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Abstract. Field-based sampling of terrestrial habitats at continental scales is required to build 
ecosystem observation networks. However, a key challenge for detecting change in ecosystem 
composition, structure and function is to obtain a representative sample of habitats. Representative 
sampling contributes to ecological validity when analysing large spatial surveys, but field resources 
are limited and representativeness may differ markedly from purely practical sampling strategies 
to statistically rigorous ones. Here, we report a post hoc assessment of the coverage of 
environmental gradients as a surrogate for ecological coverage by a continental-scale survey of the 
Australian Terrestrial Ecosystem Research Network (TERN). TERN’s surveillance program 
maintains a network of ecosystem observation plots that were init ially established in the 
rangelands through a stratification method (clustering of bioregions by environment) and Ausplots 
methodology. Subsequent site selection comprised gap filling combined with opportunistic 
sampling. Firstly, we confirmed that environmental coverage has been a good surrogate for 
ecological coverage. The cumulative sampling of environments and plant species composition over 
time were strongly correlated (based on mean multivariate dispersion; r = 0.93). We then compared 
the environmental sampling of Ausplots to 100,000 background points and a set of retrospective 
(virtual) sampling schemes: systematic grid, simple random, stratified random, and generalised 
random-tessellation stratified (GRTS). Differences were assessed according to sampling densities 
along environmental gradients, and multivariate dispersion (environmental space represented via 
multi-dimensional scaling). Ausplots outperformed systematic grid, simple random and GRTS in 
coverage of environmental space (Tukey HSD of mean dispersion, p < .001). GRTS site selection 
obtained similar coverage to Ausplots when employing the same bioregional stratification. 
Stratification by climatic zones generated the highest environmental coverage (p < .001), but the 
resulting sampling densities over-represented mesic coastal habitats. The Ausplots stratification by 
bioregions implemented under practical constraints represented complex environments well 
compared to statistically oriented or spatially even samples. However, potential statistical inference 
and power also depend on spatial and temporal replication, unbiased site selection, and accurate 
field measurements relative to the magnitude of change. A key conclusion is that environmental, 
rather than spatial, stratification is required to maximise ecological coverage across continental 
ecosystem observation networks. 
 
Key words: ecological monitoring, environmental sampling, observatory network, multivariate 
dispersion, sampling strategy, GRTS  
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INTRODUCTION 
 

Field surveys to establish on-ground ecosystem 
observation networks at national or continental 
scales can realistically only aim to sample a tiny 
fraction of the land (Michaelsen et al. 1994). For 
example, directly monitoring just one 
hundredth of one percent of the land mass of 
Australia would require something in the order 
of an unrealistic eight million 1-hectare plots. It 
follows that the selection of finite survey sites 
needs to be strategic (Michaelsen et al. 1994). 
One requirement of a widely distributed 
observation network is that the sampling design 
is ecologically representative (Metzger et al. 
2013). Representative networks inform more 
comprehensively on long term change over 
large areas without bias to particular systems. 
They have been implemented effectively to 
provide spatial surveys of above- and below-
ground biodiversity (Bastin et al. 2017; Lemetre 
et al. 2017; Baruch et al. 2018), and to monitor 
ecosystem condition in relation to disturbance, 
land use and climate change (Hoekman et al, 
2017; McCord et al. 2017). 

The strategic placement of a limited 
number of field plots could be implemented in 
many different ways, ranging between 
incautious practicality and statistical purism 
(Roleček et al. 2007). Survey and monitoring 
networks have been established using 
systematic grid (Messer et al. 1991; Goring et 
al. 2016), stratified random (Michaelsen et al. 
1994; Danz et al. 2005; Carvalho et al. 2016; 
Hoekman et al, 2017; van Etten & Fox 2017) 
and generalized random-tessellation stratified 
(GRTS; Larsen et al. 2008; McCord et al. 2017; 
van Dam-Bates et al. 2017) designs. However, 
some large surveys of terrestrial ecosystems 
have employed preferential sampling in a bid to 
include examples of as many ecotypes as 
possible (Roleček et al. 2007). Purely random 
surveys are more statistically robust but have 
been shown to be less effective at capturing 
ecological diversity (Roleček et al. 2007), 
which may be structured along multiple 
environmental gradients (Carvalho et al. 2016; 
Caddy-Retalic et al. 2017). Subjective or 
preferential sampling is criticised for its 
inability to support broader inference and meet 
statistical assumptions (Roleček et al. 2007). 

Here, we assess the performance of a 
real network of monitoring sites – the 
Terrestrial Ecosystem Research Network’s 
(TERN) Ausplots – in terms of 
representativeness by comparing its 
environmental coverage with that of virtual plot 
networks based on alternative, ‘retrospective’ 
sampling schemes. TERN Ausplots are 
terrestrial ecosystem monitoring sites located 
across Australia that have been sampled using a 
consistent method involving quantitative 
measurements of vegetation and 
characterisation of soils (White et al. 2012; 
Guerin et al. 2017; Cleverly et al. 2019; 
Sparrow et al. 2019a). Ausplots sites form an 
ecosystem surveillance monitoring network 
(sensu Eyre et al. 2011; Sparrow et al. 2019b) 
that now has plots at over 700 locations. 

We describe the stratification method 
used to determine the locations of Ausplots 
while making best use of limited financial 
resources. We then explore a snapshot of 
Ausplots sampling in terms of environmental 
heterogeneity (Christianson & Kaufman 2016) 
as a surrogate for ecological diversity 
(Albuquerque & Beier 2017). Our assessment is 
relevant internationally to the implementation 
of new monitoring networks and to the 
application of data from existing networks built 
under various sampling strategies. 

We address the following questions: 
–What is the environmental coverage of 
Ausplots? 
–Has environmental coverage been a good 
surrogate for species coverage? 
–How has Ausplots performed compared to 
retrospective sampling schemes? 
 

METHODS 
 

The original Ausplots stratification 
 

The procedure used to select Ausplots 
sites is scalable, used the best available spatial 
information in a particular area and was 
nationally consistent. The procedure was based 
on: (1) stratification of bioregions using a 
hierarchical cluster analysis (Fig. S1 in 
Appendix S3) and selection of priority 
bioregions; (2) plot stratification within each 
selected bioregion based on, for example, major 
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vegetation groups or land units; and (3) 
interpretation of selected areas of interest in 
terms of homogeneity and availability of 
historical data. 

Ausplots were initially restricted to the 
Australian rangelands before the scope was 
widened. A process of stratified sampling was 
used to locate sites across Australian 
bioregions. The Australian terrestrial bioregions 
(known as IBRA; Thackway & Creswell 1995) 
are a nationally agreed classification system 
that defines areas with distinctive biophysical 
environmental characteristics (Williamson et al. 
2011). Use of bioregions as the basis for the 
stratification assisted analysis of adequate 
sample sizes in each area of interest (e.g., land 
unit, vegetation group) within the selected 
bioregions. 

While Ausplots initially focused on 
plant species composition and vegetation cover 
in the rangelands, Ausplots here includes 
‘Ausplots Forests’, a set of 48 sites that targeted 
tall (> 30 m) eucalypt forests with methods that 
included measurements of individual trees 
(Wood et al. 2015). Tall forest sampling 
focused on a climatic gradient within the range 
of tall eucalypt forest in Australia, hence 
variation in forest type, growth stage and site 
quality were kept to a minimum. At finer scales, 
locations were preferred that occurred within 
securely tenured reserves with minimal 
harvesting history and that coincided with 
previous surveys and research. 

The stratification process for rangelands 
site selection involved four stages, the first three 
desktop exercises and the fourth primarily a 
field exercise (Box 1 in Appendix S3): 
Stage One – stratification of bioregions using 
cluster analysis based on environmental data. 
Stage Two – selection of priority bioregions to 
represent clusters of similar bioregions. 
Stage Three – stratification of plot locations 
within each selected bioregion. 
Stage Four – interpretation of selected areas in 
terms of homogeneity, historical data, and 
logistical and access considerations. 
 
 

Datasets 
 

The Ausplots field sampling protocols and 
datasets have been described previously (White 
et al. 2012; Wood et al. 2015; Guerin et al. 
2017; Sparrow et al. 2019a). Here, we focus 
mainly on the spatial sampling of the plot 
network as a whole rather than the 
measurements taken. However, we used 
information on plant species composition 
recorded within each plot to compare 
taxonomic sampling to environmental 
sampling. Site location and vegetation voucher 
(vascular plant species herbarium 
determinations) data for Ausplots were sourced 
through the ausplotsR package (TERN 2018; 
Guerin et al. 2019). Tall forest sites were 
excluded in this case because complete species 
composition data were not recorded. Data for all 
650 plots available at the time of analysis, 
including tall forest sites, were included in the 
assessment of environmental coverage (Fig. 1). 
A subset of 580 plots were used to analyse 
cumulative species sampling – those for which 
fully processed composition data were available 
in a snapshot of the database. For vegetation 
vouchers, each species was detected visually 
within each one-hectare plot, and identifications 
were verified at major State or Territory 
herbaria according to a standardised taxonomy. 

A set of 25 gridded, 9-second resolution 
climate surfaces were sourced from Harwood et 
al. (2016), and area based on a thirty-year 
average during 1976–2005. Climate variables 
included monthly minima and maxima and 
annual mean for temperature, precipitation, 
evaporation, aridity and water deficit (Table S1 
in Appendix S3). Soil and landform variables at 
9-second resolution were sourced from Gallant 
et al. (2018), and are aggregated versions of the 
3-second Soil and Landscape Grid of Australia 
(Grundy et al. 2015; Table S2 in Appendix S3). 
Soil variables covered structure, texture, 
chemical content and pH. Landform variables 
included slope, curvature and elevation range. 
 

Environmental coverage as a surrogate for 
ecological coverage 

 
Ecosystem observation networks aim to 
represent a range of terrestrial habitats and 
therefore maximise species coverage. Before 
embarking on  analysis of environmental 
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Fig. 1. Location of real and virtual monitoring sites across Australia representing alternative sampling strategies. 
Available locations were restricted to areas considered 'natural', i.e., excluding completely anthropogenically modified 
habitats: a) 650 Ausplots included in the analysis over a base map of Australia showing the IBRA bioregions used to 
stratify the original sampling;  b) systematic grid ; c) simple random; d) stochastic spatially balanced (generalised 
random-tessellation stratified: GRTS); e) GRTS stratified to the same density in IBRA regions as Ausplots; f) random 
stratified by Köppen climate zones – 24 zones were used but only the six major zones are shown on the base map. 
 
sampling coverage, we assessed whether 
environmental coverage has been a useful 
surrogate for ecological coverage of Ausplots. 
We assessed plant species composition data 
from field plots in the chronological order they 
were surveyed. Treating successive plots as 
additions to a cumulative sample of 
environmental and ecological space, we 
calculated pairwise Euclidean distances 

(environmental variables)/Sörenson 
dissimilarities (species composition), 
respectively, among plots and calculated the 
multivariate dispersion (distance to group 
centroid in principal coordinate space) of the 
cumulative samples as plots were added (further 
details below). We compared the cumulative 
mean between environmental and ecological 
(species composition) datasets. We plotted 
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cumulative dispersion scores against samples 
for each dataset together and reported the 
Pearson correlation coefficient (r) to 
supplement visual interpretation of the 
correspondence between cumulative 
environmental versus ecological sampling 
coverage. 
 
 

Retrospective sampling strategies 
 
Our approach to assessing the performance of 
the Ausplots network in sampling 
environmental space was to compare real-world 
sampling to a series of retrospective sampling 
strategies as well as background points for 
Australia (Table 1). We selected the same 
number of retrospective virtual sites (i.e., 650) 
as there were Ausplots in the empirical data 
(Fig. 1). To ensure sites were not selected in 
environmental space that was not available in 
practice, we masked Australia to areas mapped 
as 'natural', which excludes areas considered 
completely anthropogenically modified such as 
urban areas or agricultural paddocks 
(Department of the Environment 2014). 

Systematic grid sampling involved 
sampling along a regular longitude/latitude grid 
spaced at 0.9 degrees, representing the mostly 
spatially even sampling possible. Simple 
random sampling involved the sampling of 
random spatial coordinates. For Stratified 
random sampling, we sampled an even number 
of random coordinates within strata defined by 
climatic zones based on modified Köppen zones 
(Stern et al. 2000; sourced from the Australian 
Bureau of Meteorology, see 
http://www.bom.gov.au/climate/averages/clim
atology/gridded-data-
info/metadata/md_koppen_classification.shtml, 
accessed 14 November 2019). Three climate 
zones represented by < 150 pixels (0.025º) were 
excluded, leaving 24 zones. Generalised 
random-tessellation stratified (GRTS) sampling 
is a stochastic but spatially balanced survey 
design which can be loosely described as a 
compromise between grid and random sampling 
in terms of the chance of a site being sampled 
and resulting spatial evenness. All locations 
have a chance of being selected, yet the 
sampling is more even that at random. Finally, 

we applied GRTS sampling to Stage 3 of the 
original stratification process for Ausplots. That 
is, we employed the same density of plot 
sampling within selected bioregions as Ausplots 
but used GRTS to select virtual sites within 
those regions, to compare the environmental 
coverage when using a systematic sampling 
scheme at a finer level of stratification only. 

For Ausplots and retrospective sampling 
schemes, we extracted climate, soil and 
landform data from the spatial data layers at plot 
locations (Appendix S2).The extracted 
environmental data were the basis of the 
univariate, bivariate and multivariate analyses 
of environmental sampling coverage outlined 
below.  
  
 

Assessment of environmental coverage 
 
Univariate.– For individual environmental 
gradients, we assessed the distribution of 
sampling by preparing density plots for each 
sampling scheme. Sampling density for each 
scheme was over-plotted with the background 
density for Australia based on extracted values 
of environmental variables at 100,000 random 
locations selected from within 'natural' areas. 
The aim was to assess sampling intervals along 
gradients and whether sampling density at 
different points along the gradients was 
comparable to the available background 
environment, which would be expected of a 
representative sample. 
 

Bivariate.– We visualised 
environmental coverage of alternative sampling 
schemes over the background of Australia 
(100,000 random points) using bivariate 
scatterplots of selected, ecologically relevant 
variables. The variables related to temperature, 
precipitation, topography and soil texture and 
nutrient status. 

 
Multivariate.– Using an approach 

similar to the surrogacy test above, we used 
multivariate dispersion to assess the 
environmental coverage of Ausplots compared 
to the retrospective sampling strategies. In this 
instance, we included all plot locations together 
rather than examining cumulative sampling as
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Table 1. Explanation of sampling strategies tested, comparing TERN Ausplots to alternative, retrospective schemes. 

Figure code Name Sampling strategy Advantages Limitations 

Background Background 100,000 randomly selected points 
across Australia for comparison 

- - 

Ausplots TERN 
Ausplots 

Classification of bioregions by 
environment; selection of priority 
bioregions; further stratification 
within selected bioregions; 
pragmatic site selection. 

High environmental 
stratification while 
accounting for 
access issues (e.g., 
resources, 
remoteness, land 
tenure). 

Preferential local 
site selection may 
break assumptions 
of some statistical 
methods. 

Grid Systematic 
grid 

Plots are located along a 
predetermined grid. 

Maximises spatial 
evenness. 

Any one site 
determines the 
locations of all other 
sites. Inefficient 
environmental 
coverage. 

Random Simple 
random 

Sites are located at randomly 
selected coordinates. 

Statistically robust. Spatially uneven. 
Inefficient 
environmental 
coverage. 

GRTS Generalised 
random-
tessellation 
stratified 
(GRTS) 

A combination of stochastic site 
selection with spatially balanced 
design. 

Statistically robust. 
More even than 
random. 

Inefficient 
environmental 
coverage. 

GRTS-strat GRTS with 
bioregional 
stratification 
matching 
Ausplots 

GRTS site selection is applied to a 
predetermined density of plots 
within bioregions. 

The bioregional 
stratification process 
of Ausplots 
increases 
environmental 
coverage. 
Statistically robust. 

Some practical 
limitations to 
implementation (i.e. 
site access). 

Stratified Stratified 
random 

An even number of randomly 
selected plots are stratified among 
24 climatic zones. 

Environmental 
coverage is very 
high. Local site 
selection is 
statistically robust. 

Resulting sampling 
densities along 
environmental 
gradients are a poor 
match for 
background because 
mesic habitats are 
over-represented. 
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plots were added. Samples in each scheme 
(Ausplots or virtual) were scored by their 
distance to group centroid in multivariate 
environmental space as represented by principal 
coordinates (multi-dimensional scaling (MDS) 
of scaled Euclidean distances). We removed 
environmental variables that were highly 
colinear by setting VIF (variance inflation 
factors) to below 10. The resulting subset of the 
data contained 26 variables out of the original 
44, including 10 of the 25 climate variables, 10 
of the 12 soil variables, and six of the seven 
landform variables. 

We assessed the distribution of 
distances of individual plots from their group 
centroid and calculated the mean distance to 
centroid in multivariate (PCoA) environmental 
space. Additionally, we tested for significant 
differences among the mean distances to group 
centroids for each scheme using a bespoke 
permutation test (with 1000 replications) 
followed by a post-hoc multivariate 
implementation of the Tukey HSD test to make 
pairwise comparisons (Oksanen et al. 2018). 
Environmental coverage was interpreted as 
higher when mean dispersion was higher. 
 
 

Software 
 
Analyses were undertaken in R (version 3.5.1; 
R Core Team 2016; Appendix S1). Key R 
packages used to perform the analyses were 
spsurvey, vegan, ausplotsR and raster (Kincaid 
& Olsen 2017; Hijmans 2018; Oksanen et al 
2018; Guerin et al. 2019). 
 
 

RESULTS 
 
 

Environmental coverage as a surrogate for 
ecological coverage 

 
The environmental coverage of samples, as 
assessed via multivariate dispersion, was a good 
surrogate for the ecological coverage of a 
cumulative sample of Ausplots (Fig. 2; 
Pearson's r = 0.93 for cumulative means). The 
result suggests the amount of environmental 
space sampled relates closely to the beta 

diversity of species sampling (Anderson et al. 
2006). We can therefore make reasonable 
comparisons of environmental coverage as a 
surrogate for ecological coverage, given we 
have limited information on biodiversity, but 
good information on macro-environment, at 
virtual or background sites. 
 
 

 
 
Fig. 2. Environmental coverage as a surrogate for 
ecological coverage: cumulative sampling of 
environmental (right y-axis, based on Euclidean distance 
for scaled environmental variables) and ecological (left y-
axis, based on Sörenson dissimilarity for plant species 
composition) space, represented as the cumulative mean 
of multivariate dispersion of plots around their group 
centroid in principal coordinate space, in the 
chronological order they were sampled. The correlation 
between cumulative sampling of environment and species 
composition (r = 0.93 for the mean) suggests 
environmental coverage is a reasonable surrogate for 
species representation. 
 
 

Assessment of environmental coverage 
 

Univariate.–The comparative densities 
of sampling along univariate environmental 
gradients in the context of background points 
across Australia are shown in Fig. 3 and Fig. S2 
in Appendix S3. Grid, random and GRTS 
strategies produced sampling densities that 
were very similar across all gradients and were 
also a close match to background points. 
Ausplots and GRTS-strat sampling densities 
were very similar to each other, and somewhat 
similar to background, although sampling at 
slightly higher densities within cooler, wetter 
and less sandy habitats (Fig. 3), while the 
stratified strategy was strongly skewed in the 
same way, relative to background points. 
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Fig. 3. Univariate density plots showing the relative 
intensity of sampling along selected individual 
environmental gradients in the context of background 
points for Australia and comparing Ausplots to 
retrospective schemes (legend): a) annual mean of 
maximum temperature; b) annual precipitation; c) soil 
sand; d) elevation range within 1000 m. Equivalent plots 
for all 44 environmental variables in the dataset are 
shown in Fig. S2 in Appendix S3. Variables are described 
in Tables S1 and S2 and sampling strategies are described 
in Table 1. 

Although the environmental gradient intervals 
sampled were comparable across schemes and 
background points, there were some differences 
in the coverage of extremes (Appendix S1). 
Ausplots ranked last in sampling the minima 
and maxima of gradients, whereas the stratified 
strategy ranked first. 

Bivariate.–Sampling scatterplots for 
selected gradients and their context against 
background points for Australia are shown in 
Fig. 4. Each of the sampling strategies resulted 
in reasonable coverage of the Australian 
environmental space. However, the 
environmentally stratified schemes (Ausplots, 
GRTS-strat and stratified) better captured the 
extremes of that space. For example, stratified 
captured warm and very wet habitats (i.e., the 
wet tropics), and, along with Ausplots and 
GRTS-strat, the coldest habitats (Fig. 4). 

Multivariate.–A plot showing the first 
two axes of a Principal Coordinates Analysis 
(i.e., PCoA or MDS) and distances to sampling 
scheme group centroids is shown in Fig. 5. The 
relative position of the group’s centroids reflect 
differences in sampling of environmental space 
that are also visible from bivariate plots in Fig. 
4.  

The size of the sampled environmental 
space (visualised in Fig. 5) is measured via the 
distance of each plot to its group centroid in 
PCoA space. The respective distribution, mean, 
median and variance of these distances are 
visualised in Fig. 6. There were significant 
differences between the means (permutation 
test, p < 0.01), resulting in three groupings as 
follows (in ascending order; pairwise 
TukeyHSD p < 0.001): 1. randon, GRTS, grid; 
2. GRTS-strat, Ausplots; 3. stratified. 

 
DISCUSSION 

 
Many spatial sampling schemes satisfying strict 
statistical criteria can be designed via desktop 
analysis that would be impossible to implement 
as large-scale observation networks. For 
example, large areas of the Australian inland are 
remote in terms of distance to population 
centres and access by road. Land tenure (e.g. 
Defence lands) and security of long-term access 
further limit sample locations. Moreover, given 
resource limitations,  
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Fig. 4. Scatterplots showing the sampling of background 
environmental space by Ausplots and retrospective 
sampling strategies: a) annual precipitation against 
maximum temperature – monthly maximum; b) 
topographic wetness index against annual precipitation; 
c) soil phosphorus against soil sand; d) minimum monthly 
aridity index against soil clay. See Tables S1 and S2 for 
variables, Table 1 for descriptions of sampling strategies 
and Fig. 1 for spatial arrangement of samples. 
 
the expense and, in some cases, bureaucratic 
processes, involved in reaching statistically 
predefined locations need strong justification 
from a monitoring perspective. In such 
circumstances, idealised sampling must be 
tempered with pragmatism. 

One facet of a monitoring network that 
makes it useful as a large-scale ecological 
observatory (Schimel 2011) is 
representativeness (Metzger et al. 2013). That 
is, the degree to which it effectively samples the 
diversity of habitats without skewed sampling 
towards environmentally unique systems that 
have a small spatial extent. TERN Ausplots was 
initially stratified across environments via 
selection of bioregions representing 
environmental clusters. Here, we assessed how 
the environmental coverage of Ausplots 
compared to the same level of sampling applied 
retrospectively via alternative random, 
systematic or stratified strategies. 
 
 

What is the environmental coverage of 
Ausplots? 

 
The spatial sample of Ausplots resulted 

from a process of selecting a subset of 
rangelands bioregions that were representative 
of environmentally similar clusters. A sample of 
48 plots in tall eucalypt forests was also taken 
(Wood et al. 2015). The initial stratification of 
rangelands bioregions was followed by a 
pragmatic site selection process, targeted gap-
filling (expanding the scope of sampling 
beyond the rangelands) and opportunistic 
sampling, such as that resulting from 
collaborations with stakeholders in particular 
regions. Ausplots effectively sampled the 
environment of Australia in terms of the range 
and density of sampling along soil, landform 
and climatic gradients compared to many, 
randomly selected background locations (Figs 3 
& 4; Fig. S2 in Appendix S3). This means that 
the sampling covered the range of these 
gradients but does not over-represent extremes. 

 
 

Has environmental coverage been a good 
surrogate for species coverage? 

 
Without prior knowledge of the species that 
would be sampled at potential monitoring sites, 
we rely on environmental differences as a 
surrogate for expected ecological differences 
(Albuquerque & Beier 2017; Ware et al. 2018). 
However, different vegetation may occur in
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Fig. 5. Multivariate dispersion ordination plot displaying the first two axes of a Principle Coordinates Analysis (PCoA, 
or MDS) based on Euclidean distances and scaled, non-colinear environmental variables. Group centroids for each 
scheme are highlighted by white circles. Grey vectors illustrate relationship of each point (plot) to its centroid. 
Sampling schemes with larger mean distance to group centroid, i.e. larger multivariate dispersion, were considered to 
represent more environmental space. Multivariate dispersion was based on the variables in Tables S1 and S2 in 
Appendix S3. Refer to Table 1 for descriptions of the sampling strategies shown here and Fig. 1 for spatial arrangement 
of samples. 
 
similar macro-environments (Bruelheide et al. 
2018). Using existing Ausplots data, we 
empirically confirmed that sampling a larger 
environmental space resulted in corresponding 
increases in the capture of ecological beta 
diversity (Anderson et al. 2006), making 
environmental coverage a useful surrogate. 
However, we did not exclude strictly spatial 
effects from this assessment. Some of the 
ecological turnover among sites in different 
environments may be caused by the geographic 
distance between them. In that sense, space 
itself is generally considered a useful surrogate 

for ecological and environmental differences, 
which is why spatially stratified or even 
sampling strategies have traditionally been 
more common than explicit environmental 
stratification (Caddy-Retalic et al. 2018). 
 
 

How has Ausplots performed compared to 
retrospective sampling schemes? 
 

The stratification process used by Ausplots 
outperformed systematic grid, simple random 
and GRTS sampling, but not stratified random 
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sampling, in terms of environmental coverage 
from a limited set of samples (Fig. 6). While this 
makes random sampling stratified by climatic 
zones a more efficient strategy for 
environmental sampling, there are further 
considerations. Firstly, Ausplots initially 
focused primarily on the rangelands of the 
Australian inland, so it would not be surprising 
if wetter coastal habitats were under-
represented. Coastal areas outside the 
rangelands were deliberately avoided in the 
early sampling of Ausplots, specifically 
because the inland of Australia is known to be 
under-studied (Eyre et al. 2011; Guerin et al. 
2017). Secondly, by maximising coverage of 
climatic zones with even sampling density, the 
stratified random strategy may have over-
represented more mesic, coastal habitats, as 
shown by comparison to background points 
(Fig. 3). The environmental coverage of GRTS 
was similar to that of Ausplots, when restricted 
to the same sampling density within bioregions. 
We conclude that the method of site selection at 
finer spatial scales is less important for total 
environmental coverage than stratification at 
national scales. However, we did not compare 
environmental coverage within individual 
bioregions, a scale at which differences may 
well emerge. 

All approaches to sampling have 
advantages and limitations (Table 1). For 
example, simple random sampling is robust for 
subsequent statistical inference because each 
sample is independent and unbiased. However, 
random locations can be spatially uneven or 
difficult to access in an efficient way during 
field campaigns. GRTS provides a compromise 
between spatial evenness and independence 
(Stevens & Olsen 2004). A master sample can 
be prepared in advance from which field sites 
are measured (van Dam-Bates et al. 2018). 

More subjective or preferential 
strategies may break the assumptions of some 
statistical methods (Roleček et al. 2007) 
because each location does not have the same 
chance of being selected (Lájer 2007). Even so, 
applying ecological knowledge to the location 
of field plots can increase the efficiency with 
which diverse habitats are sampled. 
Additionally, non-systematic sampling takes 
place in a real world in which access is not 

uniformly available due to political, 
environmental, infrastructure, safety or 
resource restrictions. In the end, compromises 
must be made between statistical ideals, 
coverage of habitat diversity, and practical 
limitations. 

Potential methods for designing the 
spatial sampling of an ecosystem observatory 
are practically limitless. We therefore elected to 
compare Ausplots to simple strategies that have 
been commonly implemented. We did not 
compare the sampling of Ausplots to more 
sophisticated or computationally intensive 
algorithms designed specifically to maximise 
environmental coverage (Albuquerque & Beier 
2017). However, more complex tools are 
currently being used to gap-fill the Ausplots 
network of monitoring plots. 

Maximising environmental coverage is 
not the be-all and end-all of sampling, even in 
terms of representativeness. Ausplots ranked 
last for sampled gradient minima and maxima 
(also evident in the lower outliers for Ausplots 
in Fig. 6), although the differences were small 
in many cases. Stratification by climate zones 
was more successful at sampling extremes. 
However, these extremes represent only small 
spatial areas, indeed the higher environmental 
coverage of stratification by climate zones 
corresponded to poorer matches to background 
densities along environmental gradients. There 
is also a trade-off between the evenness of 
spatial versus environmental sampling. Many 
other aspects of sampling besides maximising 
coverage also influence the capacity of an 
observation network to work effectively. For 
example, the intensity of temporal replication, 
degree of local replication, the magnitude of 
changes occurring, the accuracy of field-based 
measurements and the degree to which samples 
are unbiased with respect to drivers of interest, 
all determine the power to detect spatial and 
temporal change at local, regional and 
continental scales. 
 

Conclusions 
 
We conclude that environmentally, rather than 
spatially, stratified sampling achieved higher 
levels of ecological coverage across a 
continental  ecosystem observation network. 
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Fig. 6. Multivariate dispersion in environmental space by sampling scheme, comparing Ausplots to retrospective 
strategies: box (interquartile range) and whisker (1.5x interquartile range) plots show the distribution of distance to 
centroid for individual sites in multivariate environmental (PCoA) space. Horizontal black lines within boxes indicate 
medians, solid triangles indicate means and variance is reported with numerical labels. Notches around the medians 
represent 95% confidence limits, such that non-overlapping notches between boxplots represents significant 
differences at the p < .05 level. 
 
The spatial sampling of TERN Ausplots derives 
from a deliberate strategy to maximise 
environmental coverage and representativeness 
under a series of pragmatic constraints. Given 
the diversity of the Australian terrestrial 
environment, there have been a relatively small 
amount of resources available to sample and 
monitor such a vast and often remote landmass. 
The original bioregional stratification to select 
representative regions for sampling, followed 
by further stratification, pragmatic site selection 
protocols and subsequent gap-filling, has 
proven efficient in this regard. 

The environmental coverage of 
Ausplots is greater than three retrospective 
sampling schemes that could have been applied 
to obtain statistically robust and unbiased 
samples. An alternative stratification based on 
climatic zones resulted in greater environmental 
coverage than Ausplots. However, the resulting 
sample was biased towards more mesic, coastal 
habitats that are already better sampled by 

historical monitoring. Targeted gap-filling 
using a smaller number of sites can now fine 
tune the ecological coverage of Ausplots. 

All potential spatial sampling strategies 
have advantages and limitations, depending on 
their intended application. While GRTS is 
proposed as a spatially balanced method that 
still allows any location to be sampled (in 
theory), our results suggest that for large, 
diverse terrestrial regions, it may be useful to 
combine it with some form of initial bioregional 
stratification when the number of samples is 
limited, in order to increase representativeness 
and environmental coverage. Indeed, such a 
process is already possible in existing 
implementations (Kincaid & Olsen 2017). 

Our stocktake of the environmental 
sampling of Ausplots to date compared 
performance to two benchmarks: 1. The 
background environment the observation 
network seeks to represent; and 2. A set of 
alternative, retrospective sampling strategies. 
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This assessment may be useful as context for 1) 
interpretation of Ausplots monitoring data, and 
2) the spatial sampling of other large-scale 
monitoring networks. 
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