Consumption of a high energy density diet triggers microbiota dysbiosis,

hepatic lipidosis, and microglia activation in the nucleus of the solitary tract in

- rats.
- Dulce M. Minaya¹, Anna Turlej¹, Abhinav Joshi¹, Tamas Nagy², Patricia Di Lorenzo³, Andras
- Hajnal⁴, Krzysztof Czaja¹
- ¹Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia. Athens, GA, 30602
- ²Department of Pathology, University of Georgia, Athens, GA, 30602
- ³Department of Psychology, Binghamton University, Binghamton, NY
- ⁴Department of Neural and Behavioral Sciences, the Pennsylvania State University, College of
- Medicine, Hershey, PA

Corresponding author:

- Krzysztof Czaja, DVM, Ph.D.
- Department of Veterinary Biosciences & Diagnostic Imaging, The University of Georgia College
- of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA 30602, United States, Phone: 706-
- 542-8310, czajak@uga.edu

32 Abstract

Obesity is a multifactorial chronic inflammatory disease. Consumption of high energy density 33 (ED) diets is associated with hyperphagia, increased body weight and body fat accumulation, and 34 obesity. Our lab has previously shown that short-term (4 weeks) consumption of a high ED diet 35 triggers gut microbiota dysbiosis, gut inflammation, and reorganization of the gut-brain vagal 36 communication. The aim of the current study was to investigate the effect of long-term (6 37 months) consumption of high ED diet on body composition, gut microbiome, hepatocellular 38 lipidosis, microglia activation in the Nucleus of the Solitary Tract, and the development of 39 40 systemic inflammation. Male Sprague-Dawley rats were fed a low ED diet (5% fat) for two weeks and then switched to a high ED (45% fat) diet for 26 weeks. Twenty-four hour food 41 intake, body weight, and body composition were measured twice a week. Blood serum and fecal 42 43 samples were collected at baseline, and 1, 4, 8, and 26 weeks after introduction of the high ED diet. Serum samples were used to measure insulin, leptin, and inflammatory cytokines using 44 Enzyme-linked Immunosorbent Assay. Fecal samples were used for 16S rRNA genome 45 sequencing. High ED diet induced microbiota dysbiosis within a week of introducing the diet. In 46 addition, there was significant microglia activation in the intermediate NTS and marked hepatic 47 lipidosis after four weeks of high ED diet. We further observed changes in the serum cytokine 48 profile after 26 weeks of high ED feeding. These data suggest that microbiota dysbiosis is the 49 first response of the organism to high ED diets and this, in turn, detrimentally affects liver fat 50 51 accumulation, microglia activation in the brain, and circulating levels of inflammatory markers. 52

53

Key words: High energy density diet, high fat diet, microbiome, gut dysbiosis, leptin, cytokines,
hepatic steatosis, microglia, vagus

56 **1. Introduction**

57 Obesity has been widely recognized as a low-grade, chronic inflammatory disease. However, 58 the causal relationship between inflammation and obesity, and the causal factors behind obesity-59 dependent inflammation are not well understood. Inflammation is a transient physiological 60 response of an organism to reinstate homeostasis in response to a, typically harmful, stimuli. The 61 inflammatory state that accompanies the metabolic syndrome observed in most obese 62 individuals, however, is not transient.

Consumption of high energy density (ED) diets, including diets high in sugar, and/or in fat 63 have been shown to trigger microbiota dysbiosis, increased body fat accumulation, and 64 development of metabolic syndrome^{1, 2}. The vast majority of obesity cases result from an 65 imbalance between energy intake and energy expenditure, with intake surpassing expenditure. 66 The excess energy consumed is taken up and stored as adipose tissue. Once thought to be inert 67 tissue, adipose tissue is now recognized as a metabolically active endocrine organ regulating 68 physiological and pathological processes³. Some of the hormones, adipokines, and cytokines, e.g. 69 IL-6, TNF- α , released by adipose tissue have pro-inflammatory or anti-inflammatory effects. 70 Excess energy intake leads to enlargement of adipose tissue depositions. This enlargement 71 occurs through an increase in the number of adipocytes (adipogenesis) or an increase in the size 72 of existing adjpocytes (hypertrophy)⁴. In the db/db mouse model, it has been shown that in the 73 early stages of obesity development, there is a high number of adipogenic/angiogenic cell 74 75 clusters. The number of these cell clusters declines as time goes by and there is an increase in the 76 number of crown-like structures, which are hallmarks of local infiltration of macrophages into tissue surrounding dead adipocytes⁵. Using three independent adipocyte-specific anti-77 78 inflammatory mouse models, Asterholm et al. showed that an acute inflammatory response in 79 adipose tissue is necessary to stimulate adipogenesis as well as proper remodeling and

angiogenesis of the extracellular matrix, to allow for healthy adipose tissue expansion⁶. It would 80 appear that the tonic activation of the innate immune system induced by excess energy intake 81 gradually disrupts the homeostatic state of metabolic processes, triggering a chronic 82 83 inflammatory state. Studies have shown that in the obese state, the production of pro-inflammatory adipokines 84 like TNFa and IL-6 induce resident macrophages to change their phenotype from surveillance 85 "M2" to pro-inflammatory "M1" as well as trigger recruitment of M1 macrophages^{7,8}. In 86 addition, it has been reported that free fatty acids activate Toll-like receptor (TLR) 4, a pattern 87 88 recognition receptor expressed on innate immune system cells, in adipose tissue to generate proinflammatory signals^{9, 10}. Moreover, deletion of TLR5, highly expressed in the intestinal mucosa 89 and thought to help fight against infections, triggered a shift in the species composition of the gut 90 microbiota that is associated with development of metabolic syndrome in mice¹¹. Previous work 91 from our laboratory has shown that four weeks of high ED diet consumption is sufficient to 92 trigger significant activation of microglia, resident macrophages in the brain, in the Nucleus of 93 the Solitary Tract (NTS) – first relay point for satiety signals arising from the gut 12 . 94 Another obesity comorbidity is Non-alcoholic Fatty Liver Disease (NAFLD). NAFLD is a 95 condition frequently found among people with diabetes (50%) and obesity (76%), and it is 96 almost universal among diabetic people who are morbidly obese¹³. It refers to a wide spectrum of 97 liver damage, ranging from simple steatosis to steatohepatitis, advanced fibrosis, and cirrhosis 98 99 that occurs in people who drink little to no alcohol. This disease is the most common chronic liver condition in the Western world ¹⁴. Hepatocytes play a primary role in lipid metabolism. 100 Free fatty acids (FFAs) enter the hepatocyte and the majority of the FFAs are esterified to form 101 102 triglycerides (TGs). A smaller fraction of FFAs are used to synthesize cholesterol esters or

103	phospholipids, or broken down to produce ketone bodies. TGs are complexed with an
104	apolipoprotein to form lipoproteins and then are exported from the hepatocyte. The
105	apolipoproteins are synthesized by the hepatocyte and this is the rate limiting step in TG export.
106	Interference with any of the steps above can result in accumulation of intracellular lipid (hepatic
107	lipidosis). When consuming a high ED diet, the usual cause of hepatic lipidosis is the increased
108	production of TGs which outpaces apolipoprotein production ¹⁵ .
109	Therefore, the aim of this study was to study the systemic responses to long-term
110	consumption of a high ED diet. We tested the hypotheses that high ED diet consumption induces
111	progressive microbiota dysbiosis and increases body weight, body fat accumulation, and
112	circulating levels of leptin, insulin, and pro-inflammatory cytokines. In addition, we
113	hypothesized that high ED diet consumption induces NAFLD and increases microglia activation
114	in the Nucleus of the Solitary Tract (NTS).
115	
116 117	2. Methods
118	2.1 Animals
119	Male Sprague-Dawley rats ($n = 15$; ~300g; Envigo, Indianapolis, IN) were housed
120	individually in conventional polycarbonate shoe-box cages in a temperature-controlled vivarium
121	with ad libitum access to standard pellets of rat chow (PicoLab rodent diet 20, product #5053,
122	Fort Worth, TX) and water. Rats were maintained on a 12:12-h light: dark cycle with lights on at
123	0700-h and allowed to acclimate to laboratory conditions for one week prior to starting
124	experiments. All animal procedures were approved by the University of Georgia Institutional
125	Animal Care and Use Committee and conformed to National Institutes of Health Guidelines for
126	the Care and Use of Laboratory Animals.

128 **2.2** Food Intake, body weight, and body composition

Following the acclimation period, rats were maintained on standard chow for an additional 129 two weeks. The animals were then switched to a high energy density (ED) diet (45% calories 130 from fat, Research Diet #D12451, New Brunswick, NJ). Twenty-four hour food intake was 131 measured twice a week for the duration of the study. Briefly, pre-weighed food (~ 50 g) was 132 provided in standard stainless-steel hoppers. Twenty-four hours later, the amount of food 133 remaining in the food hopper and all spillage was recorded. Body weight and body composition 134 were measured weekly. A Minispec LF 110 BCA Analyzer (Bruker Corp., The Woodlands, TX) 135 136 was used to measure body composition in minimally restrained, non-anesthetized animals. The Minispec is a body composition analyzer based on time-domain nuclear magnetic resonance 137 technology, which provides absolute masses for fat, lean tissue, and water ¹⁶. Six rats were 138 139 sacrificed after being on the high ED diet for four weeks (short-term ED, or STED group). The remaining nine rats were maintained on the high ED diet for a total of 26 weeks (long-term ED, 140 or LTED group). An additional aged-matched, standard chow fed group of rats (n = 9, LF26) 141 served as the end-point controls for the LTED group. 142 **2.3** Cytokines, Leptin, and Insulin levels in serum 143 Blood samples were collected on the last day of standard chow and 4, 8, and 26 weeks after 144 145 introduction of the high ED diet. Blood was collected from the lateral saphenous vein and 146 allowed to coagulate in the vial. After one hour, the blood was centrifuged at 10,000 rpm for five minutes. The serum was collected and stored at -21°C. A cytokine array (Rat Cytokine ELISA 147 148 Kit, cat #EA-4006, Signosis Inc., Sunnyvale, CA) was used, according to manufacturer's 149 instructions, to compare levels of cytokines and chemokines at each time point. Insulin levels 150 were determined using the Rat Insulin ELISA kit (cat #80-INSRT-E01; ALPCO Diagnostics, 151 Inc., Salem, NH) following manufacturer's instructions.

152 **2.4** Microbiome analysis

153	Fecal samples were collected following the same timeline as for blood samples mentioned
154	above. Bacterial DNA was extracted from feces using a commercial kit following manufacturer's
155	instructions (Quick-DNA Fecal/Soil Microbe Miniprep Kit, cat #D6010, Zymo research, Irvine,
156	CA). The eluted DNA was sent to the Georgia Genomics and Bioinformatics Core at the
157	University of Georgia for sequencing. High throughput sequencing was performed using
158	Illumina MiSeq paired-end runs. Amplification targeted the V3-V4 region of the 16S ribosomal
159	RNA genes using the following primers: S-D-Bact-041-b-S-17 (5'-
160	CCTACGGGNGGCWGCAG-3') forward and S-D-Bact-0785-a-A-21 (5'-
161	GACTACHVGGGTATCTAATCC-3') ¹⁷ . Sequences were subsequently trimmed, joined, and
162	quality filtered. To identify Operational Taxonomic Units (OTUs) and to evaluate beta
163	(community diversity divergence between samples) and alpha (microbial diversity within
164	sample) diversities, we used the Quantitative Insights Into Microbial Ecology (QIIME) software
165	package ¹⁸ . Linear discriminant analysis to identify taxa with differentiating abundance was
166	conducted using the LDA Effect Size (LEfSe) algorithm ¹⁹ . Bacterial abundance was normalized
167	by log-transformation, and statistical analysis and principal component analysis (clustering) were
168	performed using the METAGENassist platform ²⁰ .
169	2.5 Euthanasia and tissue processing
170	Rats were anesthetized with CO ₂ and transcardially perfused with 0.1 M phosphate-buffered
171	saline (PBS; pH 7.4) followed by 4% paraformaldehyde. Hindbrains and liver were harvested,

post-fixed in 4% paraformaldehyde for 2-h, and immersed in 30% sucrose and 0.1% NaN3

173 (Sigma-Aldrich; pH 7.4) in PBS and stored at 4°C until processing.

2.6 Microglia activation

176	Hindbrains were cryosectioned (Leica CM1950, Leica Biosystems, Wetzlar, Germany) at 20
177	μ m thickness and standard immunofluorescence was used to determine microglia activation in
178	the hindbrain. Hindbrain sections were incubated overnight with a primary antibody against
179	ionized calcium binding adaptor molecule 1 (Iba1, Wako Cat#019-19741, RRDI: AB_839504)
180	followed by Alexa-488 secondary antibody for 2-h to visualize microglia activation as previously
181	described ²¹ . Sections were mounted in ProLong (Molecular Probes, OR) and examined under a
182	Nikon 80-I fluorescent microscope. The area fraction of Iba1 was analyzed using Nikon
183	Elements AR software as previously described ^{22, 23} .
184	2.7 Hepatic Lipidosis
185	After fixation, liver samples collected from the right median lobe were trimmed, processed,
186	and embedded in paraffin. Paraffin blocks were then cryosectioned at 4 μ m thickness and the
187	tissue sections were stained with hematoxylin and eosin (H&E) for intrahepatic lipid content
188	assessment. H&E stained liver sections were examined microscopically by a board-certified
189	veterinary pathologist using an Olympus BX41 upright light microscope.
190	In addition, samples for Oil-Red-O (ORO) staining were embedded in Optimum Cutting
191	Temperature (OCT) compound (VWR Inc., Atlanta, GA) and were cryosectioned at 7 μm
192	thickness. Tissue sections were mounted on positively charged slides, stained with ORO stain
193	(Polysciences Inc., Warrington, PA), and coverslipped. Histological images were captured using
194	an Olympus DP25 digital camera controlled by Olympus cellSense Standard software at 200x
195	and 400x original magnification (Olympus, Shinjuku, Japan). A semi-quantitative grading scale
196	(normal [0], minimal [1], mild [2], moderate [3], and marked [4]) was used to express the extent
197	of hepatic lipidosis ²⁴ . In addition, ORO staining was quantified by Nikon Elements AR

198	Software. A threshold was determined to isolate the ORO stain from the background. The
199	threshold settings for 200x were determined as R: 145-255, G: 0-129, B: 2-255, circularity: 0-1,
200	and size: 0-92. Random systematic sampling was completed by drawing five 600 x 600 pixel
201	squares, using the square ROI tool, on the image. The squares were arranged in a manner
202	resembling non-overlapping Olympic rings. The sampling was completed so the squares were
203	randomly assigned to areas uninterrupted by empty space (sinusoids). Binary area fraction was
204	calculated as previously described ²³ and averaged from the five squares. These averages were
205	then compared between groups to analyze changes in hepatic lipidosis.
206	2.8 Statistical analysis
207	GraphPad Prism 7 (GraphPad Software, Inc.) was used to conduct statistical analyses. Data are
208	expressed as mean \pm SD and were analyzed using t-test or ANOVA followed by Holm-Sidak
209	multiple comparisons test as appropriate. Alpha value for statistical significance was set at 0.05.
200	
210	
	3. Results
210	 3. Results 3.1 High energy density (ED) diet consumption significantly increased body weight and body
210 211	
210 211 212	3.1 High energy density (ED) diet consumption significantly increased body weight and body
210 211 212 213	3.1 High energy density (ED) diet consumption significantly increased body weight and body fat mass
210 211 212 213 214	3.1 High energy density (ED) diet consumption significantly increased body weight and body fat massGroup means for caloric intake, body weight, and body fat mass were compared using one-
210 211 212 213 214 215	 3.1 High energy density (ED) diet consumption significantly increased body weight and body fat mass Group means for caloric intake, body weight, and body fat mass were compared using one-way ANOVA to evaluate the effect of short term (STED) and long term (LTED) consumption of
210 211 212 213 214 215 216	 3.1 High energy density (ED) diet consumption significantly increased body weight and body fat mass Group means for caloric intake, body weight, and body fat mass were compared using one-way ANOVA to evaluate the effect of short term (STED) and long term (LTED) consumption of a high ED diet (Fig. 1). In the STED group, the animals significantly increased their caloric
210 211 212 213 214 215 216 217	3.1 High energy density (ED) diet consumption significantly increased body weight and body fat mass Group means for caloric intake, body weight, and body fat mass were compared using one-way ANOVA to evaluate the effect of short term (STED) and long term (LTED) consumption of a high ED diet (Fig. 1). In the STED group, the animals significantly increased their caloric intake during the first week after introduction of the high ED diet compared to intake of the low
210 211 212 213 214 215 216 217 218	3.1 High energy density (ED) diet consumption significantly increased body weight and body fat mass Group means for caloric intake, body weight, and body fat mass were compared using one-way ANOVA to evaluate the effect of short term (STED) and long term (LTED) consumption of a high ED diet (Fig. 1). In the STED group, the animals significantly increased their caloric intake during the first week after introduction of the high ED diet compared to intake of the low ED diet (Ps < 0.0001) [Fig. 1-A]. Caloric intake decreased to intakes of the low ED by week two

222body fat mass percent significantly increased after only one week on the high ED diet compared223to baseline (Ps < 0.05) and remained high in spite of the decrease in caloric intake [Fig.1-C].224Similar results were observed in the LTED group. Caloric intake was significantly higher225during the first week of high ED diet consumption compared to intake of low ED diet and all226subsequent weeks on high ED diet (P < 0.0001) [Fig. 1-D]. Body weight was significantly higher227after two weeks of high ED diet compared to baseline (P = 0.037), and the animals continued to228gain weight steadily for the remainder of the study [Fig. 1-E]. Body fat percent was significantly229higher after two weeks on the high ED diet compared to baseline (P < 0.0001) and fat deposits230continued to grow throughout the experiment [Fig. 1-F].231Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED232diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,233body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher234in high ED fed rats compared to low ED diet controls.235 3.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum236Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to237investigate the impact of short term and long-term consumption of a high ED diet on [Table 1].238In the STED group, the data were compared using paired t-test. We observed a significant239increase in TN	223to baseline (Ps < 0.05) and remained high in spite of the decrease in caloric intake [Fig.1-C].	221	rats were still significantly heavier than after week one on the diet ($P = 0.007$). Consistently,
Similar results were observed in the LTED group. Caloric intake was significantly higher during the first week of high ED diet consumption compared to intake of low ED diet and all subsequent weeks on high ED diet ($P < 0.0001$) [Fig. 1-D]. Body weight was significantly higher after two weeks of high ED diet compared to baseline ($P = 0.037$), and the animals continued to gain weight steadily for the remainder of the study [Fig. 1-E]. Body fat percent was significantly higher after two weeks on the high ED diet compared to baseline ($P < 0.0001$) and fat deposits continued to grow throughout the experiment [Fig. 1-F]. Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However, body weight ($P = 0.006$) [Fig. 1-H] and body fat ($P < 0.0001$) [Fig. 1-I] were significantly higher in high ED fed rats compared to low ED diet controls. 3.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to investigate the impact of short term and long-term consumption of a high ED diet on [Table 1]. In the STED group, the data were compared using paired t-test. We observed a significant compared to baseline ($P < 0.0001$). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four	Similar results were observed in the LTED group. Caloric intake was significantly higher during the first week of high ED diet consumption compared to intake of low ED diet and all subsequent weeks on high ED diet ($P < 0.0001$) [Fig. 1-D]. Body weight was significantly higher after two weeks of high ED diet compared to baseline ($P = 0.037$), and the animals continued to gain weight steadily for the remainder of the study [Fig. 1-E]. Body fat percent was significantly higher after two weeks on the high ED diet compared to baseline ($P < 0.0001$) and fat deposits continued to grow throughout the experiment [Fig. 1-F]. Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However, body weight ($P = 0.006$) [Fig. 1-H] and body fat ($P < 0.0001$) [Fig. 1-I] were significantly higher in high ED fed rats compared to low ED diet controls. 3.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to investigate the impact of short term and long-term consumption of a high ED diet on [Table 1]. In the STED group, the data were compared using paired t-test. We observed a significant compared to baseline ($P < 0.0001$). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,	222	body fat mass percent significantly increased after only one week on the high ED diet compared
225during the first week of high ED diet consumption compared to intake of low ED diet and all226subsequent weeks on high ED diet ($P < 0.0001$) [Fig. 1-D]. Body weight was significantly higher227after two weeks of high ED diet compared to baseline ($P = 0.037$), and the animals continued to228gain weight steadily for the remainder of the study [Fig. 1-E]. Body fat percent was significantly229higher after two weeks on the high ED diet compared to baseline ($P < 0.0001$) and fat deposits230continued to grow throughout the experiment [Fig. 1-F].231Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED232diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,233body weight ($P = 0.006$) [Fig. 1-H] and body fat ($P < 0.0001$) [Fig. 1-I] were significantly higher234in high ED fed rats compared to low ED diet controls.235 3.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum236Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to237investigate the impact of short term and long-term consumption of a high ED diet on [Table 1].238In the STED group, the data were compared using paired t-test. We observed a significant239compared to baseline ($P < 0.001$). There were no other significant changes observed.241In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four	225during the first week of high ED diet consumption compared to intake of low ED diet and all226subsequent weeks on high ED diet ($P < 0.0001$) [Fig. 1-D]. Body weight was significantly higher227after two weeks of high ED diet compared to baseline ($P = 0.037$), and the animals continued to228gain weight steadily for the remainder of the study [Fig. 1-E]. Body fat percent was significantly229higher after two weeks on the high ED diet compared to baseline ($P < 0.0001$) and fat deposits230continued to grow throughout the experiment [Fig. 1-F].231Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED232diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,233body weight ($P = 0.006$) [Fig. 1-H] and body fat ($P < 0.0001$) [Fig. 1-I] were significantly higher234in high ED fed rats compared to low ED diet controls.235 3.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum236Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to237investigate the impact of short term and long-term consumption of a high ED diet on [Table 1].238In the STED group, the data were compared using paired t-test. We observed a significant239compared to baseline ($P < 0.0001$). There were no other significant changes observed.241In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four242weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,	223	to baseline (Ps < 0.05) and remained high in spite of the decrease in caloric intake [Fig.1-C].
226subsequent weeks on high ED diet (P < 0.0001) [Fig. 1-D]. Body weight was significantly higher	226subsequent weeks on high ED diet (P < 0.0001) [Fig. 1-D]. Body weight was significantly higher	224	Similar results were observed in the LTED group. Caloric intake was significantly higher
after two weeks of high ED diet compared to baseline (P = 0.037), and the animals continued to gain weight steadily for the remainder of the study [Fig. 1-E]. Body fat percent was significantly higher after two weeks on the high ED diet compared to baseline (P < 0.0001) and fat deposits continued to grow throughout the experiment [Fig. 1-F]. Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However, body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher in high ED fed rats compared to low ED diet controls. 3.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to investigate the impact of short term and long-term consumption of a high ED diet on [Table 1]. In the STED group, the data were compared using paired t-test. We observed a significant increase in TNFa (P = 0.03) and significant decrease in IL-1a after four weeks on ED diet (ED4) compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four	after two weeks of high ED diet compared to baseline (P = 0.037), and the animals continued to gain weight steadily for the remainder of the study [Fig. 1-E]. Body fat percent was significantly higher after two weeks on the high ED diet compared to baseline (P < 0.0001) and fat deposits continued to grow throughout the experiment [Fig. 1-F]. Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However, body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher in high ED fed rats compared to low ED diet controls. 3.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to investigate the impact of short term and long-term consumption of a high ED diet on [Table 1]. In the STED group, the data were compared using paired t-test. We observed a significant increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4) compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,	225	during the first week of high ED diet consumption compared to intake of low ED diet and all
228gain weight steadily for the remainder of the study [Fig. 1-E]. Body fat percent was significantly229higher after two weeks on the high ED diet compared to baseline (P < 0.0001) and fat deposits	228gain weight steadily for the remainder of the study [Fig. 1-E]. Body fat percent was significantly229higher after two weeks on the high ED diet compared to baseline (P < 0.0001) and fat deposits	226	subsequent weeks on high ED diet ($P < 0.0001$) [Fig. 1-D]. Body weight was significantly higher
229higher after two weeks on the high ED diet compared to baseline (P < 0.0001) and fat deposits230continued to grow throughout the experiment [Fig. 1-F].231Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED232diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,233body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher	229higher after two weeks on the high ED diet compared to baseline (P < 0.0001) and fat deposits230continued to grow throughout the experiment [Fig. 1-F].231Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED232diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,233body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher	227	after two weeks of high ED diet compared to baseline ($P = 0.037$), and the animals continued to
230continued to grow throughout the experiment [Fig. 1-F].231Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED232diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,233body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher	230continued to grow throughout the experiment [Fig. 1-F].231Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED232diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,233body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher	228	gain weight steadily for the remainder of the study [Fig. 1-E]. Body fat percent was significantly
231Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED232diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,233body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher	231Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED232diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,233body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher	229	higher after two weeks on the high ED diet compared to baseline ($P < 0.0001$) and fat deposits
232diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,233body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher	232diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,233body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher	230	continued to grow throughout the experiment [Fig. 1-F].
233body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher234in high ED fed rats compared to low ED diet controls.235 3.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum236Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to237investigate the impact of short term and long-term consumption of a high ED diet on [Table 1].238In the STED group, the data were compared using paired t-test. We observed a significant239increase in TNFα (P = 0.03) and significant decrease in IL-1α after four weeks on ED diet (ED4)240compared to baseline (P < 0.0001). There were no other significant changes observed.	233body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher234in high ED fed rats compared to low ED diet controls.235 3.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum236Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to237investigate the impact of short term and long-term consumption of a high ED diet on [Table 1].238In the STED group, the data were compared using paired t-test. We observed a significant239increase in TNFα (P = 0.03) and significant decrease in IL-1α after four weeks on ED diet (ED4)240compared to baseline (P < 0.0001). There were no other significant changes observed.	231	Furthermore, caloric intake of the LTED group at the end of the study (26 weeks of high ED
234in high ED fed rats compared to low ED diet controls.2353.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum236Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to237investigate the impact of short term and long-term consumption of a high ED diet on [Table 1].238In the STED group, the data were compared using paired t-test. We observed a significant239increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4)240compared to baseline (P < 0.0001). There were no other significant changes observed.241In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four	234in high ED fed rats compared to low ED diet controls.2353.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum236Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to237investigate the impact of short term and long-term consumption of a high ED diet on [Table 1].238In the STED group, the data were compared using paired t-test. We observed a significant239increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4)240compared to baseline (P < 0.0001). There were no other significant changes observed.241In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four242weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,	232	diet) was similar to that of aged-matched, low ED diet controls (LF26) [Fig. 1-G]. However,
2353.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum236Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to237investigate the impact of short term and long-term consumption of a high ED diet on [Table 1].238In the STED group, the data were compared using paired t-test. We observed a significant239increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4)240compared to baseline (P < 0.0001). There were no other significant changes observed.	3.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to investigate the impact of short term and long-term consumption of a high ED diet on [Table 1]. In the STED group, the data were compared using paired t-test. We observed a significant increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4) compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,	233	body weight (P = 0.006) [Fig. 1-H] and body fat (P < 0.0001) [Fig. 1-I] were significantly higher
Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to investigate the impact of short term and long-term consumption of a high ED diet on [Table 1]. In the STED group, the data were compared using paired t-test. We observed a significant increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4) compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four	Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to investigate the impact of short term and long-term consumption of a high ED diet on [Table 1]. In the STED group, the data were compared using paired t-test. We observed a significant increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4) compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,	234	in high ED fed rats compared to low ED diet controls.
investigate the impact of short term and long-term consumption of a high ED diet on [Table 1]. In the STED group, the data were compared using paired t-test. We observed a significant increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4) compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four	investigate the impact of short term and long-term consumption of a high ED diet on [Table 1]. In the STED group, the data were compared using paired t-test. We observed a significant increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4) compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,	235	3.2 Long-term high ED diet consumption significantly changed the cytokine profile in serum
In the STED group, the data were compared using paired t-test. We observed a significant increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4) compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four	In the STED group, the data were compared using paired t-test. We observed a significant increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4) compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,	236	Group means \pm SD serum levels of cytokines (OD) and insulin (ng/ml) were compared to
increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4) compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four	increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4) compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,	237	investigate the impact of short term and long-term consumption of a high ED diet on [Table 1].
 compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four 	 compared to baseline (P < 0.0001). There were no other significant changes observed. In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four weeks after introduction of the high ED diet we observed a significant increase in FGFβ, MCP-1, 	238	In the STED group, the data were compared using paired t-test. We observed a significant
241 In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four	 In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four weeks after introduction of the high ED diet we observed a significant increase in FGFβ, MCP-1, 	239	increase in TNF α (P = 0.03) and significant decrease in IL-1 α after four weeks on ED diet (ED4)
	242 weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,	240	compared to baseline ($P < 0.0001$). There were no other significant changes observed.
242 weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,		241	In the LTED group, longitudinally (data were compared using RM one-way ANOVA), four
	243 MIP-1a, and TGF β compared to baseline (Ps < 0.05). After eight weeks of high ED diet (ED8)	242	weeks after introduction of the high ED diet we observed a significant increase in FGF β , MCP-1,
243 MIP-1a, and TGF β compared to baseline (Ps < 0.05). After eight weeks of high ED diet (ED8)		243	MIP-1a, and TGF β compared to baseline (Ps < 0.05). After eight weeks of high ED diet (ED8)

244	consumption, serum levels of IFN γ and IL-15 were significantly decreased compared to baseline
245	(Ps < 0.01). Levels of TNF α and IL-6 were significantly lower than after four weeks on the high
246	ED diet (Ps < 0.05). After 26 weeks on the high ED diet (ED26), serum levels of FGF β , Leptin,
247	SCF, and MCP-1 were significantly higher than at baseline (Ps < 0.05), ED4 (Ps < 0.01), and
248	ED8 (Ps < 0.05). IP-10 levels were significantly higher than at ED4 (P = 0.0094). MIP-1 α , IL-
249	15, and IL-1 α levels were significantly higher than at ED8 (Ps < 0.05). Serum level of Rantes
250	was significantly lower compared to baseline, ED4, and ED8 (Ps < 0.05). IFN γ , IL-5 levels were
251	significantly lower compared to baseline (Ps < 0.01). Cross-sectional comparison of the ED26
252	group to low ED diet fed controls using unpaired t-test revealed that the ED26 group had
253	significantly higher levels of leptin, SCF, IL-1 α , and TGF β (Ps < 0.01).
254	3.3 Consumption of a high ED diet triggered progressive dysbiosis of the gut microbiota
255	To investigate the effect of consuming a high (ED) diet on the gut microbiota, we
256	characterized the microbiome of the STED and LTED groups at several time points throughout
257	the study. In the STED group, we characterized the gut microbiota composition at baseline (LF),
258	one week (ED1), and four weeks (ED4) after introduction of the high ED diet. The rarefraction
259	curve of this analysis indicated > 30000 sequences and > 500 operational taxonomic units per
260	sample [and Supplementary Fig. S1-A]. In the LTED group, we characterized the microbiota
261	composition at four (ED4), eight (ED8), and 26 (ED26) weeks after high ED diet introduction.
262	We also characterized the microbiota of the age-matched, low ED diet control group (LF26). The
263	rarefraction curve of this analysis indicated > 30000 sequences and > 1500 operational
264	taxonomic units per sample [and Supplementary Fig. S1-B].
265	In the STED group, Firmicutes and Bacteroidetes were the most abundant phyla and
266	represented >90% of the bacteria identified. The Shannon index, used to characterize species

267 diversity in a community, revealed that there was a significant decrease in bacteria diversity after one week of high ED diet consumption compared to baseline (P = 0.0146) [Fig. 2-A]. There 268 were no significant changes observed in bacterial diversity after four weeks of high ED diet 269 270 consumption. Principal Component Analysis was used to visualize how different the microbiota were in each sample and to represent the differences as distance [Fig. 2-B]. At baseline (LF), all 271 animals clustered together. One week after high ED diet introduction, the animals clustered away 272 from their baseline (LF) profile. After four weeks of high ED diet consumption, all animals 273 clustered close to the profile at ED1 and further away from their baseline (LF) profile. 274 Figure 2-C [and Supplementary Fig. S2] represents the microbiota composition of the STED 275 group at each time point. At baseline (LF), the microbiota is characterized by abundant members 276 of the Bacteroidetes order Bacteroidales. One week after high ED diet introduction (ED1), the 277 278 microbiota was characterized by abundant members of the Firmicutes order Erysipelotrichales. After four weeks of high ED diet, the microbiota was characterized by abundant members of the 279 Actinobacteria order Actinomycetales and Verrucomicrobia order Verrucomicrobiales. 280 Microbiota composition was changed within a week of introduction of high ED diet [Fig. 3-281 A]. High ED diet consumption significantly increased the abundance of Firmicutes (LF 27% vs 282 ED1 86% and ED4 69%, Ps < 0.0001) and decreased the abundance of *Bacteroidetes* (LF 67% 283 vs ED1 10% and ED4 16%, Ps < 0.0001). There was also a significant increase in abundance of 284 *Verrucomicrobia* after four weeks of high ED diet (LF 1% and ED1 0.8% vs ED4 8%, P = 0.04). 285 286 At the level of family, high ED diet consumption significantly increased the abundance of members of Erysipelotrichaceae (LF 3.8% vs ED1 60% and ED4 41%, Ps < 0.0001) of the 287 phylum *Firmicutes*. Members of the family *S24-7* of the phylum *Bacteroidetes* were significantly 288 289 depleted by high ED diet consumption (LF 69% vs ED1 12% and ED4 17%, Ps < 0.0001). In

290	addition, one week of high ED diet consumption significantly increased the Firmicutes-to-
291	<i>Bacteroidetes</i> ratio, (LF 0.4 vs ED1 8.7, $P = 0.0010$). There was no statistically significant
292	difference after four weeks on the high ED diet, however, the ratio was still higher at ED4 (4.3)
293	than at baseline (LF) [Fig. 3-B].
294	Similarly, in the long-term group (LTED + LF26), Firmicutes and Bacteroidetes were the
295	most abundant phyla and represented >90% of the bacteria identified. The Shannon index
296	showed no significant difference in bacterial diversity [Fig. 2-D]. Principal Component Analysis
297	showed that all animals fed the high ED diet clustered together and away from animals fed low
298	ED diet (LF26) [Fig. 2-E].
299	Figure 2-F [and Supplementary Fig. S3] represents the microbiota composition of the LTED
300	group at each time point. At ED4, the microbiota was characterized by abundant members of
301	Bacteroidetes order Bacteroidales and Firmicutes orders Bacillales and Clostridiales. Eight
302	weeks after high ED diet introduction (ED8), the microbiota was characterized by abundant
303	members of the Bacteroidetes order Bacteroidales and Firmicutes orders Lactobacillales,
304	Turicibacterales, and Clostridiales. After 26 weeks of high ED diet (ED26), the microbiota was
305	characterized by abundant members of Bacteroidetes orders Bacteroidales. The microbiota of the
306	low ED diet control group (LF26) was characterized by abundant members of Bacteroidetes
307	orders Bacteroidales and Flavobacteriales, and Firmicutes order Clostridiales.
308	At the level of family [Fig. 3-C], four weeks (ED4) and eight weeks (ED8) after high ED diet
309	introduction there was a significantly higher abundance of Ruminococcaceae compared to after
310	26 weeks (ED26, $P < 0.01$). Four weeks (ED4) and eight weeks (ED8) after high ED diet
311	introduction, there was a significantly lower abundance of Verrucomicrobiaceae compared to
312	after 26 weeks (ED26, $P < 0.01$). High ED diet fed rats had significantly higher abundance of

313	members of <i>Bacteroidaceae</i> (LF26 0.8% vs ED4 14%, ED8 14%, and ED26 16%, Ps < 0.0001)
314	and Ruminococcaceae (LF26 0.8% vs ED4 14% and ED8 14%, Ps $<$ 0.0001) compared to low
315	ED fed rats. In addition, high ED diet fed rats had significantly lower abundance of members of
316	<i>Peptostreptococcaceae</i> (LF26 5% vs ED4 0.6%, ED8 0.9%, and ED26 0.5%, Ps $<$ 0.05) and
317	<i>Verrucomicrobiaceae</i> (LF26 14% vs ED4 1.2%, ED8 3%, and ED26 9%, Ps $<$ 0.01) compared to
318	low ED fed rats. In high ED fed rats, the Firmicutes-to-Bacteroidetes ratio was significantly
319	higher at eight weeks (ED8) compared to four (ED4) and 26 (ED26) weeks (ED8 11.5 vs ED4
320	6.4 and ED26 5.7, Ps < 0.01). Compared to low ED controls (LF26), high ED fed rats had a
321	significantly lower Firmicutes-to-Bacteroidetes ratio at four weeks (ED4) and 26 weeks (ED26)
322	(LF26 13% vs ED4 6% and ED26 6%, Ps < 0.01) [Fig. 3-D].
323	3.4 Consumption of a high ED diet significantly increased microglia activation in the NTS
324	We hypothesized that high ED diet consumption triggers microglia activation in the NTS.
325	Results of immunostaining against Iba-1 were compared using one-way ANOVA and revealed
326	that compared to low ED controls (LF26W), rats fed a high ED diet for four weeks (ED4, P =
327	0.0005) and 26 weeks (ED26, $P < 0.0001$) had significantly higher binary area fraction of
328	fluorescent staining against Iba-1 [Fig. 4]. In addition, the ED26 group had significantly higher
329	binary area fraction of fluorescent staining than the ED4 group ($P = 0.0213$).
330	3.5 High ED diet consumption induced hepatic lipidosis
331	A semi-quantitative method of scoring histological images using Kleiner's scoring system was
332	completed on ORO and H&E stained hepatic sections with the comparative results shown in Fig.
333	5. We tested the hypothesis that consumption of a high ED diet leads to increased accumulation
334	of fat in liver tissue. In H&E-stained sections, intracellular lipid is removed during processing
335	and paraffin embedding. Therefore, round, clear, and distinct vacuoles remain in the cytoplasm

336 of hepatocytes. In ORO-stained sections, lipid is retained during embedding and appears as intensely red granules or globules in the cytoplasm of hepatocytes. H&E staining revealed an 337 increase in distinct vacuoles in rats fed the high ED diet (ED4 and ED26) compared to low ED 338 339 controls (LF26) [Fig. 5, top row]. Similarly, ORO staining showed that high ED fed animals exhibited more intensely red granules (ED4 and ED26) than low ED controls (LF26) [Fig. 5, 340 middle row]. The quantitative scoring of hepatocellular lipidosis confirmed that while animals 341 fed low ED diet (LF26) did not exhibit signs of hepatocellular lipidosis, hepatocellular lipidosis 342 was apparent within four weeks of introducing the high ED diet (ED4). There was no significant 343 344 difference in hepatocellular lipidosis between the ED4 and ED26 groups [Fig. 5, bottom row table]. 345 We further analyzed the intensity of ORO staining in tissue sections that were scored by the 346 veterinary pathologist using a computer software (see methods for details) and results were 347

analyzed using one-way ANOVA. The data revealed that there is a progressive increase in the
surface area covered by lipids with regular chow fed animals showing very little staining (BAF =

 0.0099 ± 0.01) compared to animals fed the ED diet for four weeks (BAF = 0.0449 ± 0.01) and

those fed the ED diet for 26 weeks (BAF = 0.0629 ± 0.02). Animals fed the ED diet for 26 weeks

352 (ED26) had significantly more ORO staining compared to regular chow fed animals (LF26)

353 [Fig.5, bottom row graph].

4. Discussion

It is widely recognized that diet is a key factor in short-term and long-term composition, diversity, dynamics, and microbiota-driven host metabolism²⁵. In this study, we sought to characterize the long-term effects of consuming a high energy density (ED) diet on the gut microbiome, serum profile of inflammation, neural inflammation, and development of non359 alcoholic fatty liver disease (NAFLD). Results showed that high ED diet consumption induced rapid changes in the gut microbiome, triggered inflammation in the NTS as evidenced by 360 increased microglia activation, induced NAFLD, and changed the serum cytokine profile in rats. 361 Consistent with prior reports ^{23, 26-28}, our data showed that upon introduction of a high ED 362 diet, rats significantly increased their caloric intake compared to when fed a low ED diet. 363 However, by the second week of high ED diet consumption the animals had adjusted their 364 caloric intake. This adjustment of caloric intake by rats following acclimation to a high ED diet 365 has been previously reported ^{23, 29}. In addition, at the 26 week time point, there was no significant 366 difference in caloric intake between rats fed high ED diet and those fed low ED diet. 367 Concurrently, the rats fed high ED diet exhibited a significant increase in body weight and fat 368 mass that became more prominent over time. Rats fed high ED diet had significantly higher final 369 370 body weight and fat mass compared to low ED fed animals, despite similar caloric intake. This was previously reported in a study by Lomba et al., which showed that rats fed a high fat diet 371 restricted to the amount of calories consumed by a low fat diet fed group gained significantly 372 more body weight and white adipose tissue than the low fat diet fed group³⁰. Given that the 373 initial increase in calories consumed by high ED diet fed rats was transient, this phenomenon 374 indicates that high ED diets detrimentally affect body weight and fat mass accumulation 375 independent of caloric intake. 376

High ED diet consumption induced dynamic fluctuations in the gut microbiota. Consistent with prior reports from our laboratory ²⁶, bacterial diversity was significantly decreased within one week of introducing the high ED diet. This immediate response was ephemeral, similar to the transient increase in caloric intake observed during the first week of high ED diet consumption, as we did not detect statistically significant differences in bacterial diversity after

four, eight, and 26 weeks of high ED diet consumption. In concert, we observed a similar
fluctuation pattern in bacterial abundance. At the one-week mark after introduction of the high
ED diet, all animals clustered together and away from their baseline profile. After four weeks of
high ED diet consumption, all animals clustered together and away from their baseline and oneweek mark profile. Thereafter, we did not observe further fluctuations in bacterial abundance.
After four, eight, and 26 weeks of high ED diet, all animals clustered together and away from the

We found that high ED diet consumption led to a rapid increase in members of the family 389 Ervsipelotrichaceae belonging to the Firmicutes phylum. These are obligate anaerobes have 390 been previously associated with consumption of high ED diets, increased adiposity and 391 inflammation ³¹⁻³³. High ED diet consumption also depleted members of the family S24-7 392 393 belonging to the Bacteroidetes phylum and members of the family Verrucomicrobiaceae of the *Verrucomicrobia* phylum. The family *S24-7* is associated with gut health as they are primarily 394 involved in the fermentation of dietary fibers to produce short-chain fatty acids (SCFAs) and 395 have been previously shown to be depleted by consumption of high fat diets ^{26, 34-36}. Members of 396 the family *Verrucomicrobiaceae* have also been shown to produce the SCFA propionate³⁵. By 397 the end of four weeks on the high ED diet, we see a blooming of the family Ruminococcaceae 398 that persists for the duration of the study. Members of this family are also SCFAs producers and 399 generally associated with gut health³⁵. 400

In this study, we aimed to characterize the systemic pattern of leptin, insulin, and pro- and anti-inflammatory cytokines in rats fed a high ED diet. We observed a significant increase in serum leptin after consumption of a high ED diet for 26 weeks. We did not observe significant changes at the earlier time points tested. Consistent with prior reports, we did not observe

405	changes in serum levels of insulin with high ED diet consumption at any of the time points tested
406	³⁷⁻³⁹ . The effect of high ED diet consumption on insulin levels appears to be strain-specific.
407	Woods et al. reported a significant increase in plasma insulin levels in Long-Evans male rats fed
408	a high fat diet for 70 days ⁴⁰ . Similar results were reported in WNIN rats after consumption of a
409	high fat diet for 13 weeks ³⁹ and Wistar rats after 18 weeks ⁴¹ .
410	The cytokines showing major differences were Fibroblast Growth Factor (FGF β), Stem Cell
411	factor (SCF), Interferon γ (IFN γ), Interferon γ induced protein (IP-10), Regulated on activation,
412	normal T cell expressed and secreted (Rantes), Monocyte Chemoattractant Protein (MCP-1),
413	Macrophage Inflammatory Protein (MIP-1 α), Interleukin 1 α (IL-1 α), and Interleukin 5 (IL-5).
414	Chemokines, or chemoattractant cytokines, are produced by a host of cell types and play a
415	significant role in inflammatory processes as they help regulate the traffic of immune cells to
416	specific sites. Our results revealed a significant increase in MCP-1 and MIP-1 α after 26 weeks of
417	high ED diet consumption. A similar study by Muralidhar <i>et al.</i> reported no change in MIP-1 α
418	and a non-statistically significant increase in MCP-1 after 13 weeks of high fat feeding ³⁹ . The
419	length of time of high fat/high ED diet consumption likely underlies the differences observed
420	between the two studies, however, there is an observable trend toward higher levels with high
421	fat/ high ED diet consumption. In addition, we observed a significant decrease in Rantes,
422	consistent with a prior report by Fenton <i>et al</i> . in mice fed a high fat diet for 10 weeks ⁴² .
423	SCF serves as a ligand molecule for the receptor tyrosine kinase c-Kit. Activation of c-Kit by
424	SCF has been shown to be involved in cell migration and survival ⁴³ . Our results showed a
425	significant increase in SCF levels after 26 weeks of high ED diet consumption compared to
426	baseline. High ED fed rats also have significantly higher levels of SFC than aged-matched, low
427	ED fed rats.

428 FGF β is an endocrine hormone produced by the liver, which has been shown to promote gluconeogenesis, ketogenesis, and lipid oxidation during fasting periods. However, during the 429 fed state, FGFβ is thought to enhance insulin-mediated glucose uptake ⁴⁴. Our results showed a 430 431 significant increase in serum levels of FGF β after 26 weeks of high ED diet consumption compared to baseline. However, when compared to aged-matched, low ED fed rats, we observed 432 no significant differences. It is thus possible that the changes in FGF^β levels is related to the 433 aging process. To our knowledge, there are no other studies reporting serum FGFβ levels in rats 434 with high ED feeding or in regards to aging. 435

IFNy is an important cytokine for innate and adaptive immune response against viral 436 infections. Interferon gamma induced protein 10 (IP10) is a chemokine produced by monocytes, 437 endothelial cells, and fibroblasts in response to IFNy that acts as a chemoattractant for a hosts of 438 immune cells⁴⁵. Our results revealed a slight decrease in IFN_γ and increase in IP10 after 26 439 weeks of high ED diet consumption compared to baseline. However, there was no significant 440 difference in the level of these cytokines between age-matched high ED fed (ED26W) and low 441 442 ED fed (LF26) rats. Fenton et al. reported a slight, but none significant increase in male mice fed a 35% fat diet for 13 weeks⁴². In Sprague-Dawley rats, Muralidhar *et al.* showed that 443 consumption of a high fat diet for 13 weeks did not affect plasma levels of IP10⁴⁶. It is possible 444 that the longitudinal change observed in this study are a result of the aging process and not 445 necessarily triggered by high ED diet consumption. It has been previously reported that in 446 447 humans subjects older than 50 years there is a decrease in IFNy production from mononuclear cells⁴⁷. 448

449 Interleukin 1α (IL- 1α) is generally known as an epidermal pro-inflammatory cytokine⁴⁸. It 450 has also been shown that IL- 1α knockout mice gained less body fat and did not develop glucose

451 intolerance when fed a high fat diet for 16 weeks⁴⁹. Consistent with prior reports⁵⁰, our data 452 showed that rats fed a high ED diet for 26 weeks have significantly higher levels of IL-1 α than 453 low ED fed rats. Interleukin 5 (IL-5) is produced by T helper cells and is a key factor in the 454 activation of eosinophils during allergic reactions⁵¹. Consistent with a prior study⁴², our results 455 showed a significant decrease in serum levels of IL-5 after 26 weeks of high ED diet compared 456 to baseline.

In general, our results revealed longitudinal changes in the serum cytokine profile of animals
fed a high ED diet long-term. In addition, when we compared high ED diet fed rats at 26 weeks
(ED26) to age-matched, low ED diet fed rats, rats fed high ED diet had significantly higher
levels of Leptin, SCF, IL-1α, and TGFβ.

Our research group has conducted several studies to characterize the effect of high ED diet consumption on inflammation in the brain. Vagal afferents carry information from the gut to the NTS. Reports from our laboratory and others have shown that consumption of a high ED diet triggers microglia activation in the nodose glanglia, NTS, and hypothalamus ^{27, 52, 53}. Results from this study showed that high ED diet consumption induced an inflammatory response reflected by microglia activation in the intermediate NTS after four weeks. These data further suggest that length of exposure to the high ED diet exacerbates this response since microglia

Our results demonstrated that consumption of a high ED diet led to a significant increase in intracellular lipid accumulation in the liver, also known as hepatic steatosis. These data are in concert with prior studies in rodents, mice and rats, which report development of hepatic steatosis after consumption of a 40% fat diet for 16 weeks⁵⁴. De Rudder et al., also reported that mice developed hepatic steatosis after only four weeks of consuming a 60% fat diet⁵⁵. Previous

activation after 26 weeks of high ED diet was significantly higher than after four weeks.

468

studies have shown a link between microbiota dysbiosis and hepatic steatosis^{56, 57}. The majority 474 of the blood supply to the liver comes from the intestines through the portal vein⁵⁸. Thus, an 475 increase in gut microbes that produce toxic/inflammatory byproducts increases the gut-derived 476 bacterial products entering the liver⁵⁹. Our data revealed an increase in abundance of members of 477 the family *Ervsipelotrichaceae* and a study by Spencer et al. showed that levels of these bacteria 478 are directly associated with changes in liver fat in female human subjects⁶⁰. In addition, we saw 479 an increase in SCFAs producers, namely members of the family Ruminococcaceae. The SCFAs 480 acetate, propionate, and butyrate have been previously shown to inhibit lipid accumulation in the 481 liver and improve hepatic function in rodents⁶¹⁻⁶³. Given that the abundance of *Ruminococcaceae* 482 was increased after 26 weeks of high ED diet consumption, it is possible that the presence of 483 these bacteria and their byproducts contributed to prevent the progression of hepatic steatosis as 484 485 there was no difference in the degree of steatosis between the four weeks (ED4) and the 26 weeks group (ED26). 486

In conclusion, we have shown that long-term consumption of a high ED diet leads to 487 increased adiposity, gut dysbiosis, hepatic steatosis, inflammation in the NTS as revealed by 488 increased microglia activation, and increased systemic levels of inflammatory markers. Our 489 results suggests that gut dysbiosis starts immediately upon introduction of a high ED diet. Next, 490 as the liver is overloaded with increased accumulation of excess fat consumed and toxic bacterial 491 byproducts, hepatic steatosis develops. At the same time, endotoxins produced by the resident 492 493 gut microbiome damage vagal afferents, which in turn triggers microglia activation in the NTS. Lastly, chemokines, cytokines, and other inflammatory molecules are released from their 494 production site (e.g. adipose tissue) into the systemic circulation. These responses are highly 495 496 dynamic and play a significant role in the development of obesity and its related comorbidities.

497	In future work,	, is it necessary	to investigate the	rapeutic interventions	s to prevent or ameliorate the

- 498 development of microbiota dysbiosis as this seems to be one of the first and most detrimental
- 499 consequences of consuming high ED diets.

References

526 527 528	1.	Hildebrandt MA, Hoffmann C, Sherrill–Mix SA, Keilbaugh SA, Hamady M, Chen YY <i>et al.</i> High-fat diet determines the composition of the murine gut microbiome independently of obesity. <i>Gastroenterology</i> 2009; 137 (5): 1716-1724. e2.
529 530 531 532	2.	de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet- induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. <i>American Journal of Physiology-Gastrointestinal and Liver Physiology</i> 2010; 299 (2): G440-G448.
533 534 535	3.	Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? <i>Current opinion in pharmacology</i> 2017; 37: 35-40.
536 537 538	4.	Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE <i>et al.</i> Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. <i>PLoS computational biology</i> 2009; 5 (3): e1000324.
539 540 541 542	5.	Nishimura S, Manabe I, Nagasaki M, Hosoya Y, Yamashita H, Fujita H <i>et al.</i> Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. <i>Diabetes</i> 2007; 56 (6): 1517-1526.
543 544 545 546	6.	Asterholm IW, Tao C, Morley TS, Wang QA, Delgado-Lopez F, Wang ZV <i>et al</i> . Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. <i>Cell metabolism</i> 2014; 20 (1): 103-118.
547 548 549 550	7.	Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y <i>et al.</i> Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. <i>Diabetes</i> 2009; 58 (11): 2574-2582.
551 552 553	8.	Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. <i>The Journal of clinical investigation</i> 2007; 117 (1): 175-184.
554 555 556 557	9.	Vitseva OI, Tanriverdi K, Tchkonia TT, Kirkland JL, McDonnell ME, Apovian CM <i>et al.</i> Inducible Toll-like receptor and NF-кВ regulatory pathway expression in human adipose tissue. <i>Obesity</i> 2008; 16 (5): 932-937.
558 559 560 561	10.	Watanabe Y, Nagai Y, Takatsu K. Activation and regulation of the pattern recognition receptors in obesity-induced adipose tissue inflammation and insulin resistance. <i>Nutrients</i> 2013; 5 (9): 3757-3778.
562 563 564 565	11.	Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S <i>et al.</i> Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. <i>Science</i> 2010; 328 (5975): 228-231.

566 567 568	12.	Berthoud HR, Powley TL. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. <i>J Comp Neurol</i> 1992; 319 (2): 261-76.
569 570 571	13.	Adams LA, Angulo P, Lindor KD. Nonalcoholic fatty liver disease. <i>Can Med Assoc J</i> 2005; 172 (7): 899-905.
572 573 574	14.	Angulo P. Medical progress - Nonalcoholic fatty liver disease. <i>New Engl J Med</i> 2002; 346 (16): 1221-1231.
575 576 577	15.	Slauson DO, Cooper BJ. <i>Mechanisms of disease: A textbook of comparative general pathology,</i> Mosby Inc., 2002.
578 579 580	16.	Kunnecke B, Verry P, Benardeau A, von Kienlin M. Quantitative body composition analysis in awake mice and rats by magnetic resonance relaxometry. <i>Obes Res</i> 2004; 12 (10): 1604-15.
581 582 583 584	17.	Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M <i>et al.</i> Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. <i>Nucleic acids research</i> 2013; 41 (1): e1-e1.
585 586 587	18.	Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK <i>et al.</i> QIIME allows analysis of high-throughput community sequencing data. <i>Nature methods</i> 2010; 7 (5): 335.
588 589 590	19.	Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS <i>et al.</i> Metagenomic biomarker discovery and explanation. <i>Genome biology</i> 2011; 12 (6): R60.
591 592 593	20.	Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA <i>et al</i> . METAGENassist: a comprehensive web server for comparative metagenomics. <i>Nucleic acids research</i> 2012; 40 (W1): W88-W95.
594 595 596 597	21.	Gallaher ZR, Ryu V, Herzog T, Ritter RC, Czaja K. Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy. <i>Neurosci</i> <i>Lett</i> 2012; 513 (1): 31-36.
598 599 600 601	22.	Peters JH, Gallaher ZR, Ryu V, Czaja K. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. <i>J. Comp. Neurol.</i> 2013; 521 (15): 3584-3599.
602 603 604	23.	Dulce M. Minaya PMDL, Andras Hajnal and Krzysztof Czaja. Roux-en-Y gastric bypass surgery triggers rapid DNA
605	fragme	entation in vagal afferent neurons in rats. Acta Neurobiol Exp 2019; 79: 332-344.

606 607 608 609	24.	Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA, Network NCR. Nonalcoholic Fatty Liver Disease (NAFLD) Activity Score and the Histopathologic Diagnosis in NAFLD: Distinct Clinicopathologic Meanings. <i>Hepatology</i> 2011; 53 (3): 810-820.
610 611 612	25.	Conlon MA, Bird AR. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients 2015; 7 (1): 17-44.
613 614 615	26.	Sen T, Cawthon CR, Ihde BT, Hajnal A, DiLorenzo PM, de La Serre CB <i>et al.</i> Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. <i>Physiol Behav</i> 2017; 173: 305-317.
616 617 618 619	27.	Vaughn AC, Cooper EM, DiLorenzo PM, O'Loughlin LJ, Konkel ME, Peters JH <i>et al.</i> Energy-dense diet triggers changes in gut microbiota, reorganization of gut-brain vagal communication and increases body fat accumulation. <i>Acta Neurobiol Exp</i> 2017; 77 (1): 18-30.
620 621 622	28.	Woods SC, Seeley RJ, Rushing PA, D'Alessio D, Tso P. A controlled high-fat diet induces an obese syndrome in rats. <i>J Nutr</i> 2003; 133 (4): 1081-1087.
623 624 625 626	29.	de Lartigue G, de la Serre CB, Espero E, Lee J, Raybould HE. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. <i>Am J Physiol-Endoc M</i> 2011; 301 (1): E187-E195.
627 628 629 630	30.	Lomba A, Martinez JA, Garcia-Diaz DF, Paternain L, Marti A, Campion J <i>et al.</i> Weight gain induced by an isocaloric pair-fed high fat diet: A nutriepigenetic study on FASN and NDUFB6 gene promoters. <i>Molecular Genetics and Metabolism</i> 2010; 101 (2-3): 273-278.
631 632 633	31.	Kaakoush NO. Insights into the Role of Erysipelotrichaceae in the Human Host. <i>Front Cell Infect Mi</i> 2015; 5 .
634 635 636 637	32.	Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E <i>et al.</i> Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. <i>Environ Microbiol</i> 2017; 19 (1): 95-105.
638 639 640 641	33.	Stanley D, Hughes RJ, Geier MS, Moore RJ. Bacteria within the Gastrointestinal Tract Microbiota Correlated with Improved Growth and Feed Conversion: Challenges Presented for the Identification of Performance Enhancing Probiotic Bacteria. <i>Front Microbiol</i> 2016; 7 .
642 643 644 645	34.	Muhomah TA, Nishino N, Katsumata E, Wu HM, Tsuruta T. High-fat diet reduces the level of secretory immunoglobulin A coating of commensal gut microbiota. <i>Biosci Microb Food H</i> 2019; 38 (2): 55-64.
646		

647 648	35.	Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. <i>Environ Microbiol</i> 2017; 19 (1): 29-41.
649 650 651 652	36.	Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J <i>et al.</i> Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity. <i>Plos One</i> 2014; 9 (3).
653 654 655	37.	Borst SE, Conover CF. High-fat diet induces increased tissue expression of TNF-alpha. <i>Life Sci</i> 2005; 77 (17): 2156-65.
656 657 658	38.	Ghibaudi L, Cook J, Farley C, Van Heek M, Hwa JJ. Fat intake affects adiposity, comorbidity factors, and energy metabolism of sprague-dawley rats. <i>Obesity research</i> 2002; 10 (9): 956-963.
659 660 661 662	39.	Mn M, Smvk P, Battula KK, Nv G, Kalashikam RR. Differential response of rat strains to obesogenic diets underlines the importance of genetic makeup of an individual towards obesity. <i>Sci Rep</i> 2017; 7 (1): 9162.
663 664 665	40.	Woods SC, Seeley RJ, Rushing PA, D'Alessio D, Tso P. A controlled high-fat diet induces an obese syndrome in rats. <i>J Nutr</i> 2003; 133 (4): 1081-7.
666 667 668 669	41.	Bravo E, Palleschi S, Aspichueta P, Buque X, Rossi B, Cano A <i>et al.</i> High fat diet-induced non alcoholic fatty liver disease in rats is associated with hyperhomocysteinemia caused by down regulation of the transsulphuration pathway. <i>Lipids Health Dis</i> 2011; 10 .
670 671 672 673	42.	Fenton JI, Nunez N, Yakar S, Perkins S, Hord N, Hursting S. Diet-induced adiposity alters the serum profile of inflammation in C57BL/6N mice as measured by antibody array. <i>Diabetes, Obesity and Metabolism</i> 2009; 11 (4): 343-354.
674 675 676	43.	Lennartsson J, Ronnstrand L. STEM CELL FACTOR RECEPTOR/c-KIT: FROM BASIC SCIENCE TO CLINICAL IMPLICATIONS. <i>Physiol Rev</i> 2012; 92 (4): 1619-1649.
677 678 679	44.	BonDurant LD, Potthoff MJ. Fibroblast Growth Factor 21: A Versatile Regulator of Metabolic Homeostasis. <i>Annu Rev Nutr</i> 2018; 38: 173-196.
680 681 682 683	45.	Metzemaekers M, Vanheule V, Janssens R, Struyf S, Proost P. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. <i>Frontiers in Immunology</i> 2018; 8 .
684 685 686 687	46.	Muralidhar MN, Prasad SMVK, Battula KK, Giridharan NV, Kalashikam RR. Differential response of rat strains to obesogenic diets underlines the importance of genetic makeup of an individual towards obesity. <i>Sci Rep-Uk</i> 2017; 7 .

688 689 690	47.	Abb J, Abb H, Deinhardt F. Age-related decline of human interferon alpha and interferon gamma production. <i>Blut</i> 1984; 48 (5): 285-9.
691 692 693 694	48.	Hanel KH, Pfaff CM, Cornelissen C, Amann PM, Marquardt Y, Czaja K <i>et al.</i> Control of the Physical and Antimicrobial Skin Barrier by an IL-31-IL-1 Signaling Network. <i>Journal of Immunology</i> 2016; 196 (8) : 3233-3244.
695 696 697 698	49.	Almog T, Kandel Kfir M, Levkovich H, Shlomai G, Barshack I, Stienstra R <i>et al.</i> Interleukin-1alpha deficiency reduces adiposity, glucose intolerance and hepatic de-novo lipogenesis in diet- induced obese mice. <i>BMJ Open Diabetes Res Care</i> 2019; 7 (1): e000650.
699 700 701 702	50.	Collins KH, Hart DA, Seerattan RA, Reimer RA, Herzog W. High-fat/high-sucrose diet-induced obesity results in joint-specific development of osteoarthritis-like degeneration in a rat model. <i>Bone Joint Res</i> 2018; 7 (4): 274-281.
703 704	51.	Sanderson CJ. Interleukin-5, eosinophils, and disease. <i>Blood</i> 1992; 79 (12): 3101-9.
705 706 707 708	52.	Waise TMZ, Toshinai K, Naznin F, NamKoong C, Moin AM, Sakoda H <i>et al</i> . One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice. <i>Biochem Bioph Res Co</i> 2015; 464 (4): 1157-1162.
709 710 711	53.	Yi CX, Tschop MH, Woods SC, Hofmann SM. High-fat-diet exposure induces IgG accumulation in hypothalamic microglia. <i>Dis Model Mech</i> 2012; 5 (5): 686-690.
712 713 714 715	54.	Jensen VS, Tveden-Nyborg P, Zacho-Rasmussen C, Quaade ML, Ipsen DH, Hvid H <i>et al.</i> Variation in diagnostic NAFLD/NASH read-outs in paired liver samples from rodent models. <i>J Pharmacol</i> <i>Toxicol Methods</i> 2019; 101: 106651.
716 717 718 719	55.	De Rudder M, Bouzin C, Nachit M, Louvegny H, Vande Velde G, Jule Y <i>et al</i> . Automated computerized image analysis for the user-independent evaluation of disease severity in preclinical models of NAFLD/NASH. <i>Lab Invest</i> 2019.
720 721 722	56.	Liu Q, Liu SS, Chen LZ, Zhao ZZ, Du SX, Dong QJ <i>et al.</i> Role and effective therapeutic target of gut microbiota in NAFLD/NASH. <i>Exp Ther Med</i> 2019; 18 (3): 1935-1944.
723 724 725	57.	Ji Y, Yin Y, Li ZR, Zhang WZ. Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). <i>Nutrients</i> 2019; 11 (8).
726		

727 728 729	58.	Compare D, Coccoli P, Rocco A, Nardone OM, De Maria S, Carteni M <i>et al</i> . Gutliver axis: the impact of gut microbiota on non alcoholic fatty liver disease. <i>Nutr Metab Cardiovasc Dis</i> 2012; 22 (6): 471-6.
730 731 732	59.	Baffy G. Potential mechanisms linking gut microbiota and portal hypertension. <i>Liver Int</i> 2019; 39 (4): 598-609.
733 734 735 736	60.	Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association Between Composition of the Human Gastrointestinal Microbiome and Development of Fatty Liver With Choline Deficiency. <i>Gastroenterology</i> 2011; 140 (3): 976-986.
737 738 739	61.	Nishina PM, Freedland RA. Effects of Propionate on Lipid Biosynthesis in Isolated Rat Hepatocytes. <i>J Nutr</i> 1990; 120 (7): 668-673.
740 741 742 743	62.	Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. <i>World J Gastroentero</i> 2007; 13 (20): 2826-2832.
744 745 746 747	63.	Sahuri-Arisoylu M, Brody LP, Parkinson JR, Parkes H, Navaratnam N, Miller AD <i>et al.</i> Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate. <i>Int J Obesity</i> 2016; 40 (6): 955-963.
748		
749		

Figure Captions

Fig. 1. High energy density (ED) diet consumption significantly increased body weight and body fat mass. Shown are mean \pm SD kcal consumed (A, D, G), body weight (B, E, H), and body fat mass (C, F, I) for rats fed high ED for four weeks (**STED**; n = 6, top row), rats fed high ED for 26 weeks (**LTED**; n = 9, middle row), and end-point comparison of rats fed low ED vs high ED for 26 weeks (n = 9 per group, bottom row). Animals significantly increased their caloric intake upon introduction of the high ED diet, but caloric intake declined after one week and remained stable for the duration of the study. High ED diet consumption significantly increased body weight and fat mass. Bars denoted with different letters (a, ab, b) differ statistically. Asterisks indicate statistical significance from baseline. P < 0.05.

Fig. 2. Consumption of a high energy density (ED) diet triggered progressive remodeling of the gut microbiota. The left (A, B, C) and right (D, E, F) columns represent data from the **STED** (n = 6) and **LTED** (n = 9) groups, respectively. **A**, **D**) Shannon index shown as mean \pm SD for each group and time point. Bacterial diversity was significantly decreased after consuming the high ED diet for one week (ED1) compared to baseline (LF). There were no other significant changes observed. **B**, **E**) Principal Coordinate Analysis showing microbiota from all time points. In the STED group (B), the microbiota of all rats clustered together at baseline (LF). One week after introduction of the high ED diet (ED1), the microbiota clustered together and away from their baseline profile. At week 4 (ED4), the microbiota of all rats fed the high ED diet clustered together, independent of time point, and away from the microbiota of rats fed a low ED diet (LF26). C, F) Cladogram produced from LDA scores (see Supplementary Fig. S2 for LDA

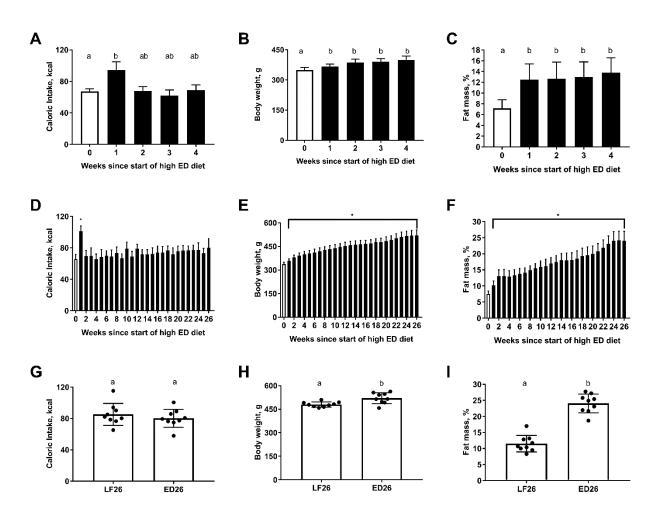
scores). In the STED group (C), at baseline (LF), the microbiota is characterized by abundant members of the *Bacteroidetes* order *Bacteroidales*. One week after high ED diet introduction (ED1), the microbiota was characterized by abundant members of the *Firmicutes* order *Erysipelotrichales*. After four weeks of high ED diet (ED4), the microbiota was characterized by abundant members of the *Actinobacteria* order *Actinomycetales* and *Verrucomicrobia* order *Verrucomicrobiales*. In the LTED group (F), at ED4 the microbiota was characterized by abundant members of *Bacteroidetes* order *Bacteroidales* and *Firmicutes* orders *Bacillales* and *Clostridiales*. Eight weeks after high ED diet introduction (ED8), the microbiota was characterized by abundant members of the *Bacteroidetes* order *Bacteroidales* and *Firmicutes* orders *Lactobacillales*, *Turicibacterales*, and *Clostridiales*. After 26 weeks of high ED diet (ED26), the microbiota was characterized by abundant members of *Bacteroidetes* orders *Bacteroidales*. The microbiota of the low ED diet control group (LF26) was characterized by abundant members of *Bacteroidetes* orders *Bacteroidales* and *Firmicutes* order *Clostridiales*.

Fig. 3. Microbial composition of rats fed a high energy dense diet for 4 weeks (STED, n = 6) or 26 weeks (LTED, n = 9) and rats fed a low energy dense diet for 26 weeks (LF26, n = 9). All phylogenetic levels present with abundance > 1% are represented. **A**, **C**) relative abundances of phyla at the family level in the STED group and in the LTED. **B**, **D**) Ratio of Firmucutes to Bacteroidetes in the STED and LTED group. In the STED group, high ED diet consumption significantly increased the abundance of members of *Erysipelotrichaceae* (LF 3.8% vs ED1 60% and ED4 41%, Ps < 0.0001) of the phylum *Firmicutes*. Members of the family *S24-7* of the phylum *Bacteroidetes* were significantly depleted by high ED diet consumption (A). In addition,

the ratio of *Firmicutes* to *Bacteroidetes* was significantly higher at one and four weeks of high ED diet compared to baseline (B). In the LTED group, compared to low ED diet fed rats, high ED diet fed rats had significantly higher abundance of members of *Bacteroidaceae* and Ruminococcaceae, and significantly lower abundance of members of Peptostreptococcaceae and Verrucomicrobiaceae.(C). In high ED fed rats, the Firmicutes-to-Bacteroidetes ratio was significantly higher after eight weeks compared to after four and 26 weeks (ED8 11.5 vs ED4 6.4 and ED26 5.7, Ps < 0.01). Compared to low ED controls (LF26), high ED fed rats had a significantly lower Firmicutes-to-Bacteroidetes ratio at four and 26 weeks (D). In the legend, following the name of each family, higher taxonomic classifications are indicated by letters in parentheses. Phylum: A, Actinobacteria; B, Bacteroidetes; F, Firmicutes; V, Verrucomicrobia. Class: A, Actinobacteria; B, Bacilli if preceded by F and Bacteroidia if preceded by B; C, Clostridia; E, Erysipelotrichia; F, Flavobacteria; V, Verrucomicrobiae; O, Opitutae. Order: A, Actinomycetales; B, Bacteroidales; C, Clostridiales if preceded by C and Cerasicoccales if preceded by O; E, Erysipelotrichiales; F, Flavobacteriales; L, Lactobacillales; T, Turibacterales; V, Verrucomicrobiales. Bars denoted with different letters (a, b, c) differ significantly, P < 0.05. Data are means \pm SD.

Fig. 4. Consumption of a high ED diet significantly increased microglia activation in the intermediate NTS. Representative sections of intermediate NTS of animals fed a low ED diet for 26 weeks (LF26, n = 9), a high ED diet for four weeks (ED4, n = 5), and a high ED diet for 26 weeks (ED26, n = 5) are shown. Binary analysis of the area fraction of Iba1 immunoreactivity showed that animals fed a high ED for four and 26 weeks exhibited significantly more microglia activation than low ED fed controls. In addition, microglia activation after 26 weeks of high ED

diet was significantly higher than after four weeks. Graphs represent mean \pm SD Iba1 intensity. Bars denoted with different letters (a, b, c) differ significantly (P < 0.05). NTS = Nucleus Tractus Solitarius; AP = Area Postrema. Scale bar = 200 µm.


Fig. 5. High ED diet intake induces hepatic lipidosis. Representative histopathological images of hematoxylin and eosin stained (top row) and oil-red-o stained (bottom row) hepatic tissue from rats fed a low ED diet (left column), rats fed a high ED for 4 weeks (middle column), and rats fed a high ED for 26 weeks (right column), n = 3 for each group. H&E staining revealed an increase in distinct vacuoles in rats fed the high ED diet (ED4 and ED26) compared to low ED controls (LF26) (top row). Similarly, ORO staining showed that high ED fed animals exhibited more intensely red granules (ED4 and ED26) than low ED controls (LF26) (bottom row). The quantitative scoring (Table) confirmed that hepatocellular lipidosis is apparent after consuming a high ED diet for four weeks. We did not observe significant differences in the extent of hepatocellular lipidosis between the STED (ED4) and LTED (ED26) groups. Low ED fed rats did not show signs of hepatocellular lipidosis. Graph represents mean \pm SD binary analysis of the area fraction of ORO staining, which further confirms our results. Bars denoted with different letters (a, b, c) differ significantly (P < 0.05). Scale bar for images is 100 µm. Scale bar of insert is 80 µm.

Supplementary Fig. S1. Rarefraction curves by diet group and experimental time point. Data are shown as mean for rats fed a high energy dense diet for 4 weeks (A, STED) or 26 weeks (B, LTED).

Supplementary Fig. S2. LDA scores used for generation of cladogram (Fig. 3C). Colors designate time point: Blue: LF/baseline, Red: ED1, one week after introduction of high ED diet, Green: ED4, four weeks after introduction of high ED diet.

Supplementary Fig. S3. LDA scores used for generation of cladogram (Fig. 3F). Colors designate time point: Purple: LF26, after 26 weeks of low ED diet, Green: ED4, four weeks after introduction of high ED diet. Blue: ED8, four weeks after introduction of high ED diet. Red: ED26, 26 weeks after introduction of high ED diet,

Fig. 1

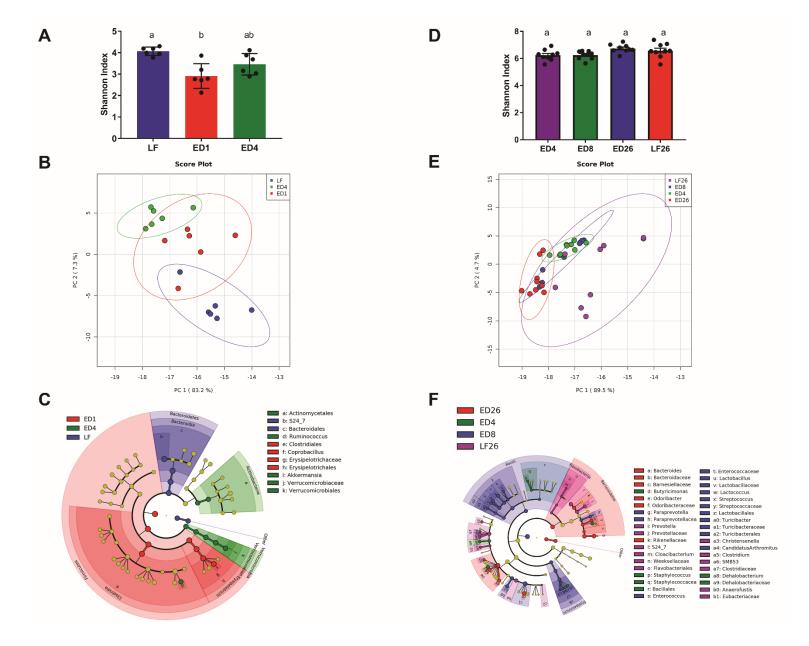
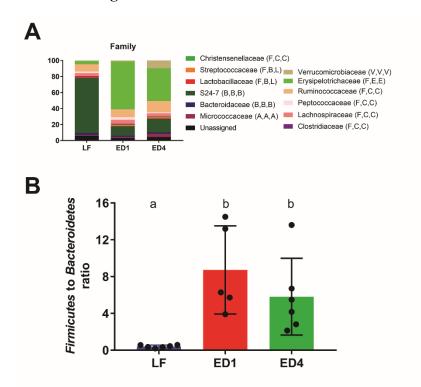
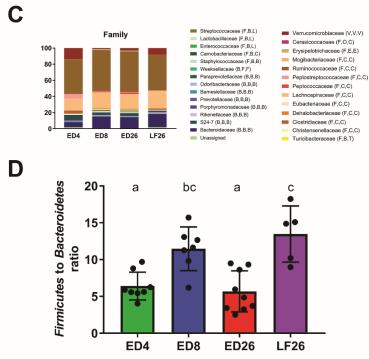
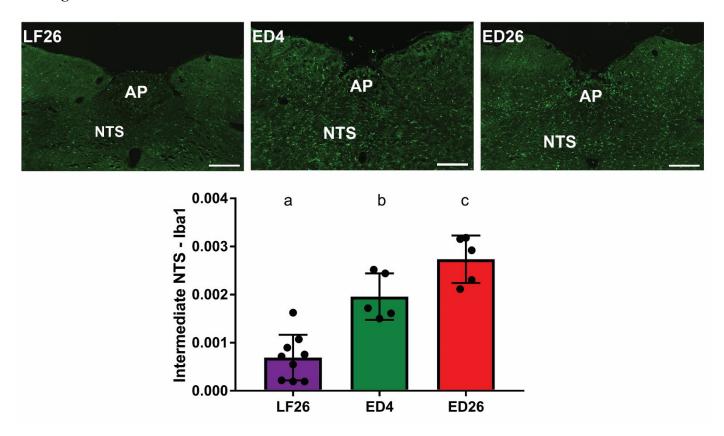
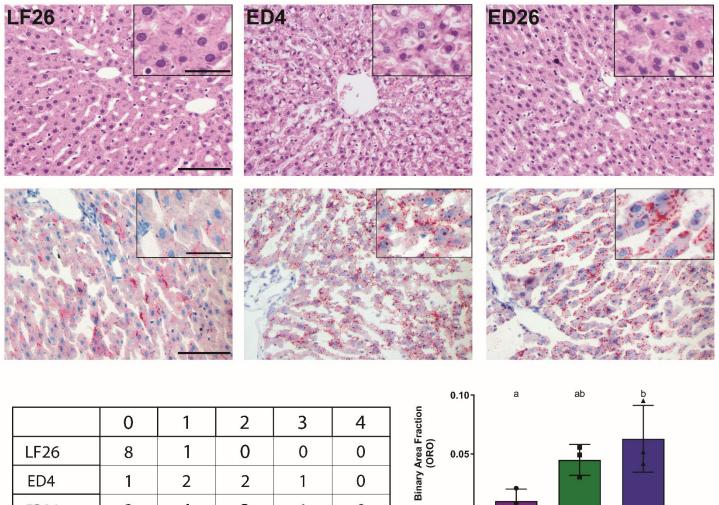
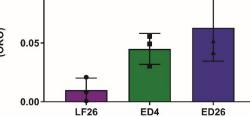
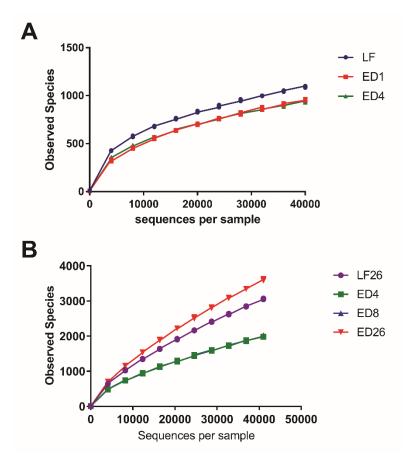
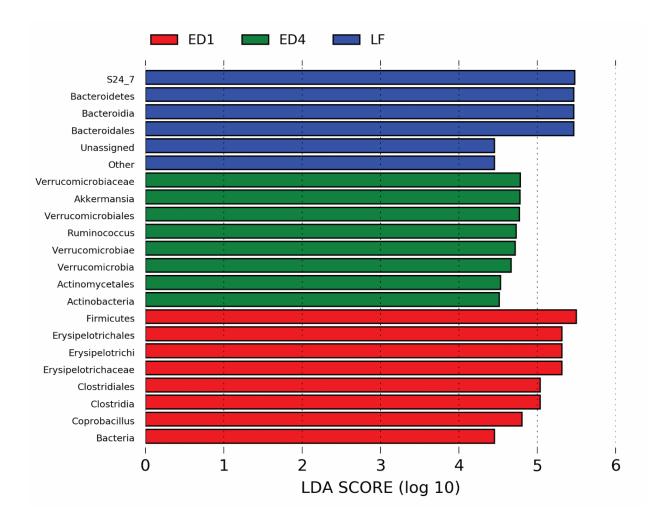





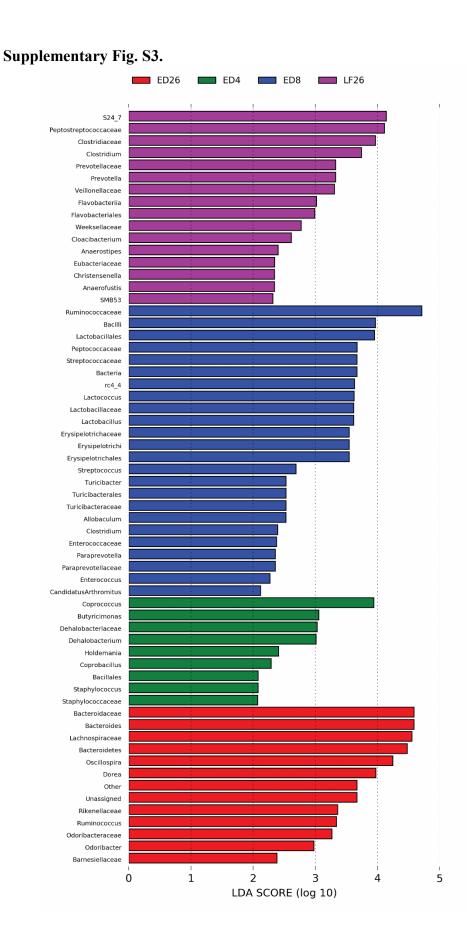
Fig. 3








		2.07	~~~~~		~
LF26	8	1	0	0	0
ED4	1	2	2	1	0
ED26	2	4	2	1	0



Supplementary Fig. S1.

Supplementary Fig. S2.

	ST	`ED	LTED				
	LF	ED4	LF	ED4	ED8	ED26	LF26
ΤΝΓα, Ο	0.057 <u>+</u> 0.016	$0.044 \pm 0.011^{\#}$	0.049 <u>+</u> 0.014	$0.044 \pm 0.006^{*}$	$0.038 \pm 0.003^{\#}$	0.057 <u>+</u> 0.016	0.062 <u>+</u> 0.052
VEGF, OD	0.029 <u>+</u> 0.006	0.026 <u>+</u> 0.005	0.027 <u>+</u> 0.005	0.025 <u>+</u> 0.004	0.019 <u>+</u> 0.002	0.024 <u>+</u> 0.005	0.022 <u>+</u> 0.011
FGFβ, OD	0.016 <u>+</u> 0.001	0.015 <u>+</u> 0.001	0.014 <u>+</u> 0.003	$0.028 \pm 0.009^{\# \ddagger}$	$0.017 \pm 0.007^{\dagger}$	$0.037 \pm 0.007^{\#}$	0.042 ± 0.042
IFNγ, OD	0.056 <u>+</u> 0.019	0.045 <u>+</u> 0.009	0.055 <u>+</u> 0.015	0.036 <u>+</u> 0.011	$0.032 \pm 0.005^{\#}$	$0.031 \pm 0.004^{\#}$	0.036 <u>+</u> 0.031
Leptin, OD	0.049 <u>+</u> 0.014	0.041 <u>+</u> 0.005	0.042 ± 0.002 n = 8	$0.068 \pm 0.022^{\ddagger}$ n = 8	$0.079 \pm 0.071^{\ddagger}$ n = 8	$0.472 \pm 0.092^{\# \&}$ n = 8	0.089 ± 0.043 n = 8
MCP-1, OD	0.027 <u>+</u> 0.007	0.022 <u>+</u> 0.003	0.035 <u>+</u> 0.007	$0.08 \pm 0.040^{\# \ddagger}$	$0.036 \pm 0.027^{\dagger}$	$0.123 \pm 0.039^{\#}$	0.103 <u>+</u> 0.075
SCF, OD	0.074 <u>+</u> 0.024	0.077 <u>+</u> 0.038	0.064 <u>+</u> 0.021	$0.058 \pm 0.008^{\ddagger}$	$0.053 \pm 0.010^{\dagger}$	$0.124 \pm 0.050^{\# c}$	0.063 <u>+</u> 0.032
MIP-1a, OD	0.019 <u>+</u> 0.003	0.017 <u>+</u> 0.006	0.014 <u>+</u> 0.002	$0.074 \pm 0.043^{\#}$	$0.043 \pm 0.046^{\dagger}$	$0.108 \pm 0.019^{\#}$	0.089 <u>+</u> 0.043
IL-1α, OD	0.059 <u>+</u> 0.005	$0.027 \pm 0.002^{\#}$	0.054 <u>+</u> 0.022	0.058 <u>+</u> 0.044	$0.032 \pm 0.006^{\dagger}$	0.067 ± 0.026^{c}	0.024 ± 0.009
IL-1β, OD	0.069 <u>+</u> 0.017	0.056 <u>+</u> 0.005	0.059 <u>+</u> 0.021	0.050 <u>+</u> 0.009	0.043 <u>+</u> 0.004	0.071 <u>+</u> 0.028	0.054 <u>+</u> 0.032
IL-5, OD	0.059 <u>+</u> 0.018	0.047 <u>+</u> 0.007	0.054 <u>+</u> 0.016	0.032 <u>+</u> 0.009	0.048 <u>+</u> 0.049	$0.029 \pm 0.007^{\#}$	0.029 <u>+</u> 0.019
IL-6, OD	0.021 <u>+</u> 0.003	0.021 <u>+</u> 0.007	0.018 <u>+</u> 0.003	0.022 <u>+</u> 0.003	0.016 <u>+</u> 0.003	0.031 <u>+</u> 0.011	0.024 <u>+</u> 0.012
IL-15, OD	0.051 <u>+</u> 0.016	0.045 <u>+</u> 0.010	0.046 <u>+</u> 0.011	0.035 ± 0.005	$0.031 \pm 0.005^{\# \ddagger}$	0.046 <u>+</u> 0.012	0.042 <u>+</u> 0.035
IP-10, OD	0.029 <u>+</u> 0.004	0.032 <u>+</u> 0.004	0.021 <u>+</u> 0.007	$0.021 \pm 0.004^{\ddagger}$	0.026 <u>+</u> 0.003	$0.029 \pm 0.004^{\#}$	0.027 ± 0.007
Rantes, OD	1.183 <u>+</u> 0.179	0.898 <u>+</u> 0.169	1.191 <u>+</u> 0.289	$0.925 \pm 0.317^{\dagger}$	$1.042 \pm 0.312^{\dagger}$	$0.602 \pm 0.207^{\#}$	0.776 <u>+</u> 0.252
TGFβ, OD	0.279 <u>+</u> 0.065	0.187 <u>+</u> 0.053	0.155 <u>+</u> 0.012	$0.091 \pm 0.034^{\#}$	0.198 <u>+</u> 0.074	$0.205 \pm 0.099^{\text{¢}}$	0.049 ± 0.009
Insulin, ng/ml	1.223 ± 0.187 n = 4	1.92 ± 0.346 n = 4	0.937 <u>+</u> 0.298	1.055 <u>+</u> 0.185	0.888 <u>+</u> 0.181	1.133 <u>+</u> 0.269	1.418 ± 0.486 n = 3

Table 1. Cytokine/chemokine optical density values \pm SD.

Different from LF; \$ different from ED4; * different from ED8; ‡ different from ED26; ¢ different from LF26

For STED, LTED, and LF26 n = 6, 9, 9, respectively, unless otherwise stated.