence could provide high TRY and the ability 73 

to maintain production parameters across different growth modes and scales.  74 

 75 

The availability of comprehensive metabolic models and genome editing tools in a wide variety 76 

of microbes suitable for industrial use provides the foundation for our approach. We use the 77 

production of indigoidine, a bipyridyl compound derived from glutamine, as the target 78 

heterologous product. Both as a sustainable replacement for blue pigments7 in a wide array of 79 

applications as well as a model non-ribosomal peptide8, this compound provides a valuable 80 

target to explore. We used Pseudomonas putida KT2440 as our production host, leveraging the 81 

availability of the iJN1462 genome scale model for P. putida KT24409. We adapted elementary 82 
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mode analysis (EMA)10 to determine the constrained minimal cut set (cMCS) required to 83 

minimize metabolic flux towards undesired products and link indigoidine formation to cell 84 

viability11. These analyses, combined with publicly available omics data12,13, provided the set of 85 

gene loci that represented the reactions necessary for removal. The corresponding set of gene 86 

loci were repressed using multiplex CRISPR interference (CRISPRi) that we optimized for use 87 

in P. putida KT2440. Our implementation resulted in a highly edited strain that, in a single 88 

iteration of strain engineering, achieved close to 50% max theoretical yield of indigoidine in P. 89 

putida KT2440 and TRY characteristics that maintain fidelity from laboratory to industrially 90 

relevant scales. 91 

 92 

Results 93 

 94 

Genome scale evaluation of P. putida for strong coupling    95 

 96 

To develop the product coupling approach (Figure 1a), we first identified the number of 97 

metabolites represented in P. putida  iJN14629 model that can be made essential for growth. 98 

For this we used the cMCS algorithm11 that can identify minimal sets of reactions, the 99 

elimination of which would cause production of a given metabolite to become essential for 100 

growth. Aerobic conditions with glucose as the sole carbon source were used to model growth 101 

parameters. We searched for gene knockdown sets to satisfy three potential constraints in 102 

which the theoretical product yield was at a minimum of 10%, 50%, or 80% of the maximum 103 

theoretical yield (MTY) for all producible metabolites in the model coupled to a minimum 10% 104 

biomass yield. This analysis, completed for all 2145 metabolites in the genome scale model, 105 

indicated that 979 organic metabolites could potentially be made essential for growth. In the first 106 

pass, 98.6% of these 979 metabolites had the potential to satisfy this biomass-formation 107 

constraint, with a minimum production threshold of 10% MTY. When the threshold for minimum 108 
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production was set to 50% MTY, 903 metabolites could be essential for growth; for an 80% 109 

threshold MTY, only 444 metabolites could be made essential for growth, representing only 45% 110 

of the total producible metabolites. This potential growth coupling for all metabolites is 111 

consistent for similar calculation for other hosts11 (see Supplementary Table 1). Setting a 112 

higher demand for minimum product yield results in fewer metabolites that can be used to 113 

implement a production obligatory regime.  114 

 115 

As the framework proposed by von Kamp and Klamt required an extensive rewiring of microbial 116 

physiology, a priori it was not obvious how to account for a heterologous end product, a 117 

challenge to implement in practice. We began by adding an in silico reaction for the 118 

heterologous product, indigoidine, to the genome scale metabolic model iJN14629. This reaction 119 

represents the biosynthesis of indigoidine from glutamine and accounts for all necessary 120 

cofactors. The MTY for glutamine and indigoidine was calculated to be 1.141 mol/mol and 0.537 121 

mol/mol respectively from glucose as the carbon source (Table 1). The MTY for glutamine in P. 122 

putida was high relative to other hosts screened by us (Supplementary Table 2). As this 123 

method accounts for the other physiological processes competing for resources, a MTY derived 124 

from a genome scale model provided a more accurate assessment compared to simpler 125 

methods, as is commonly done in the field14,15.  126 

 127 

In order to predict reactions that would be required to improve indigoidine production, we used 128 

glutamine, its precursor, to conduct the analysis. Our process for determining the list of required 129 

gene targets is diagrammed in Figure 1. The minimum theoretical product yield of glutamine 130 

was set at 10%, 50% and 80% MTY to derive the reactions that would require knockout or 131 

knockdown for product substrate paired growth. We eliminated potential target sets that needed 132 

the removal of genes coding for multi-functional proteins, as we sought to limit additional 133 

metabolic perturbations that could confound our analysis. Of the 1956 reactions in iJN1462 that 134 
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are associated with genes, only 60% have a single gene associated with them. If a metabolic 135 

reaction was catalyzed by more than one gene product (genes coding for isozymes or multi-136 

subunit enzymes), we included both genes for inactivation. After implementing these filters, we 137 

found that a threshold of 80% MTY could be achieved using the elimination of 14 cellular 138 

reactions. These 14 metabolic reactions when mapped to their corresponding genes and gene 139 

products represented 16 gene loci (Figure 1b and Supplementary Dataset 1).  140 

  141 

Next, we used Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA), to confirm the 142 

16-gene cMCS strategy to be obligatory for glutamine production. Using our constructed cMCS 143 

platform, we set the parameters to explore potential product-obligatory strategies to enhance 144 

the production of indigoidine in P. putida when glucose is fed as the sole carbon source. This 16 145 

gene set provided for glutamine was then extended to assess production paired growth for 146 

indigoidine. FBA analyses confirmed that growth using glucose could be paired with indigoidine 147 

production at 90% theoretical yield (0.48 mol/mol or 0.66 g/g of glucose). This analysis also 148 

confirmed that we can adapt the work from von Kamp and Klamt11 for non-native final products 149 

and target specific genes rather than enzymatic reactions for intervention. 150 

 151 

Since EMA requires the delineation of specific growth conditions, such as starting carbon 152 

source, we examined if the gene cut set with glucose as a substrate, could maintain product 153 

pairing with other known native carbon substrates for P. putida, such as para-coumarate and 154 

lysine12,16. FBA with these alternate carbon sources (i.e. lysine, para-coumarate) indicated that a 155 

strain engineered using the 16-gene cMCS strategy for the glucose would fail to produce 156 

glutamine (Supplementary Table 3). In contrast, this gene targeting set (Supplementary 157 

Dataset 1) results in the desired production obligatory growth using galactose as a carbon 158 

source because it shares the same downstream catabolism as glucose (Figure 1b).  159 

 160 
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Building the multi-edit engineered strain:  161 

 162 

To test the predictions from the metabolic modeling described above, we built the control 163 

engineered P. putida production systems. First we genomically integrated the heterologous 164 

production pathway comprised of sfp and bpsA. BpsA is a non-ribosomal peptide synthetase 165 

(NRPS) from Streptomyces lavendulae that catalyzes indigoidine formation from two molecules 166 

of glutamine in an ATP-dependent manner17. Activation of BpsA requires a post-translational 167 

pantetheinylation conferred by a promiscuous Sfp from Bacillus subtilis18. The genomically 168 

integrated production strain harboring a plasmid-borne dCpf1 and non-targeting gRNA serves 169 

as the control production strain. The basal production of indigoidine in P. putida is 2.3 g/L 170 

indigoidine from 10 g/L glucose after 24 hours (Supplementary Figure 1a). The bulk of 171 

production occurred in stationary phase, approximately 12 hours after carbon depletion, as is 172 

typically observed for P. putida19,20. To test the use of galactose, we also engineered a 173 

galactose utilization strain via genomic integration of a galETKM operon21,22 and here production 174 

of indigoidine was negligible (Supplementary Figure 1b). Optimizing carbon/nitrogen ratio 175 

yielded only modest improvements to indigoidine production for both glucose and ammonium 176 

sulfate (Supplementary Figure 1c-e).  177 

 178 

Prior to construction of the multi-gene edited production strain, we assessed if our gene set 179 

contained essential genes. The iJN1462 model has an incomplete list of essential genes; in 180 

addition we manually annotated genes as essential or dispensable using gene essentiality data 181 

generated from a barcoded fitness library (RB-TnSeq)13 (Supplementary Dataset 2). Out of the 182 

16 genes identified for knockdown, two genes were excluded because they are essential for 183 

viability. By eliminating essential genes from the targeted gene set, we hypothesized that the 184 

predicted metabolic rewiring is more consistent with product substrate pairing rather than growth 185 

coupling. 186 
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 187 

To efficiently overcome technical limitations required to make 14 gene edits, we implemented a 188 

multiplex CRISPRi/dCpf1 targeting strategy. We drew on our understanding of repetitive 189 

element instability23,24 to minimize use of repeated DNA sequences to limit gRNA array loss. 190 

While other reports have indicated technical challenges constructing multiplex gRNA arrays25, 191 

both native and synthetic repetitive arrays exist (including those of native CRISPR arrays)26,27. 192 

An endonuclease deficient class II CRISPR-Cas enzyme, FnCpf128, was chosen over Cas9 as 193 

the Cpf1 crRNA is only 19 bp in size, compared to the corresponding crRNA (gRNA scaffold 194 

sequence) from Cas9, which is 76 bp28. Each gRNA was driven by a different P. putida tRNA 195 

ligase promoter/terminator pair, and dCpf1 was placed under the control of the lacUV5 196 

promoter. Minimal 100-bp promoter sequences from native tRNA ligases were sufficient to 197 

express mCherry fluorescent protein, confirming that heterologous mRNA transcripts for gRNAs 198 

would be generated (Supplementary Figure 1f).  199 

 200 

In a successful deployment of the multiplex CRISPRi/dCpf1 we expect to see a decrease in 201 

mRNA expression levels (and protein abundance) of the genes targeted with CRISPR 202 

interference. We used RNAseq analysis to examine the engineered strain, and compared 203 

normalized RNA expression levels between the control strain (Figure 2a-c). RNA expression 204 

levels were sampled over the duration of a 72-hour time course. Expression of all 14 gRNAs 205 

were detected by this analysis (Figure 2a). The multiplexed Cpf1 gRNAs in this array did not 206 

efficiently terminate with endogenous terminator sequences and generated chimeric mRNAs. 207 

Nonetheless, nine of the fourteen targeted gene loci exhibited decreased mRNA expression 208 

levels, and at best showed a 50% decrease (Figure 2b, Supplementary Figure 2). Global 209 

indirect changes in gene expression were also detected (Figure 2c). Partial reduction of protein 210 

abundance was also observed for ten of the fourteen genes (Figure 2b, Supplementary 211 

Figure 2).   212 
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 213 

A consequence of pairing production to the catabolism of  specific carbon sources, results in  214 

predictions that other carbon sources can no longer be metabolized (Supplementary Table 3). 215 

We tested this prediction experimentally and observed that engineered strains for product 216 

substrate pairing showed reduced growth when using either lysine or para-coumarate as the 217 

sole carbon source, in agreement with the modeling (Figure 2d). 218 

 219 

Characterizing the multi-gene engineered production strain  220 

 221 

Redirecting metabolic flux to improve glucose paired glutamine/indigoidine formation is 222 

quantifiable across several other metrics. We should observe high TRY for our desired product 223 

since higher glutamine yields, to support growth, should result in more indigoidine yields. The 224 

production of indigoidine would shift from stationary phase to exponential phase, as the 225 

metabolism of glucose catabolism and glutamine production are paired. Finally, these 226 

phenotypes should maintain fidelity across a range of growth modes and scales.  227 

  228 

We tested to ensure that indigoidine production was improved in the engineered strain relative 229 

to the controls in several laboratory cultivation formats. We tested production using both the 230 

native glucose and engineered galactose pathways as carbon sources. Both strains were 231 

cultivated with either 10 g/L glucose or galactose, as the same targeted reaction set would 232 

function on either carbon source. In a deep well plate format, we observed that the engineered 233 

strain produced nearly three-fold more indigoidine than the control strain when fed glucose 234 

(Figure 3a). In a shake flask format, the engineered strain produced 30% more than the control 235 

strain. Finally, when cells were cultivated with galactose in the deep well format, the same 236 

engineered strain was able to produce indigoidine in contrast to the galactose utilization control 237 

strain which only formed biomass (Figure 3b).  238 
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  239 

In a 2L bioreactor, cultivated in a batch-mode with glucose as the carbon source, we observed 240 

improved titers at 12.5 g/L indigoidine from 60 g/L glucose. The control production strain, in 241 

contrast, produced 5 g/L, and production of the final molecule was realized after glucose was 242 

exhausted from the media. When galactose was fed, the engineered strain also exhibited 243 

improved titers of 25.6 g/L of indigoidine from 60 g/L galactose as opposed to the control strain 244 

that generated only around 900 mg/L of indigoidine; a 28-fold improvement in production was 245 

observed in the engineered strain. Moving to an industrially relevant cultivation format did not 246 

impact the final product titer, allowing us to further develop cultivation methods by switching to 247 

fed-batch mode. 248 

  249 

We realized greater improvements in final product titer as well as improvements in production 250 

kinetics in the fed-batch mode using the ambr® 250 system. After administering an initial high 251 

nutrient feed to increase biomass in the reactor, we reduced the feed rate to study indigoidine 252 

product formation during exponential phase growth (Figure 3a, right hand panel, and 253 

Supplementary Figure 3). During this phase, the engineered strain produced at a rate of 0.22 254 

g/l/h, while the control strain accumulated no additional product. This observation is consistent 255 

with our hypothesis that indigoidine formation would occur during exponential phase due to 256 

pairing with glucose. In terms of yield, the engineered strain generated consistently higher 257 

production than the control strain when cultivated with glucose (0.2 g/g compared to 0.1 g/g), 258 

but was not as consistent when cultivated on galactose (Figure 3c). Together all aspects of the 259 

phenotypes that were desirable for the engineered strain were found to be true. 260 

 261 

 262 

Discussion 263 
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This study is the first implementation of cMCS predictions enabled with CRISPR interference 264 

and resulted in a strain where production was paired with growth. Pairing the final desired 265 

product with the carbon source used for growth, mimics native obligatory product formations 266 

such as ethanol production and results in high productivity at scale. Further, to our knowledge, 267 

there are no other reports where the production of a non-native molecule was shifted from 268 

stationary phase to exponential phase as a result of strain engineering.  269 

 270 

The competition between biomass accumulation and production of the target compound is a 271 

well-recognized challenge in biomanufacturing. This trade-off impacts both TRY and scalability. 272 

Approaches to address this tradeoff range from growth coupling29 to growth decoupling.30  273 

Canonical approaches to growth coupling are FBA-based methods such as OptKnock31 that 274 

identifies secondary pathways that reduce the pool of a key intermediate as means to increase 275 

flux to the target of interest. This strategy has been termed as “weak” growth coupling32 where 276 

growth still occurs even if the desired product is not formed. Yim et al. used a tailored solution 277 

involving such computational methods to improve 1,3-BDO production to 18 g/L33, but their 278 

method cannot be generalized for other molecules. Others have described growth coupling as 279 

the creation of a “driving force” such as ATP production or cofactor imbalance, and link the 280 

driving force to the desired production pathway29,34–36. Driving force coupling is also pathway 281 

specific and requires additional strain engineering. Examples include 1-butanol production in E. 282 

coli using NADH as the driving force34 or media supplementation for butanone production in E. 283 

coli linked to acetate assimilation29. 284 

 285 

In contrast to the examples described above, the multi-gene engineered product substrate 286 

pairing we report here is an implementation of “strong” growth coupling. It relies on EMA based 287 

methods that provide targets at the genome-scale level11,37,38 but predicts a large number of 288 

enzymatic reactions for elimination. We used FBA to corroborate our optimal cMCS and 289 
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removed essential genes from targeted gene sets using -omics data to determine the genes that 290 

should be targeted for CRISPRi. This genome scale approach also represents a valuable 291 

paradigm for the evaluation of microbial hosts for their production capacity and could 292 

significantly reduce the time taken to optimize carbon source conversion to the final product. 293 

The appeal of this strategy is that the gene knockdown solution is scale-agnostic; the predicted 294 

metabolic rewiring should apply even in the largest bioreactor formats.  295 

 296 

In the context of TRY improvement alone, indigoidine itself is an example of a heterologous 297 

product that has been demonstrated at high titers39–41. The production of indigoidine was high in 298 

the oleaginous yeast Rhodosporidium toruloides but remained low in the model yeast S. 299 

cerevisiae, despite similar optimization of cultivation parameters. This comparison represents an 300 

empirical example of the innate metabolic potential of a given host, and is consistent with our 301 

calculated max theoretical yields for indigoidine (Supplementary Table 2). Genome scale 302 

metabolic models can accurately predict how microbial hosts could be advantageous for the 303 

production of a given metabolite. For indigoidine, the MTY from glucose in P. putida is 0.54 304 

mol/mol and is comparable to that for R. toruloides (0.5 mol/mol), while E. coli (0.4 mol/mol) and 305 

S. cerevisiae (0.079 mol/mol) are much lower. It is likely that every molecule will be different. 306 

Thus, selecting the best host/ final product pair is a crucial aspect of developing the ideal 307 

production platform.  308 

 309 

While our engineered strains showed many desirable phenotypes, several aspects merit 310 

additional discussion. The predicted EMA based cut set (cMCS) demands zero flux through 311 

these reactions for strong growth coupling. We excluded two genes from the predicted gene set 312 

due to their essentiality. Of the remaining gene targets, our RNAseq and proteomic data 313 

indicates a partial gene knockdown, implying that a non-zero flux could occur through the 314 

predicted reactions. The resulting yield space for indigoidine production is now different from 315 
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what was predicted by EMA (Figure 3d). This suggests that partial implementation of the EMA 316 

predictions, still resulted in a shift of production from stationary to exponential phase while 317 

maintaining desirable indigoidine TRY.   318 

 319 

Our approach allowed us to achieve, in one cycle of strain engineering, a high and consistent 320 

TRY for indigoidine across cultivation scales. With improvements in genetic tools and metabolic 321 

models it may be possible to obtain the 90% MTY predicted by the EMA based cMCS. A better 322 

understanding of the terminator sequence efficiency (as observed in this study and elsewhere in 323 

E. coli25) would enable more efficient CRISPR mediated gene knockdown. Similar fold 324 

repression of targeted proteins by CRISPRi/dCas9 were recently reported42, suggestive of a 325 

limitation for existing CRISPR systems in P. putida. Additionally, delineation of gene targets for 326 

this approach relies on the availability of high-quality genome scale metabolic models, and also 327 

calculated using a single carbon source. Future mechanistic studies of these strains will lead to 328 

more refined genome scale models, enabling more accurate metabolic flux modeling when the 329 

engineered strains are grown with these carbon sources. This approach cannot be used for 330 

certain mixed carbon streams, such as glucose and xylose, as our calculations for glucose 331 

pairing inactivates the pentose phosphate pathway. Similarly, there are metabolites that cannot 332 

be made obligatory for growth11. For final products derived from this class of metabolites, 333 

alternative strategies or hosts would need to be explored. We also do not take into 334 

consideration products or intermediates that may be toxic. As industrial processes also use 335 

renewable carbon sources that may contain inhibitory byproducts, microbial hosts will require 336 

some degree of tolerance engineering43 to unlock its potential. Addressing these aspects will 337 

further boost the usefulness of this product substrate pairing approach. 338 

 339 

Materials and Methods 340 

Computation of constrained minimal cut sets (cMCS) 341 
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Pseudomonas putida KT2440 genome scale metabolic model (GSM) iJN14629 was used. The 342 

ATP maintenance demand and glucose uptake were 0.97 mmol ATP/gDW/h and 6.3 mmol 343 

glucose/gDW/h, respectively. Constrained minimal cut sets (cMCS) were calculated according 344 

to the algorithm as previously described11. Excretion of byproducts was initially set to zero, 345 

except for the reported overflow metabolites for secreted products specific to P. putida 346 

(gluconate, 2-ketogluconate, 3-oxoadipate, catechol, lactate, methanol, CO2, and acetate). 347 

Additional inputs including minimum demanded product yield (% of MTY) and minimum 348 

demanded biomass yield at 10% of maximum biomass yield were also specified in order to 349 

constrain the desired design space. Knockouts of export reactions and spontaneous reactions 350 

were not allowed. The algorithm computed for all minimal combinations of reaction knockouts 351 

blocking all undesired flux distributions and maintaining at least one of the desired metabolic 352 

flux distributions. With the specifications used herein each calculated knockout strategy (cMCS) 353 

will ensure that growth is not feasible without biosynthesis of glutamine. All cMCS calculations 354 

were done using API functions of CellNetAnalyzer44 on MATLAB 2017b platform using CPLEX 355 

12.8 as the MILP solver. A summary of common potential growth coupled reactions and the 356 

number of targeted reactions to satisfy coupling restraints is included (Supplementary Figure 357 

4). Once all the cMCS were enumerated, we used the decision workflow (Figure 1a) to identify 358 

an optimal engineering strategy for experimental validation. 359 

Constraint Based methods to confirm the cMCS 360 

iJN1462 was extended to account for indigoidine biosynthesis pathway and checked for strong 361 

growth coupling to confirm the chosen engineering strategy for experimental implementation. 362 

Flux Balance Analysis (FBA) was used to calculate the maximum theoretical yield (MTY) from 363 

reaction stoichiometry and redox balance and also for single gene deletion analysis. Flux 364 

variability analysis (FVA) was used along with FBA to check for minimum and maximum 365 

glutamine or indigoidine flux under the identified cMCS strategy to confirm product obligatory 366 
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growth. COBRA Toolbox v.3.045 in MATLAB R2017b was used for FBA and FVA simulations 367 

with the GLPK (https://gnu.org/software/glpk), an open-source linear optimization solver. 368 

Production envelope was obtained using the internal COBRA Toolbox function, 369 

productionEnvelope() and plotted for P. putida (Figure 3d) as a fraction of maximum theoretical 370 

product yield on y-axis and maximum theoretical biomass yield on x-axis.  371 

 372 

Chemicals, media and culture conditions 373 

All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO) unless 374 

mentioned otherwise. When cells were cultivated in a microtiter dish format, plates were sealed 375 

with a gas-permeable film (Sigma-Aldrich, St. Louis, MO). Tryptone and yeast extract were 376 

purchased from BD Biosciences (Franklin Lakes, NJ). Engineered strains were grown on M9 377 

Minimal Media as described previously46 with slight modifications. Carbon sources (glucose or 378 

galactose) were used at 56mM and (NH4)2SO4 was used at 2 g/L, unless indicated otherwise.  379 

 380 

Strains and strain construction 381 

Pseudomonas putida KT2440 was used as the host for strain engineering. All strains used in 382 

this study are described in Supplementary Table 4 and are available upon request from public-383 

registry.jbei.org. Upon publication, plasmid sequences are available at public-registry.jbei.org. 384 

Specific DNA sequences used to design the gRNA array are described in Supplementary 385 

Dataset 1. Electroporation with the respective plasmid was performed using a Bio-Rad  (Bio-386 

Rad Laboratories, Hercules, CA) MicroPulser preprogrammed EC2 setting (0.2 cm cuvettes with 387 

100 µL cells, ~5msec pulse and 2.5kV) with slight modifications47. Cells transformed with 388 

replicative plasmid DNA were allowed to recover at 25 °C for 2.5 hours before plating on 389 

selective agar media at 23 ˚C for overnight incubation. Cells transformed with non-replicative 390 

(integrating) plasmids were allowed to recover for 4-8 hours in LB media before plating on 391 

selective agar media at 23 ˚C for an additional 24 hours.  Kanamycin sulfate or gentamicin 392 
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sulfate (Sigma-Aldrich, St. Louis, MO) was used at a concentration of 50 µg/mL or 30 µg/mL, 393 

respectively. Integration of the Ec.galETKM operon or heterologous indigoidine gene pathway 394 

was implemented using a sucrose counterselectable plasmid for allelic exchange48. Positive 395 

clones were confirmed for the genotype by colony PCR using Q5 Polymerase enzyme (NEB, 396 

Ipswitch, MA). The dCpf1/CRISPRi system was adapted for use in P. putida by subcloning an 397 

endonuclease dead Francisella tularensis subsp. Novicida Cpf149 into a pBBR1 backbone and 398 

placed under the LacUV5 promoter. The synthetic gRNA array was constructed using gene 399 

synthesis techniques (Genscript, Piscataway, NJ) and cloned into the dCpf1/CRISPRi backbone 400 

using isothermal DNA assembly. All plasmid constructs were verified with Sanger sequencing 401 

before transformation into Pseudomonas putida.  402 

 403 

Analytics/ Sugar Quantification - HPLC 404 

Glucose and organic acids from cell cultures were measured by an 1100 Series HPLC system 405 

equipped with a 1200 Series refractive index detector (RID) (Agilent Technologies, Santa Clara, 406 

CA) and Aminex HPX-87H ion-exclusion column (300 mm length, 7.8 mm internal diameter). 407 

300 µL aliquots of cell cultures were removed at various time points during production and 408 

filtered through a spin-cartridge with a 0.45-μm nylon membrane, and 10 μL of the filtrate was 409 

eluted through the column at 50°C with 4 mM sulfuric acid at a flow rate of 600 μL/min for 30 410 

min. Metabolites were quantified with an external standard calibration with authentic standards. 411 

Indigoidine Extraction and Quantification 412 

Indigoidine was purified from P. putida with slight modifications as previously described50. Cells 413 

were lysed in 1% SDS and 100 mM NaCl and then centrifuged at 14,000 xg for 3 minutes. The 414 

supernatant was discarded and the pellet was washed with three rounds of methanol, 415 

isopropanol, water, ethanol, and hexane to remove contaminating proteins and metabolites. The 416 

pellet was allowed to dry overnight and then resuspended in DMSO at a final concentration of 417 
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1mg/mL. Indigoidine purity was characterized by NMR. A standard curve correlating indigoidine 418 

concentration to OD612 was generated using this reagent (Supplementary Figure 5). The purity 419 

of extracted indigoidine (Supplementary Figure 6) from both E. coli and P. putida were cross-420 

validated by NMR  as previously described41. 421 

 422 

To rapidly quantify indigoidine production in a high throughput manner, the colorimetric assay 423 

was used to determine indigoidine production. Briefly, pelleted 100uL of cells by centrifugation 424 

at 15000 rpm for 2 min. The supernatant was discarded and 500uL DMSO was added to the 425 

pellet. The solution was vortexed vigorously for 10 minutes to dissolve indigoidine. After 426 

centrifugation at 15000 rpm for 2 min, 100μL of DMSO extracted indigoidine was added to 96-427 

well flat- bottomed microplates (BD Biosciences, San Jose CA). Indigoidine was quantified by 428 

measuring the optical density at using a microplate reader (Molecular Devices, San Jose, CA) 429 

preheated to 25°C and applying standard curve generated from indigoidine. The equation used 430 

was Y (g/L of Indigoidine) = 0.212*A612 - 0.0035. DMSO-solubilized cell lysate from wild-type P. 431 

putida does not contribute any signal when measured at OD612.  432 

 433 

To correlate indigoidine yields with biomass yields, the dry cell weight was determined using 434 

OD612 to biomass conversion estimates as previously described51.  435 

 436 

RNAseq and data analyses 437 

Total RNA was prepared following the manufacturer’s protocol52 for Trizol-based RNA extraction 438 

with several modifications. RNA from trizol treated lysates were bound to a silica column (Direct-439 

zol RNA MiniPrep Plus Kit, Zymo Research, Irvine CA) and its integrity confirmed using a 440 

Bioanalyzer RNA 6000 Nano assay (Agilent Technologies, Santa Clara, CA). rRNA was 441 

removed from 100 ng of total RNA using Ribo-Zero(TM) rRNA Removal Kit (Illumina 442 

Biotechnology, San Diego, CA). Stranded cDNA libraries were generated using the Illumina 443 
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Truseq Stranded mRNA Library Prep kit. The rRNA depleted RNA was fragmented and 444 

reversed transcribed using random hexamers and SSII (Invitrogen-ThermoFisher, Carlsbad, 445 

CA) followed by second strand synthesis. The fragmented cDNA was treated with end-pair, A-446 

tailing, adapter ligation, and 10 cycles of PCR amplification. Prepared libraries were quantified 447 

using KAPA Biosystem's next-generation sequencing library qPCR kit (Kapa Biosystems / 448 

Roche AG, Basel, Switzerland) and run on a Roche LightCycler 480 real-time PCR instrument. 449 

Sequencing of the flowcell was performed on the Illumina NovaSeq sequencer using NovaSeq 450 

XP V1 reagent kits, following a 2x150nt indexed run protocol. Reported gene expression values 451 

are the total normalized transcripts per million (TPM). All raw data is available through NCBI-452 

SRA associated with NCBI-Bioproject (Accession IDs: PRJNA580539 - PRNJA580574) and the 453 

DOE-JGI IMG database (Project ID: 505977).  454 

Targeted proteomics by LC-MS/MS 455 

A targeted SRM (selected reaction monitoring) method was developed to quantify relative levels 456 

of pathway proteins in samples under the various tested conditions in a 60 mL cultivation 457 

format. At the time points indicated, 1 mL of each sample was pelleted by centrifugation at 458 

14,000g and flash frozen with liquid nitrogen at − 80 °C until ready for processing. Cells were 459 

lysed in 100 mM NaHCO3 using 0.1 mm glass beads using a Biospec Beadbeater (Biospec 460 

Products, Bartlesville, OK) with 60 s bursts at maximum power and repeated three times. Cell 461 

lysates were cooled on ice between each round. The clarified supernatant was harvested by 462 

centrifugation at 14,000g. The lysate protein concentration was estimated following the 463 

manufacturer’s directions for the BCA method (ThermoFisher Scientific/Pierce Biotechnology, 464 

Waltham, MA). The SRM-targeted proteomic assays and analyses were performed as 465 

described previously53,54. The SRM methods and data are available at Panoramaweb 466 

(shorturl.at/rsAK3). 467 
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Cultivation at different scales 468 

Cultures from glycerol stocks were struck to single colonies on LB agar media with the 469 

appropriate antibiotic as necessary. Single colonies were used to inoculate overnight cultures in 470 

LB with the appropriate antibiotic. Saturated overnight LB cultures were then back-diluted 471 

1/100x into M9 minimal media with the appropriate carbon source as indicated. Cultures were 472 

back-diluted and adapted twice to ensure robust cell growth before heterologous pathway 473 

induction. Adaptation of P. putida Ec.galETKM strains for growth in M9 minimal salt media with 474 

galactose had a long initial adaptation phase of around 96-120 hours before cultures showed 475 

turbidity. All cultures were incubated with shaking at 200 rpm and 30°C. To prepare cells for 476 

pathway induction, M9 adapted cultures were back-diluted to a starting OD600 of 0.1, at which 477 

point IPTG and arabinose were added as appropriate.  Production cultures grown in 24 well 478 

deep well plates (Axygen Scientific, Union City, CA) inoculated into a 200 µL culture volume and 479 

incubated InFors Multitron HT Double Stack Incubator Shaker (Infors HT, Bottmingen-Basel, 480 

Switzerland) set to 999 rpm linear shaker, and 70% humidity. For shake flask experiments, 60 481 

mL cultures were grown in 250mL unbaffled Erlenmeyer shake flask and incubated at 200 rpm 482 

with orbital shaking. For all experiments, the indigoidine pathway was induced with 0.3% w/v L-483 

arabinose, and dCpf1 mediated gene repression was induced with 500 µM IPTG. Production 484 

assays were performed in independent biological triplicate and repeated at least twice, except 485 

for the scale up experiments (described below), which were performed in biological duplicate. 486 

Batch experiments at 2 L bioreactor scale 487 

Batch experiments were performed using a 2 L bioreactor equipped with a Sartorius BIOSTAT 488 

B® fermentation controller (Sartorius Stedim Biotech GmbH, Goettingen, Germany) , fitted with 489 

two Rushton impellers fixed at an agitation speed of 800 rpm. Initial reactor volume was 1 L M9 490 

Minimal Media (10g/L Glucose, 0.3% w/v L-arabinose, 30mM NH4
+), and 50 mL overnight pre-491 

culture in the same media. Feeding solution contained 100 g/L glucose, 300mM NH4
+ along with 492 
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L-arabinose and kanamycin. The temperature was held constant at 30°C. The bioreactor pH 493 

was monitored using the Hamilton EasyFerm Plus PHI VP 225 Pt100 (Hamilton Company, 494 

Reno, NV) and was maintained at a pH of 7 using 10 M sodium hydroxide. Dissolved oxygen 495 

concentration was monitored using Hamilton VisiFerm DO ECS 225 H0. 496 

 497 

Advanced micro bioreactor method: 250 mL ambr® 250 bioreactor cultivations 498 

Fed-batch bioreactor experiments were carried out in a 12-way ambr® 250 bioreactor system 499 

equipped with 250 mL single-use, disposable bioreactors (microbial vessel type). The vessels 500 

were filled with 150 mL M9 minimal salt media containing 10 g/L glucose as carbon source. 501 

Temperature was maintained at 30 ◦C throughout the fermentation process and agitation was 502 

set constant to 1300 RPM. Airflow was set constant to 0.5 VVM based on the initial working 503 

volume and pH was maintained at 7.0 using 4 N NaOH. Reactors were inoculated manually with 504 

5 mL of pre-culture cell suspension. After an initial batch phase of 12 hours, cultures were fed 505 

with a concentrated glucose feed solution (600 g/L glucose, 120 g/L ammonium sulfate, 50 506 

µg/mL kanamycin, 3 g/L arabinose and 500 µM IPTG) by administering feed boluses every two 507 

hours restoring glucose concentrations to 10 g/L (feed parameters: 3.1 min @ 50 mL/h). After 508 

observing glucose accumulation, feed addition was paused and resumed at reduced feed rates 509 

when glucose levels dropped below 10 g/L (1 min @ 50 mL/h). Experiments with a continuous 510 

feeding regime were initially fed at 1.3 mL/h (0.3 mL/h after seeing glucose accumulation). 511 

Samples were taken 1-2 times every day (2 mL) and stored at -20 ◦C. The ambr® 250 runtime 512 

software and integrated liquid handler was used to execute all process steps unless stated 513 

otherwise.  514 

 515 
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Figure 1.  547 

 548 

 549 

Figure 1: Computationally Guided Predictions for Metabolic Rewiring in P. putida. a,550 
Modeling and engineering workflow diagram. This approach can potentially be extended to any551 
carbon source, host and/or metabolite. Input specific to this specific host/final product work is552 
marked in green font. b, The central metabolism of Pseudomonas putida engineered to produce553 
indigoidine from either glucose or galactose. Heterologous genes are indicated in purple text.554 
Indigoidine is derived from the TCA intermediate alpha-ketoglutarate (AKG) via two molecules555 
of glutamine. The genes targeted in P. putida central metabolism for knockdown by556 
dCpf1/CRISPRi are indicated with red X marks. Additional gene targets outside of P. putida557 
central metabolism are indicated in the box on the bottom right. A total of 14 genes were558 
targeted for CRISPR interference excluding mqo-I and cynT, as the latter are essential by559 
genome-wide transposon mutagenesis (RB-TnSeq). Refer to Supplementary Table 4 for more560 
information. 561 
 562 
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Figure 2.  565 

 566 

Figure 2: Characterization of the multi-gene engineered strain via RNAseq and567 
Proteomics. a-c, P. putida harboring a genomically integrated indigoidine expression cassette568 
and either an empty vector (control strain) or a dCpf1/CRISPRi targeting array examined for569 
gene knockdown efficiency. a, RNAseq analysis of plasmid-borne gRNA array in P. putida. b,570 
Knockdown efficiency of a representative gene locus targeted for inhibition over a 72-hour time571 
course. RNA expression levels (right hand panel) were validated with targeted proteomic572 
analysis (left hand panel). Proteomic samples were analyzed in at least biological triplicate.573 
RNAseq analysis for the control sample was completed in biological duplicate for the control574 
and biological quadruplicate for the engineered strain. c, dCpf1/CRISPR interference causes575 
global RNA expression level changes. Volcano plot of mRNA expression levels compared at t =576 
0 h and t = 24 h between multi-gene engineered and control strains. 184 datapoints (0 hr) and577 
391 datapoints (24 hrs) out of 5369 datapoints are outliers and are some are displayed on the578 
edge of the axes. d, Validation of carbon source rewiring. Genome-scale modeling predicts that579 
glucose/indigoidine rewiring blocks growth of engineered strains on lysine as a carbon source.  580 
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 581 

Figure 3.  582 

 583 

Figure 3: The product substrate pairing approach can improve Titer, Rate and Yield (TRY) 584 
across two carbon sources. A. Analysis of P. putida galETKM multi-gene engineered strains 585 
and a control strain (P. putida galETKM, empty vector plasmid) for production of indigoidine 586 
using glucose (a) or galactose (b) as the sole carbon source in M9 minimal medium. The culture 587 
format assessed is indicated above each panel. A fed-batch mode of cultivation was 588 
implemented in the ambr® 250 cultivation format. Glucose feeding is indicated by the gray 589 
shaded area. Control samples indicated with black outlined bars or black dots. The multi-gene 590 
engineered strains are indicated with blue bars or blue dots. c, Analysis of indigoidine yield 591 
across cultivation formats for both glucose-fed and galactose-fed strains. Yield from the control 592 
strain is indicated with black bars, and the multi-gene engineered strain is indicated with green 593 
bars. d, Predicted production envelope using genome scale model and constraint-based 594 
methods represented as theoretical yields of indigoidine as a function of biomass yields. 595 
Possible yield space for control strain is represented in grey. The possible yield space for 16 596 
gene cMCS predicted by EMA is represented in orange. The range of observed experimental 597 
yield space for either the control or engineered strain across different production formats is 598 
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represented with black and teal fill. A red dot indicates the realized production yield vs biomass 599 
yield in exponential phase under optimized conditions. The phase shift in production from 600 
stationary phase to exponential is not depicted. 601 
 602 

Table 1: Maximum theoretical yield (MTY) of glutamine and indigoidine from two different 603 
substrates glucose and galactose with respect to stoichiometry and redox balance in P. putida 604 
 605 

Metabolite 

Maximum theoretical Yield (MTY) 

Glucose Galactose 

mol product/ 

mol substrate 

g product/ 

g substrate 

mol product/ 

mol substrate 

g product/ 

g substrate 

Alpha-ketoglutarate 1.320 1.07 1.366 1.11 

Glutamine 1.141 0.93 1.181 0.96 

Indigoidine 0.537 0.74 0.556 0.77 

 606 

  607 
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