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Abstract

Humans use prior knowledge to efficiently solve novel tasks, but how they
structure past knowledge to enable such fast generalization is not well un-
derstood. We recently proposed that hierarchical state abstraction enabled
generalization of simple one-step rules, by inferring context clusters for each
rule. However, humans’ daily tasks are often temporally extended, and ne-
cessitate more complex multi-step, hierarchically structured strategies. The
options framework in hierarchical reinforcement learning provides a theo-
retical framework for representing such transferable strategies. Options are
abstract multi-step policies, assembled from simpler one-step actions or other
options, that can represent meaningful reusable strategies as temporal ab-
stractions. We developed a novel sequential decision making protocol to test
if humans learn and transfer multi-step options. In a series of four experi-
ments, we found transfer effects at multiple hierarchical levels of abstraction
that could not be explained by flat reinforcement learning models or hi-
erarchical models lacking temporal abstraction. We extended the options
framework to develop a quantitative model that blends temporal and state
abstractions. Our model captures the transfer effects observed in human
participants. Our results provide evidence that humans create and compose
hierarchical options, and use them to explore in novel contexts, consequently
transferring past knowledge and speeding up learning.
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1. Introduction1

Recent advances have shown that reinforcement learning algorithms (RL,2

[1]) can give rise to extremely powerful artificial intelligence (AI) systems3

([2, 3]). RL modeling has also greatly helped advance our understanding4

of human behavior ([4, 5, 6, 7, 8, 9]). However, despite tremendous recent5

progress, artificial RL agents are unable to mimic and capture humans’ ability6

to learn fast, efficiently, as well as transfer and generalize knowledge ([10, 11,7

12]).8

Human behavior and cognition possesses two key features that are essen-9

tial to humans’ efficient and flexible learning: cognitive representations are10

hierarchical ([13, 14, 15, 16]) and compositional ([10]). Hierarchy has been11

identified as a crucial element of cognition in multiple domains such as percep-12

tion ([17, 18, 19, 20]), decision making ([21, 22, 23, 16, 24, 25, 26, 27, 28, 29]),13

and learning [30, 31, 9, 32, 29]. Hierarchy in choices is often temporal14

([33, 34]): choices may be described at multiple degrees of granularity by15

breaking them down into more and more basic chunks. For example, the16

task of making dinner can be broken down to making potatoes and making17

black beans; making potatoes can be broken down into sub-tasks such as cut-18

ting potatoes, roasting, etc. However, hierarchical levels may also represent19

different degrees of state abstractions at a similar time scale([14, 16, 9, 35]):20

for example, you may decide to make dinner (highest, most abstract level),21

which will consist of a salad, which will specifically be a Cesar salad (lowest,22

most concrete level).23
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Human behavior is also compositional: humans are able to compose sim-24

pler skills together in novel ways to solve new tasks in real life. For example,25

we can combine cutting potatoes with different routines to accomplish var-26

ious tasks including fried potatoes, meshed potatoes, etc. Compositionality27

goes hand in hand with hierarchy, as it assumes the existence of different28

levels of skills. It has also been central to the study of human cognition29

([36, 37, 38]) and artificial agents ([39, 40, 41, 42]).30

The hierarchical reinforcement learning (HRL) options framework [43],31

originally proposed in AI, incorporates both hierarchy and compositionality32

features in an effort to make learning more flexible and efficient. The options33

framework augments traditional RL algorithms with temporal abstractions34

called options. Broadly summarized, options are temporally-extended multi-35

step policies assembled from simple actions or other options to achieve a36

meaningful subgoal (see [43] for a formal definition). Consider making pota-37

toes as an example option. We can break down the task into sub-options38

such as cutting potatoes, roasting, etc. These sub-options can be further39

divided into simpler tasks. In the HRL options framework, agents can learn40

option-specific policies (e.g. how to make potatoes) by using, for example,41

subgoals as pseudo-rewards that reinforce within-option choices. Options are42

referred to as temporal abstractions because selecting an option is a single43

decision step, but this single decision may itself contain a series of decisions,44

so that time is compressed in a single decision.45

Each option is additionally characterized by an initiation set (the set of46
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states where the option can be initiated), and a termination function that47

maps each state to the probability of terminating the current option. For ex-48

ample, the initiation set for the option of making potatoes might be kitchen,49

and the option might terminate when the potatoes are cooked. Agents can50

also learn when to select options (e.g. make potatoes for breakfast in the51

US, but not in France) by using normal reinforcement signals.52

The options framework provides many theoretical benefits for learning53

([11, 44]), assuming that useful options are available. Unlike traditional RL54

algorithms that only learn step-by-step policies, options help explore more55

efficiently and plan longer term. For example, when we learn how to cook a56

new kind of potato, we already know how to cut potatoes. Moreover, we can57

plan with high-level behavioral modules such as cutting potatoes, instead of58

planning in terms of reaching, grabbing, and peeling. If non-useful options59

are available, the options framework predicts that learning is instead slowed60

down [11]. The question of how to identify and create useful options has61

been a topic of active and intense research in AI ([45, 46, 47, 48, 49, 50, 51,62

52, 53, 54]).63

Note that the options framework is not the first attempt to incorporate64

hierarchy and compositionality to model complex human cognition. Within65

psychology in particular, “option” echoes the idea of “chunking” in cognitive66

architecture literature ([55, 56]). However, one distinct aspect of the options67

framework is its objective of reward maximization ([11]), which is naturally68

inherited as an augmentation of traditional flat RL (although see ([57, 58])69
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for initial work on combining ideas from reward maximization of RL with70

cognitive architectures). Importantly, this objective of reward maximization71

has proven to be relevant and instrumental in revealing neural mechanisms72

underlying learning and adaptation ([59]).73

Moreover, recent literature ([12, 60, 61, 62, 63]) provides behavioral and74

neural support for options as a useful model of human learning and decision75

making. [12, 63] showed that participants were able to spontaneously iden-76

tify bottleneck states from transition statistics, which aligned with graph-77

theoretic objectives for option discovery developed in AI ([46]). In addition,78

in hierarchical decision-making tasks, [60, 61, 62] showed that human par-79

ticipants signaled reward prediction error (RPE), a key construct for RL80

algorithms, for both subgoals and overall goals. These results indicate that81

humans are able to identify meaningful subgoals, and to track sub-task pro-82

gression, both key features of the options framework. [64, 65] have also sug-83

gested potential neural correlates to implementing the computations required84

to use options.85

However, the fundamental question of whether and how humans learn86

and use options during learning remains unanswered ([12]): there is little87

work probing the learning dynamics in tasks with a temporal hierarchy, or88

directly testing the theoretical benefits of options in a behavioral setting. In89

particular, do humans create options in such a way that they can flexibly90

reuse them in new problems? If so, how flexible is this transfer? Previous91

research ([9, 32, 66]) showed evidence for flexible creation and transfer of92
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a simple type of options that operate in non-sequential environments: one-93

step policies, also called task-sets ([67]). [9, 32, 66] showed that humans can94

create multiple task-sets over the same state space in a context-dependent95

manner in a contextual multi-armed bandit task. Furthermore, humans can96

cluster different contexts together if the task-set is successful. This clustering97

structure provides opportunities for transfer, since anything newly learned98

for one of the contexts can be immediately generalized to all the others in99

the same cluster. Moreover, human participants can identify novel contexts100

as part of an existing cluster if the cluster-defined strategy proves successful,101

resulting in more efficient exploration and faster learning.102

However, the task-sets framework only supports hierarchy in “state/action103

space abstraction”, not hierarchical structure in time (also called “temporal104

abstraction”), an essential component of the options framework. Here, we105

propose that combining state abstraction from task-set transfer ([9, 32, 66])106

and temporal abstraction from the options framework ([43]) can provide im-107

portant insights into complex human cognition. The additional temporal108

hierarchical structure offered by options should enable transfer of prior knowl-109

edge at multiple levels of hierarchy, providing rich opportunity for capturing110

the flexibility of human transfer. For example, if humans have learned the111

simple sub-option of boiling water while learning how to make coffee, they112

do not need to re-learn it for learning to make tea or steamed potatoes; this113

sub-option can instead be naturally incorporated into a tea-making option,114

speeding up learning.115
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In this paper, we present a new experimental protocol that allows us to116

test whether humans create options when learning, and whether they use117

them in new contexts to explore more efficiently and transfer learned skills,118

at multiple levels of hierarchy. Our new two-stage learning game provides119

participants opportunities to create and transfer options at multiple levels120

of complexity. We also present a formal computational model that brings121

together aspects of the classic hierarchical RL options framework with the122

task-set model’s clustering and transfer Bayesian inference mechanisms. The123

model combines the benefits of both frameworks and makes specific predic-124

tions about option learning, transfer and exploration. Given that humans125

can transfer task-sets to novel contexts ([9, 32, 66]), we hypothesized that126

humans would learn and transfer options to guide exploration and achieve127

better learning performance, as captured by the model.Results of four exper-128

iments (3 replicated in an independent sample), testing different predictions129

in the same framework, showed that human participants are able to learn,130

flexibly transfer and compose options at multiple levels. Our computational131

model captured the observed patterns of behavior, supporting the importance132

of hierarchical representations of choices for flexible, efficient, generalizable133

learning and exploration.134

2. Experiment 1135

Experiment 1 was designed to test if human participants are able to136

learn and flexibly transfer options. We designed a sequential 2-step decision-137
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making paradigm (where each step was a contextual 4-armed bandit) to al-138

low participants to learn options at multiple levels of complexities. Options139

changed between blocks, but the design provided participants with opportu-140

nities to practice reusing previously learned options. In two final test blocks,141

we directly tested creation and transfer of options by changing and/or com-142

bining previously learned options in novel ways.143

2.1. Methods144

2.1.1. Participants145

All experiments were approved by the Institutional Review Board of the146

University of California, Berkeley. Experiment 1 was administered in-lab to147

UC Berkeley undergraduates who received course credit for their participa-148

tion. 34 (22 female; age: mean = 20.6, sd = 1.6, min = 18, max = 24)149

UC Berkeley undergraduates participated in Experiment 1, and 9 partici-150

pants were excluded due to incomplete data or poor learning performance151

(see results), resulting in 25 participants for data analysis.152

For replication purposes, we also recruited participants through Ama-153

zon Mechanical Turk (MTurk) who performed the same experiment online.154

Participants were compensated a minimum of $3 per hour for their participa-155

tion, with a bonus depending on their performance to incentivize them. 116156

participants (65 female; see age range distribution in Table 3) finished the157

experiment. 61 participants were further excluded due to poor performance158

(see Sec 2.1.4), resulting in 55 participants for data analysis.159
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2.1.2. Experiment 1 in-lab Protocol160

Figure 1: Experiment 1 protocol. (A) Block and trial structure: Blocks 1-6 were learning
blocks, followed by two testing blocks: Blocks 7 and 8. Each block had 60 trials. In
each trial, participants needed to select the correct response for the first stage stimulus
(e.g. circle) in order to move on to the second stage stimulus (e.g. triangle), where they
could win points by selecting the correct response. (B) Stimulus-action assignments: In
Blocks 1-6, participants had the opportunity to learn options (extended policies) at three
levels of complexity: high, middle, and low-level options (HO,MO, and LO). In the
testing phase, Block 7 tested participants’ ability to reuse MO policies outside of their
HO context, potentially eliciting positive transfer (green) of LOs in the second stage,
and negative transfer (red) of choices in the first stage. Block 8 tested predicted positive
transfer in the first stage, but negative transfer of MO policies in the second stage, by
replacing old LOs by new ones. Blocks were color coded for later result figures: Blocks
1-4 gray; Blocks 5-6 purple; Block 7 rose; Block 8 blue.

Experiment 1 consisted of eight 60-trial blocks (Fig. 1), with optional161

20-second breaks in between blocks. In each block, the participants used162

deterministic truthful feedback to learn which of four keys to press for four163

different shapes. Each trial included two stages; each stage involved partici-164

pants making choices in response to a single stimulus (Fig. 1A) by pressing165

one of four keys. Each trial started with one of two possible stimuli, hence-166

forth the first stage stimuli (e.g. circle or square). Participants had 2 seconds167

to make a choice. Participants only moved on to the second stage of the trial168

when they pressed the correct key for the first stage stimulus, or after 10169

unsuccessful key presses, which enabled them to potentially try all four keys170
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for a given stimulus in a single trial. Successful key press for the first stage171

of a trial did not result in reward feedback, but triggered a transition to the172

second stage, where participants saw one of the two other stimuli, hence-173

forth labeled second stage stimuli (e.g. diamond and triangle). Both first174

stage stimuli led to both second stage stimuli equally often, and shapes were175

randomly assigned to either first or second stage across participants. In the176

second stage, participants also could not move on until they selected the177

correct choice (or selected wrong 10 times in a row for the same image). Par-178

ticipants received explicit feedback after each second stage choice: the screen179

indicated 1/0 point for pressing the correct/incorrect key, displayed for 0.5180

second (Fig. 1A). After a correct second stage choice, participants saw a181

fixation cross for 0.5 second, followed by the next trial’s first stage stimulus.182

Each block contained 60 trials, with each first stage stimulus leading to each183

second stage stimulus 15 times in a pseudo-randomized sequence of trials.184

Crucially, the correct stimulus-action assignments were designed to allow185

for the creation of multi-step policies and to test their grouping into sets of186

policies at multiple levels. In particular, second stage correct choices were187

dependent on what the first stage stimulus was. This encouraged participants188

to make temporally extended choices (potentially options): their second stage189

strategies needed to depend on the first stage. Assignments, illustrated in190

Fig. 1B, changed across blocks. Blocks 1, 3, 5 shared the same assignments;191

Blocks 2, 4, 6 shared the same assignments; this encouraged participants to192

not unlearn policies, but rather discover that they could reuse previously193
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learned multi-level policies as a whole in new blocks.194

Assignments in Blocks 7 and 8 intermixed some of the learning blocks195

assignments with new ones to test (positive and negative) transfer of options196

at various hierarchy levels. Specifically, the protocol was set up so that197

participants could learn up to 3 levels of hierarchical task structure (low, mid,198

and high level policies). More precisely, low-level options (LO) corresponded199

to second stage policies (a pair of stimulus-action associations, commonly200

labelled a task-set) ([67]). Mid-level options (MO) were policies over both201

first and second stage stimuli. High-level options (HO) were policies over202

MO’s (a pair of stimulus-MO associations in the first stage, which could203

be thought of as a task-set over options). As a concrete analogy, in Blocks204

1, 3, 5, the participants learned how to make breakfast (HO1), consisting of205

potatoes (MO1) and eggs (MO2). Making potatoes (MO1) was broken down206

into cutting potatoes (the first stage) and then roasting (the second stage,207

LO1). In Blocks 2, 4, 6, participants learned how to make lunch (HO2),208

consisting of vegetables (MO3) and sandwich (MO4). Making vegetables209

(MO3) was broken down into combining vegetables (the first stage) and then210

steaming (the second stage, LO3).211

Block 7 tested positive transfer of second stage policies and negative trans-212

fer of first stage policies. In particular, we combined the policies for potatoes213

from breakfast (MO1) and sandwich from lunch (MO4) to form a new pol-214

icy HO3 (dinner). If participants build three levels of options, we expect215

positive transfer of mid-level options MO1 and MO4: participants should be216
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unimpaired in making potatoes or a sandwich. However, we expect negative217

transfer of high-level options HO1 and HO2: participants seeing that making218

potatoes was rewarded might start making eggs as usual, instead of sandwich219

as rewarded here.220

Block 8 tested positive transfer of first stage policies and negative transfer221

of second stage policies. In particular, the first stage of Block 8 shared the222

same assignments as Blocks 1, 3, 5 in the first stage, allowing participants223

to immediately transfer HO1. However, the second stage policies (LO5 and224

LO6) were novel, which might potentially result in negative transfer: for225

example, participants might try to transfer LO1 (roasting) following MO1226

(make potatoes), but the second stage policy was changed to LO5 (e.g. fry-227

ing).228

2.1.3. Experiment 1 MTurk Protocol229

To replicate our findings, we ran a minimally modified version of Exper-230

iment 1 online via MTurk. The task was slightly shortened, due to evidence231

that in-lab participants reached asymptotic behavior (Supplementary Fig.232

S11) early in a block, and to make the experiment more acceptable to on-233

line workers. Blocks 1 and 2 had a minimum of 32 and a maximum of 60234

trials, but participants moved on to the next block as soon as they reached235

a criterion of less than 1.5 key presses per second stage trial in the last 10236

trials (the 55 Mturk participants included for data analysis on average used237

42 (SD = 10, median = 37, min = 32, max = 60) trials in Block 1 and 39238
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(SD = 10, median = 33, min = 32, max = 60) trials in Block 2). Blocks 3-8239

were all shortened to 32 trials, with each first stage stimulus leading to each240

second stage stimulus 8 times.241

2.1.4. Data analysis242

We used the number of key presses until correct choice in each stage of243

a trial as an index of performance. Since the experiment would not progress244

unless the participants chose the correct action, more key presses indicates245

worse performance. Ceiling performance was 1 press per stage within a trial.246

Chance level was 2.5, assuming choosing 1 out of 4 keys randomly, unless247

indicated otherwise. To probe for any potential transfer effects, we calculated248

the average number of key presses at the beginning of each block (trials 1-10),249

before learning has saturated. As a stronger test of option transfer, we also250

calculated the probability that the first press for a given stimulus at each251

stage of a trial was correct in different blocks.252

To rule out participants who were not engaged in the task, we excluded253

any participant who did not complete Blocks 5-8 within an allotted amount254

of time (6 minutes each) - indeed this could only happen if participants often255

reached the 10 key presses needed to move on to the next stage without the256

correct answer, a clear sign of no engagement.257

We additionally excluded any participant whose average performance in258

the last 10 trials of either first or second stage in either Block 5 or 6 was at259

or below chance, since it indicated a lack of learning and engagement in both260
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stages of the task. These exclusion criteria were applied to all experiments,261

including Mturk participants. Note that among 116 Mturk participants in262

Experiment 1, 104 were above chance in the second stage (the more diffi-263

cult one), but only 55 were above chance in the first stage (the easier one).264

Thus most participants were excluded due to the first stage performance cri-265

terion. The same trend was true for the other two Mturk experiments: most266

Mturk participants were excluded due to performance in the first stage in267

Experiment 3 and Experiment 4. We hypothesize that the poor first stage268

performance in many is due to the task’s incentive structure - participants269

knew they only earned points (which were converted to monetary bonus for270

MTurk participants) in the second stage. All results were qualitatively sim-271

ilar to the ones reported in this paper for all experiments when we relaxed272

the exclusion criterion to include participants at chance in the first stage.273

The options framework makes predictions about the specific choices made274

in response to a stimulus, beyond whether a choice is correct: the nature275

of the errors made can be informative ([9]). We categorized the specific276

choices participants made into meaningful choice types, to further test our277

predictions about potential option transfer effects. As the choice types were278

stage and experiment dependent, we describe the choice type definitions in279

the result sections where necessary. When performing choice type analysis,280

We only considered the first key press of the first or second stage in each trial281

to reduce noise. We also compared reaction time of difference choice types282

to test potential sequence learning effects.283
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For statistical testing, we used parametric tests (ANOVAs and paired t-284

test) when normality assumptions held, and non-parametric tests (Kruskall-285

Wallis and sign test) otherwise.286

2.1.5. Computational modeling287

To quantitatively formalize our predictions, we designed a computational288

model for learning and transferring options, inspired by the classic HRL289

framework as well as other hierarchical RL literature [9, 43]. We simulated290

this model, as well as three other learning models that embody different291

hypotheses about learning in this task, to compare which model best captures292

patterns of human learning and transfer. All models were simulated 500293

times. We did not fit the model to the trial-by-trial choices of participants:294

computing the likelihood of the hierarchical models is intractable, because295

we only observed the key presses, but not the choice of options. All results296

presented in the main text figures were simulated with parameters chosen297

to match participants’ behavioral patterns qualitatively and quantitatively298

well (Table 1). However, our qualitative predictions are largely independent299

of specific model parameters: we show in the supplement (Sec. 9.3) that a300

single set of parameters (Table 2), consistent across all experiments, makes301

the same qualitative predictions regarding transfer effects.302

2.1.5.1. The Naive Flat Model.303

304

The Naive Flat Model is a classic reinforcement learning model that learns305
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Q-values to guide action selection in response to stimuli. In the first stage, it306

learns a Q-value table Q1(Fi, A
1
j), where F1 and F2 are two first stage stimuli,307

A1, . . . , A4 are four possible actions. We use superscript to index stage (1308

means first stage, 2 means second stage). The Q-values are initialized to309

uninformative Q-values 1/#{possible actions} = 1
4
. On each choice, a first310

stage policy is computed based on the first stage stimulus, Fi, with the311

softmax function:312

P (A1
j |Fi) =

exp(β1 ∗Q1(Fi, A
1
j))∑

k exp(β
1 ∗Q1(Fi, A1

k))
, (1)

where β1 is the inverse temperature parameter. A first stage action A1,313

ranging from A1 to A4, is then sampled from this softmax policy. After314

observing the outcome (moving on to the second stage or not), the Q-values315

is updated with Q-learning ([1]):316

Q1(Fi, A
1) = Q1(Fi, A

1) + α1 ∗ (r −Q1(Fi, A
1)), (2)

where α1 is the learning rate parameter, and r is 1 if A1 is correct and 0317

otherwise.318

In the second stage, the model similarly learns another Q-value table319

Q2(Si, A
2
j), where S1 and S2 are two second stage stimuli, with learning320

rate alpha2 and inverse temperature β2. Note that it disregards the non-321

Markovian nature of the task: it learns the Q-values for the two second322

stage stimuli without remembering the first stage stimulus. As such, this323
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model is a straw man model that cannot perform the task accurately, but324

exemplifies the limitations of classic RL in more realistic tasks, and serves as325

a benchmark.326

At the start of a new block, the Naive Flat Model resets all Q-values to327

1/4, and thus has to re-learn all Q-values from scratch. To better account328

for human behavior, we also included two forgetting parameters, f 1 and f 2.329

After each choice, the model decays all Q-values for the first stage based on330

f 1:331

Q1(Fi, A
1
j) = (1− f 1) ∗Q1(Fi, A

1
j) + f 1 ∗ 1/4. (3)

Forgetting in the second stage is implemented similarly.332

Participants very quickly learned that the correct second stage action333

was different from the first stage one (see results). To account for this meta-334

learning heuristic, we add a meta-learning parameter m that discourages335

selecting the same action in the second stage as in the first stage. Specifically,336

if π is the second stage policy as computed from softmax, we set P (A1|Si) =337

m, where A1 is the action chosen in the first stage, and re-normalize:338

P (Aother|Si) = (1−m)× π(Aother)/(1− π(A1)), (4)

where Aother is any action other than A1.339

Parameters f 1, f 2 and m, which capture memory mechanisms and heuris-340

tics orthogonal to option learning, are included in all models and imple-341

mented in the same way. In total, the Naive Flat Model has 7 parameters:342
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α1, β1, f 1, α2, β2, f 2,m.343

2.1.5.2. The Flat Model.344

345

The Flat Model extends the Naive Flat Model with a single addition of346

first-stage memory, which makes this model able to perform the task well347

in both stages. Specifically, in the second stage, the Flat Model remembers348

the first stage stimulus by treating each of the 4 combinations of the first349

and second stage stimuli as a distinct state and learns Q-values for all 4350

combinations. The Flat Model has the same 7 parameters as the Naive Flat351

Model.352

2.1.5.3. The Task-Set Model.353

354

The Task-Set Model is given the capability of transferring previously355

learned task-sets (one-step policies) with Bayesian inference. In the first356

stage, the model tracks the probability P 1 of selecting each first stage task-set357

HOi in different first stage contexts c1j , which encodes the current temporal358

(block) context (e.g. 8 contexts in the first stage of Experiment 1). In359

particular, the model uses a Chinese Restaurant Process (CRP) prior to360

select HO ([68]): if contexts {c11:n} are clustered on N1 ≤ n HO′s, when the361

model encounters a new context c1n+1, the prior probability of selecting a new362
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high-level option HOn+1 in this new context is set to:363

P 1(HOn+1|c1n+1) =
γ1

Z1
; (5)

and the probability of reusing a previously created high-level option HOi is364

set to:365

P 1(HOi|c1n+1) =
N1

i

Z1
, (6)

where γ1 is the clustering coefficient for the CRP, N1
i is the number of first366

stage contexts clustered on HOi, and Z1 = γ1 +
∑

iN
1
i is the normalization367

constant. The new HOn+1 policy is initialized with uninformative Q-values368

1/#{possible actions} = 1
4
. The model samples HO based on the conditional369

distribution over all HO’S given the current temporal context. The model370

also tracks HO-specific policies via Q-learning. Once an HO is selected, a371

first stage policy is computed based on the HO’s Q-values and the first stage372

stimulus Fi with softmax:373

P (A1
j |Fi, HO) =

exp(β1 ∗Q1
HO(Fi, A

1
j))∑

k exp(β
1 ∗Q1

HO(Fi, A1
k))

, (7)

where β1 is the inverse temperature. A first stage action A1, ranging from A1374

to A4, is then sampled from this softmax policy. After observing the outcome375

(moving on to the second stage or not), the model uses Bayes’ Theorem to376
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update P 1:377

P 1(HOk|c1j) =
P (r|Fi, A

1, HOk)P (HOk|c1j)
(
∑

l P (r|Fi, A1, HOl)P (HOl|c1j))
, (8)

where r is 1 if A1 is correct and 0 otherwise, and P (r|Fi, A
1, HOl) = 1 −378

Q1
HOl

(Fi, A
1) if r = 0, or Q1

HOl
(Fi, A

1) if r = 1. Then the Q-values of the379

HO with the highest posterior probability is updated:380

Q1
HO(Fi, A

1) = Q1
HO(Fi, A

1) + α1 ∗ (r −Q1
HO(Fi, A

1)), (9)

where α1 is the learning rate.381

The second stage runs a separate CRP with P 2, similar to P 1 in the first382

stage, which guides selection of task-sets LO over second stage stimuli. All383

other are identical to the first stage except that the second stage contexts384

are determined by both temporal (block) context and the first stage stimulus385

(e.g. 16 contexts in the second stage of Experiment 1). All the equations of386

CRP, action selection and Q-learning remain the same. The Task-Set Model387

has 9 parameters: α1, β1, γ1, f 1, α2, β2, γ2, f 2,m.388

2.1.5.4. The Option Model.389

390

The Option Model extends the task-set model to include multi-step de-391

cisions (options MO). The first stage is identical to the Task-Set Model.392

However, in addition to just choosing an action, an MO is also activated. To393
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simplify credit assignment, we assumed that selecting an action in the first394

stage is equivalent to selecting an MO as a whole: for example, selecting A1395

for the circle activates MO1 (Fig. 1B).396

The second stage is the same as the Task-Set Model, except that each397

MO has an MO-specific probability table P 2
MO. In the Task-Set Model, the398

CRP in the second stage using P 2 is independent of the first stage choices.399

In contrast, in the Option Model, the first stage choice determine which MO400

is activated, which then determines which probability table, P 2
MO, to use401

for running the CRP in the second stage. This implementation captures the402

essence of options in the HRL framework, in that selection of MO in the first403

stage constrains the policy chosen until the end of the second stage (where404

the option terminates). The Option Model has the same 9 parameters as the405

Task-Set Model.406

2.2. Experiment 1 Results407

2.2.1. Participants do not use flat RL408

Participants’ performance improved over Blocks 1-6 (Fig. 2A) and within409

blocks (Supplementary Fig. S11). This improvement may reflect the usual410

process of learning the task observed in most cognitive experiments, as indi-411

cated by the improvement between Block 1 and 2 (paired t-test, first stage:412

t(26) = 2.2, p = 0.03; second stage: t(26) = 3.9, p = 0.0006). However,413

it could also reflect participants’ ability to create options at three different414

levels in Blocks 1 and 2, and to successfully reuse them in Blocks 3-6 to415
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Figure 2: Experiment 1 general behavior. (A) Average number of key presses in the first
and the second stages per block. Chance is 2.5, ceiling is 1 press. (B) Average number of
key presses for the first 10 trials of Blocks 5-8 for the first (left) and second stages (right).
We use n.s. to indicate p ≥ 0.1; † for p < 0.1; ∗ for p < 0.05; ∗∗ for p < 0.01; ∗∗∗ for
p < 0.001; and >∗∗∗ for p < 0.0001. We indicated all statistical significance with these
notations from now on.

adapt to changes in contingencies more efficiently. Below, we present spe-416

cific analyses to probe option creation in test blocks. We used participants’417

performance averaged over Blocks 5 and 6 as a benchmark for comparing418

against performance in test Blocks 7 and 8.419

We probed potential option transfer effects over the first 10 trials for420

each block (Fig. 2B), before behavior reached asymptote (Supplementary421

Fig. S11). In the first stage, there was a main effect of block on number422

of key presses (1-way repeated measure ANOVA, F (2, 48) = 6.9, p = 0.002).423

Specifically, participants pressed significantly more times in Block 7 than424

Blocks 5-6 and Block 8 (paired t-test, Blocks 5-6: t(24) = 3.0, p = 0.006;425

Block 8: t(24) = 3.0, p = 0.006). We also found no significant difference426

between the performance of circle and square in Block 7 (9.1). These results427
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provide preliminary evidence for negative transfer of previously learned HO428

in Block 7: participants might attempt to reuse HO1 or HO2, since either429

policy is successful for half the trials, but is incorrect and thus results in430

more key presses in the first stage for the other half of the trials. There431

was no significant difference between Block 8 and Blocks 5-6 (paired t-test,432

t(24) = 0.25, p = 0.81). This provides initial evidence for positive transfer of433

HO1 in Block 8, since performance in the first stage of Block 8 was on par434

with Blocks 5-6.435

In the second stage (Fig. 2B), there was also a main effect of block in436

number of key presses (1-way repeated measure ANOVA, F (2, 48) = 11, p <437

0.0001). Specifically, participants pressed significantly more times in Block 8438

than Block 7 and Blocks 5-6 (paired t-test, Block 7: t(24) = 2.4, p = 0.025;439

Blocks 5-6: t(24) = 5.8, p < 0.0001). The difference between Block 7 and440

Blocks 5-6 was marginally significant (paired t-test, t(24) = 2.0, p = 0.06).441

These results suggest participants positively transferred MO in the second442

stage of Block 7, where such generalization was helpful, since their perfor-443

mance was nearly not impaired compared to Blocks 5-6 where participants444

were able to reuse full HO. Furthermore, it suggests that they negatively445

transferred MO in the second stage of Block 8, where the first stage choice446

that respected the current MO was followed by a new LO for correct perfor-447

mance, and thus necessitated to create a new MO.448

Behavioral results in both the first and second stages provide initial ev-449

idence for option learning and transfer at distinct levels, both positive –450
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Figure 3: Experiment 1 transfer effects. Average number of first (A) and second (B) stage
key presses in the first 10 trials of Block 5-8 for participants as well as model simulations.
We ran 500 simulations of each hierarchical model (top) and flat model (bottom). See
Table 1 for model parameters. Behavioral results show patterns of positive and negative
transfer predicted by hierarchical, but not flat RL models, in both stages.

when previous policies can be helpfully reused – and negative – when they451

impair learning. To further validate our hypothesis that participants learned452

options, we compared the simulations of four models with human behavior453

(Table 1).454

Among the four models (Fig. 3), only the Option Model and the Task-455

Set Model could account for the results. The Naive Flat Model could not456

achieve reasonable performance in the second stage because it ignored the457
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non-Markovian aspect of the task - it was unable to learn two different sets458

of correct choices for a given second stage stimulus, because this required459

conditioning on the first stage stimulus (Fig. 1B). Thus, it serves to illustrate460

the limitations of classic RL, but is a straw man model in this task. The Flat461

Model achieved reasonable performance in both the first and second stages,462

being able to take into account the first stage in second stage decisions,463

but did not demonstrate any transfer effects. Thus, results so far replicate464

previous findings that participants create one-step policies or task-sets, that465

they can reuse in new contexts, leading to positive and negative transfer466

[9, 32, 66]. We now present new analyses to show that the findings extend467

to creating multi-step policies or options.468

2.2.2. Second stage choices reveal option transfer469

Figure 4: Experiment 1 second stage choices. (A) Error type analysis of the second stage
in Block 8 for participants, the Option Model and the Task-Set Model. Participants made
significantly more option transfer errors than other errors. This was predicted by the
Option Model, but not by the Task-Set Model. (B) Probability of a correct first key press
for the second stage of the first trial of each of the 4 branches in Blocks 7-8 reveals positive
and negative transfer prior in first attempt (left), as predicted by the Option Model (right).
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To strengthen our results, we further examined the specific errors that470

participants made as they can reveal the latent structure used to make deci-471

sions. To further disambiguate between the Option Model and the Task-Set472

Model, we categorized errors into meaningful choice types ([9]). We focused473

on the second stage choices for model comparison (Fig. 4), the part of the ex-474

periment designed so that temporally extended policies could have an impact475

on decision making.476

We hypothesized that participants learned MO’s that paired the policies477

in the first and second stages. Therefore, positive transfer in the second478

stage of Block 7 and negative transfer in the second stage of Block 8 should479

be due to participants selecting the entire MO that was previously learned480

in response to a first stage stimulus, including the correct key press for the481

first level stimulus as well as the corresponding LO for the second level. We482

defined choice types based on this hypothesis. For example, for the second483

stage of Block 8, consider the diamond following the circle in Block 8 (Fig.484

1B): A2 is the correct action; an A1 error corresponds to the correct action485

in the first stage (“f-choice” type); an A4 error would be the correct action486

if selecting MO1 as a whole (“option transfer” type); an A3 error is labeled487

“other” type.488

We computed the proportion of the 3 error types for the first 3 trials of489

each of the 4 branches in the second stage of Block 8 (Fig. 4A). There was490

a main effect of error type (1-way repeated measure ANOVA, F (2, 48) =491

44, p < 0.0001). In particular, we found more “option transfer” errors than492
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the “other” errors (paired t-test, t(24) = 2.5, p = 0.02), suggesting that493

participants selected previously learned MO’s as a whole at the beginning of494

the second stage of Block 8. The Option Model could reproduce this effect495

because the agent selects an entire option (MO) in the first stage: not only496

its immediate response to the first stage stimulus, but also its policy over497

LO choice in the second stage. The Task-Set Model could not reproduce498

this effect, because the first stage choice was limited to the first stage, and499

the second stage did not use any choice information from the first stage.500

Therefore, the error type profile in Block 8 could not be accounted for by501

transfer of one-step task-sets alone, ruling out the Task-Set Model.502

There was also more “other” type than “f-choice” errors (paired t-test,503

t(24) = 8.8, p < 0.0001). There were few “f-choice” errors, likely due to meta-504

learning ([69]): participants observed that the correct action in the second505

stage was always different from the first stage (Fig. 1B). We included a506

mechanism in all models to capture this heuristic and quantitatively capture507

behavior better.508

The same choice type definitions were not well-defined for the second stage509

of blocks other than Block 8. Therefore, we categorized errors differently in510

Blocks 1-7. For example, consider the diamond following the circle in Blocks511

1, 3, and 5 (Fig. 1B): A4 is the “correct” choice; an A1 error corresponds to512

the correct choice in the first stage (“f-choice” type); an A2 error corresponds513

to the correct action for the other second stage stimulus, triangle, in the same514

LO, thus we defined it to be the “sequence” type, becauseA2 followed the first515
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stage correct action A1 half of the time, as opposed to the “non-sequence”516

action A3, which never happened after A1. Aggregating the first 3 trials for517

each of the 4 branches in the second stage of Blocks 5-7 (Supplementary Fig.518

S6A), we did not find any significant difference in any of the 4 choice types519

between the second stage of Block 7 and that of Blocks 5-6 (paired t-test, all520

(t(24) ≤ 1, p’s> 0.30). This indicates that the positive transfer in the second521

stage of Block 7 was not interfered by the negative transfer in the first stage522

of Block 7, further confirming that participants were selecting learned MO’s523

as a whole, but re-composing them together into a new HO. The Option524

Model is also able to quantitatively capture the similarity of the choice type525

profiles between Block 7 and Blocks 5-6 (Supplementary Fig. S6B).526

2.2.3. The first press in the second stage reveals theoretical benefit of options527

While the first several trials demonstrated transfer effects, the Option528

Model predicts immediate transfer effect on the first press in the second529

stage of a new block without any experience. Therefore, we computed the530

probability of a correct choice on the first press for the 4 branches in the531

second stage (Fig. 4B), and compared to chance (1
3
, accounting for the532

meta-learning effect that the correct action in the second stage was always533

different from the first stage). The probability of a correct first key press in534

Block 7 and Blocks 5-6 was significantly above chance (sign test, Block 7:535

p = 0.015; Blocks 5-6: p < 0.0001), without significant difference between536

the two (sign test, p = 0.26). These positive transfer effects on the first press537
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supports our prediction that participants were using previously learned MO538

to guide exploration and thus speed up learning even without any experience539

in Blocks 5-7. Block 8 was significantly below chance (sign test, p = 0.004),540

independently indicating, via negative transfer, exploration with previously541

learned MO in the very first trials. The Option Model was able to quanti-542

tatively reproduce these positive and negative transfer effects evident in the543

first press in the second stage, since the first stage choice can immediately544

help inform which LO to use in the second stage.545

2.2.4. First stage choices reveal transfer of policies over options546

Figure 5: Experiment 1 first stage choices. Choice type analysis of the first stage in Blocks
5-7 for participants (A) and the Option Model (B). Participants made significantly more
wrong HO errors in Block 7 than in Blocks 5-6, but no change for the other two error
types. This suggests that participants were negatively transferring HO in the first stage
of Block 7, as predicted by the Option Model.

To test whether participants learned HO’s in the first stage, we inves-547

tigated errors in the first stage. We hypothesized that the increase in key548

presses in the first stage of Block 7 (Fig. 2B) was due to selecting a previously549

learned but now wrong HO in the first stage, which would be characterized550
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by a specific error. We categorized first stage errors into 3 types (“wrong551

shape”, “wrong HO”, and “both wrong”), which we exemplify for the cir-552

cle in Blocks 1, 3, and 5 (Fig. 1B): A1 is the “correct” action; an A2 error553

corresponds to the correct action for the square in the same block (“wrong554

shape” type); an A3 error corresponds to the correct action for the circle in555

Blocks 2, 4, and 6 (“wrong HO” type); and A4 is the “both wrong” type.556

According to our hypothesis, we expected that the worse performance in557

the first stage of Block 7 (Fig. 3B) should be primarily due to the “wrong558

HO” errors. We found a main effect of choice type (2-way repeated measure559

ANOVA, F (3, 72) = 195, p < 0.0001) and a significant interaction between560

block and choice type (F (3, 72) = 2.9, p = 0.04). In particular, we found that561

in Block 7 (Fig. 5A), compared to Blocks 5-6, only the “wrong HO” error562

type marginally increased (paired t-test, t(24) = 1.9, p = 0.07) in Block 7.563

The Option Model reproduced this choice type profile in the first stage(Fig.564

5B), by attempting to transfer previously learned HO, which would hurt565

performance in the first stage.566

2.2.5. Experiment 1 Mturk replicates option transfer in the second stage567

While in-lab participants’ behavior showed promising evidence in favor568

of transferring multi-step options, we sought to replicate our results in a569

larger and more diverse population. Therefore, we ran a shorter version of570

Experiment 1 on Mturk (Fig. 6A, Supplementary Fig. S12). In the second571

stage, we replicated the main effect of block on the number of presses (1-572
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Figure 6: Experiment 1 Mturk results. (A) Average number of key presses in the first
and the second stages per block. (B) Average number of key presses for the first 10 trials
of Blocks 5-8 for the first stage for participants (left) and the Option Model (right). (C)
Same as (B) for the second stage. (D) Error type analysis of the second stage in Block 8
for participants (left) and the Option Model (right). We replicated the same pattern as
the in-lab population (Fig. 4A). (E) Probability of a correct first key press for the second
stage of the first trial of each of the 4 branches in Blocks 7-8 for participants (left) and
the Option Model (right).

way repeated measure ANOVA, F (2, 108) = 19, p < 0.0001). Specifically,573

the average number of key presses (Fig. 6C) in the first 10 trials of Block 7574

was not significantly different from that of Blocks 5-6 (paired t-test, t(54) =575

0.72, p = 0.47). Participants pressed significantly more times in Block 8576

compared to Block 7 and Blocks 5-6 (paired t-test, Block 7: t(54) = 4.5, p <577

0.0001; Blocks 5-6: t(54) = 5.3, p < 0.0001), replicating results from in-lab578

participants (Fig. 2B).579

In the second stage of Block 8 (Fig. 6D), there was a main effect of error580
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type (1-way repeated measure ANOVA, F (2, 108) = 62, p < 0.0001). The581

“option transfer” errors were significantly more frequent than the “other”582

type errors (paired t-test, t(54) = 4.7, p < 0.0001), and the “other” type was583

significantly more frequent than the “f-choice” type (paired t-test, t(54) =584

6.7, p < 0.0001). This also replicates the error type profile of in-lab partici-585

pants.586

For the probability of correct choice in the first press (Fig. 6E), we also587

found participants were performing significantly above chance in the second588

stage of Blocks 3-4, Blocks 5-6 and Block 7 (sign test, Blocks 3-4: p = 0.001;589

Blocks 5-6: p = 0.003; Block 7: p = 0.001), but not significantly different590

from chance in Block 8 (sign test, p = 0.18). There was also no significant591

difference between Block 7 and Blocks 5-6 (sign test, p = 1). This supported592

the previous finding that participants used temporally extended MOs to593

explore in a new context.594

We did not replicate the negative transfer in the first stage of Block595

7 (Fig. 6B) shown in in-lab participants (Fig. 2B). There was no main596

effect of block on the number of presses (1-way repeated measure ANOVA,597

F (2, 108) = 0.19, p = 0.83). Mturk participants did not press significantly598

more times in the first stage of Block 7 than Block 8 or Blocks 5-6 (paired599

t-test, Block 7: t(54) = 0.30, p = 0.77; Blocks 5-6: t(54) = 0.32, p = 0.75).600

This is potentially due to the lack of motivation among Mturk participants601

to exploit structure in the first stage, since participants did not receive points602

for being correct in the first stage. On the other hand, participants received603
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points for choices in the second stage, which, as indicated by the Mturk604

experiment instruction, would impact their bonus. This might explain why605

the transfer effects in the first stage did not replicate, but the second stage606

transfer did. Note that in this case, the absence of transfer allowed the Mturk607

participants to make fewer errors in Block 7 than they might otherwise,608

highlighting the fact that engaging in a cognitive task and building and using609

structure is not always beneficial.610

The option model was able to account for Experiment 1 Mturk data,611

despite the lack of transfer in the first stage, by assuming either a faster612

forgetting of HOs (higher f 1) or a lower prior for reusing them (higher γ1)613

(Table 1). Indeed, simulations reproduced the lack of transfer in the first614

stage (Fig. 6B), and also captured all option transfer effects demonstrated615

by Mturk participants in the second stage(Fig. 6C-E).616

We conclude that, in the Mturk sample, similar to the in-lab sample, we617

successfully replicated the main option transfer effects in the second stage618

due to selecting a temporally extended policy MO as a whole. This is re-619

flected by number of presses, proportion of error types in Block 8, and the620

probability of correct choice in the first press (Fig. 6C-E). While we did621

not replicate transfer of high level-options (task-sets of options), this could622

be accommodated by the model, and understood as a lack of motivation at623

learning the highest level of hierarchy HO.624
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3. Experiment 2625

Experiment 2 was administered to UC Berkeley undergraduates in ex-626

change for course credit. 31 (21 females; age: mean = 20.2, sd = 1.8, min =627

18.3, max = 26.3) UC Berkeley undergraduates participated in Experiment628

2. 4 participants in Experiment 2 were excluded due to incomplete data or629

below chance performance, resulting in 26 participants for data analysis.630

3.1. Experiment 2 Protocol631

Figure 7: Experiment 2 protocol. To eliminate potential interference of Block 7 on Block
8 in Experiment 1, Block 7 of Experiment 1 was removed in Experiment 2. Therefore,
Block 7 in Experiment 2 was identical to Block 8 in Experiment 1.

Experiment 1’s Block 8 comes after a first testing block that includes re-632

composing of previous options, which could interfere with our interpretation633

of positive and negative transfer results in Block 8, for example by making634

participants aware of the potential for structure transfer. In Experiment 2,635

we removed Block 7 of Experiment 1 to eliminate this potential interference636

(Fig. 7). Therefore, Block 7 in Experiment 2 was identical to Block 8 in637

Experiment 1. In addition, to limit experiment length and loss of motivation638
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at asymptote in each block, we decreased the length of Blocks 3-7 to 32 trials639

each, with each first stage stimulus leading to each second stage stimulus 8640

times. All other aspects were identical to Experiment 1.641

3.2. Experiment 2 Results642

Figure 8: Experiment 2 results. (A) Average number of key presses in the first and the
second stages per block. (B, C) Average number of key presses for the first 10 trials of
Blocks 5-7 for the first (B) and second (C) stage for participants (left) and the Option
Model (right). (D) Error type analysis of the second stage in Block 7 for participants (left)
and the Option Model (right). We replicated the same pattern as in Block 8 of Experiment
1 (Fig. 4A, Fig. 6D). (E) Probability of a correct first key press for the second stage of
the first trial of each of the 4 branches in Blocks 5-7 for participants (left) and the Option
Model (right).

3.2.1. Second stage choices replicate option transfer643

Participants were able to learn the correct actions in both the first and644

second stages and their performance improved over Blocks 1-6, (Fig. 8A).645
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The within-block learning curves also showed that participants performance646

improved and then reached asymptote as they progressed within a block647

(Supplementary Fig. S13).648

We replicated the negative transfer effects in the second stage of Ex-649

periment 1 (Fig. 2B) both in terms of number of presses (Fig. 8C) and650

error types in Block 7 (Fig. 8D). Participants pressed significantly more651

times in the second stage of Block 7 compared to Blocks 5-6 (paired t-test,652

t(25) = 6.4, p < 0.0001). In Block 7 specifically, there was a main effect653

of error type (1-way repeated measure ANOVA, F (2, 50) = 30, p < 0.0001).654

The proportion of the error type “option transfer” was significantly higher655

than the error type “other” (paired t-test, t(25) = 3.2, p = 0.004).656

We also observed transfer effects on the first press in the second stage657

(Fig. 8E). We found that the probability of a correct choice was significantly658

above chance in Blocks 3-4 and Blocks 5-6 (sign test, Blocks 3-4: p = 0.0094;659

Blocs 5-6: p < 0.0001), and significantly below chance in Block 7 (sign660

test, p < 0.0001). This replicates results in Blocks 3-6 and 8 in Experiment661

1 (Fig. 4B). The Option Model could quantitatively reproduce all these662

transfer effects (Fig. 8B-D).663

3.2.2. Second stage choices in Block 7 reveal interaction between meta-learning664

and option transfer665

Because there was no Block 7 from Experiment 1, we had a less interfered666

test of negative transfer in the second stage of Block 7 of Experiment 2.667

36

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.20.958587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958587
http://creativecommons.org/licenses/by-nc/4.0/


Figure 9: Experiment 2 second stage choice shows interaction between option transfer and
meta learning. Error type analysis for each of the 4 branches in the second stage of Block
8 for participants (A) and the Option Model (B). The option transfer error was more than
other error only for F1 → S1 and F2 → S2, which was predicted by the Option Model.
(C) Example schematic for the interaction: learning A2 for the diamond activates LO3;
learning A3 for the triangle activates LO2; meta-learning only suppresses LO2 but not
LO3.

Therefore, we further broke down the second stage choice types for each of the668

4 branches in the second stage of Block 7 in Experiment 2 (Fig. 9A). Consider669

(Fig. 1B) the two first stage stimuli as F1 (circle) and F2 (square), and the670

two second stage stimuli as S1 (diamond) and S2 (triangle). We found a main671

effect of error type on proportion of error types and a marginally significant672

interaction between branch and error type (2-way repeated measure ANOVA,673

error type: F (2, 36) = 20, p < 0.0001; interaction: F (6, 108) = 2.1, p =674
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0.055). Specifically, we found the error type profile in Fig. 8C was mainly675

contributed by F1 → S1, i.e. circle in the first stage followed by diamond676

in the second stage, and F2 → S2 (paired t-test, F1 → S1: t(23) = 2.7, p =677

0.013; F2 → S2: t(23) = 3.1, p = 0.005). On the other hand, there was no678

significant difference between the “option transfer” and “other” error types679

for F1 → S2 and F2 → S1 (paired t-test, F1 → S2: t(22) = 0.9, p = 0.38;680

F2 → S1: t(22) = 0.81, p = 0.43). It is striking that this highly non-intuitive681

result is perfectly predicted by the Option Model (Fig. 9B).682

The Option Model offers an explanation as the interaction between option683

transfer and meta-learning (Fig. 9C). Meta-learning discourages participants684

from selecting second-stage actions that repeat the correct first-stage action,685

and as such, discourage them from sampling some, but not other LOs (e.g.686

LO2 in the example of Fig. 9C). This interference in the exploration of poten-687

tial LO’s leads to some transfer errors to be more likely, in an asymmetrical688

way.689

3.2.3. Influence of the second stage on the first stage690

For the first stage choices (Fig. 8B), we found that participants pressed691

significantly more times in the first 10 trials of Block 7 compared to Blocks692

5-6 (paired t-test, t(25) = 2.4, p = 0.024). This effect was not found in Ex-693

periment 1 between Block 8 and Blocks 5-6 (Fig. 2B), and was not predicted694

by the model.695

One potential explanation for this surprising result is that the error signals696
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in the second stage propagated back to the first stage. Specifically, the errors697

participants made by selecting the wrong LO in the second stage are credited698

to the chosen LO’s policy, but participants might also credit these errors to699

using the wrong HO in the first stage. Going back to our example, if your700

meal is not tasty, it might not be because you roasted the potatoes instead701

of boiling them, but it might be because you needed vegetables instead of702

potatoes in the first place. To test this explanation, we further probed choice703

types in the first stage of Experiment 2 (Supplementary Fig. S7). Indeed,704

we found significantly more “wrong HO” errors in Block 7, compared to705

Blocks 5-6 (paired t-test, p = 0.045). Therefore, the increase in number of706

key presses in the first stage of Block 7 was mainly contributed by more707

“wrong HO” errors, indicating that participants explored another high level708

option (cooking vegetables). The same effect was not seen in the first stage709

of Experiment 1 between Block 8 and Blocks 5-6 (Fig. 2B), potentially due710

to the interference of Block 7 in Experiment 1.711

The Option Model could not capture this effect, since the selection of712

HO was only affected by learning in the first stage (Sec. 2.1.5), as a way of713

simplifying credit assignment (see Sec. 6 for a more detailed discussion on714

credit assignment).715

4. Experiment 3716

Experiment 3 was administered to UC Berkeley undergraduates in ex-717

change for course credit. 35 (22 females; age: mean = 20.5, sd = 2.5, min718
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= 18, max = 30) UC Berkeley undergraduates participated in Experiment719

3. 10 participants in Experiment 3 were excluded due to incomplete data or720

below chance performance, resulting in 25 participants for data analysis.721

An additional 65 (37 female; see age range distribution in Table 3) Mturk722

participants finished the experiment. 34 participants were further excluded723

due to poor performance, resulting in 31 participants for data analysis (see724

Sec. 2.1.4).725

4.1. Experiment 3 in-lab Protocol726

Figure 10: Experiment 3 protocol. The second stage stimuli following each first stage
stimuli were different: diamond and triangle followed circle; hexagon and star followed
square. All state-action assignments remained the same as Experiment 1. This manipu-
lation allowed us to test whether participants would naturally learn and transfer options
in the second stage even when they could simply learn the correct key for each of the
4 second stage stimuli individually, rather than needing to take into account first stage
information.

In Experiment 1, to perform well in the second stage, participants had to727

learn option-specific policies, due to the non-Markovian nature of the task728

(the correct action for the same second stage stimulus was dependent on729

the first stage stimulus). In Experiment 3, we removed this non-Markovian730
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feature of the protocol and tested whether the removal would reduce or elim-731

inate option transfer. Based on previous research on task-sets showing that732

participants build structure when it is not needed ([32, 70]), we predicted733

that participants might still show some evidence of transfer. However, we734

predicted that any evidence of transfer would be weaker than in previous735

experiments.736

In Experiment 3, the second stage stimuli following the two first stage737

stimuli were different (Fig. 10). For example, diamond and triangle fol-738

lowed circle, whereas star and hexagon followed square. This eliminated the739

key non-Markovian feature from Experiment 1, since participants could sim-740

ply learn the correct key for each of the 4 second stage stimuli individually741

without learning option-specific policies. Blocks 1 and 2 had 60 trials; we742

shortened Blocks 3 to 8 to 32 trials for the same reason as in Experiment 2.743

All other aspects of the protocol were identical to Experiment 1.744

4.2. Experiment 3 Mturk Protocol745

In the Mturk version, Blocks 1 and 2 had a minimum of 32 and a max-746

imum of 60 trials, but participants moved on to the next block as soon as747

they reached a criterion of less than 1.5 key presses per second stage trial748

in the last 10 trials (the 31 Mturk participants included for data analysis on749

average used 36 (SD = 7, median = 32, min = 32, max = 60) trials in Block750

1 and 35 (SD = 4, median = 32, min = 32, max = 59) trials in Block 2).751

Blocks 3 to 8 all had 32 trials each. Experiment 3 MTurk was thus perfectly752
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comparable to Experiment 1 MTurk, as such, we focus first on MTurk re-753

sults, since the same comparison could not be drawn between Experiments754

1 and 3 for in-lab participants.755

4.3. Experiment 3 Results756

Figure 11: Experiment 3 Mturk results. (A) Average number of key presses in the first
and the second stages per block. (B) Average number of key presses for the first 10 trials
of Blocks 5-8 for the second stage for participants (left) and the Option Model (right). (C)
Error type analysis of the second stage in Block 8 for participants (left) and the Option
Model (right). The proportion of option transfer error was not significantly different from
other error, different from Experiment 1 and Experiment 2, suggesting reduced option
transfer. (D) Probability of a correct first key press for the second stage of the first trial of
each of the 4 branches in Blocks 7-8 for participants (left) and the Option Model (right).
(E) Comparison of Experiment 1 Mturk and Experiment 3 Mturk participants in terms of
error types in the second stage of Block 8: There was no significant effect of experimental
condition.
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4.3.1. Mturk participants show reduced option transfer757

Mturk participants were able to learn the correct actions in both the758

first and second stages, and their performance improved over Blocks 1-6,759

(Fig. 11A). The within-block learning curves also showed that participants760

performance improved and then reached asymptote as they progressed within761

a block (Supplementary Fig. S14).762

We first analyzed the average number of key presses in the first 10 trials763

of each block and stage. For the first stage (Supplementary Fig. S8A), we764

found no effect of block on number of presses across Blocks 5-8 (F (2, 60) =765

0.13, p = 0.88), as in Experiment 1 MTurk. For the critical second stage766

(Fig. 11B), there was a main effect of Block (F (2, 60) = 3.3, p = 0.043).767

Specifically, there was no significant difference between Block 7 and Blocks768

5-6 (paired t-test, t(30) = 0.25, p = 0.81). Participants pressed significantly769

more times in Block 8 than in Block 7 and Blocks 5-6 (paired t-test, Block770

7: t(30) = 2.1, p = 0.048; Blocks 5-6: t(30) = 2.2, p = 0.036).771

The negative transfer effect observed in the first stage of Block 7 in Ex-772

periment 1 (Fig. 3A) was not present here in Experiment 3 (Fig. 11). In773

addition to the fact that the first stage was never explicitly rewarded, as in774

Experiment 1, participants in Experiment 3 were even less motivated to ex-775

ploit structure in the first stage. This is because the first stage in Experiment776

3 was not necessary for resolving the second stage actions (Fig. 10), while777

the non-Markovian aspect of Experiment 1 (Fig. 1B) forced participants to778

incorporate first stage information to resolve the correct choice for the second779
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stage.780

We calculated the proportion of error types in the second stage of Block781

8 (Fig. 11C). Unlike in Experiment 1, we did not observe significantly more782

“option transfer” error than “other” error (paired t-test, t(30) = 1.6, p =783

0.11). This choice type profile, compared to that in Experiment 1 and Ex-784

periment 2 (Fig. 4A, Fig. 6D, Fig. 8D) suggests reduced option transfer in785

the second stage.786

We also calculated the probability of a correct second stage first press for787

each of the 4 branches in the second stage (Fig. 11D). The probability was788

significantly above chance in Blocks 3-4 and Blocks 5-6 (sign test, Blocks 3-4:789

p = 0.0002; Blocks 5-6: p < 0.0001). It was marginally above chance in Block790

7 (sign test, p = 0.07) and not significantly different from chance in Block 8791

(sign test, p = 1). Compared to the results in Experiment 1 (Fig. 4B, Fig.792

6E). These results suggest participants were still taking advantage of previ-793

ously learned options to speed up learning at the beginning of each block,794

but potentially to a lesser extent compared to Experiment 1 and Experiment795

2.796

To formally quantify the effect of the experimental manipulation, we com-797

pared Experiment 1 and Experiment 3 for Mturk participants. In particular,798

we compared the proportion of “option transfer” and “other” error types in799

the second stage of Block 8 between the two experiments (Fig. 11E). We800

found a main effect of error type (2-way mixed ANOVA, F (2, 168) = 76, p <801

0.0001), but there was no interaction between experiment and error type (2-802
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way mixed ANOVA, F (2, 168) = 0.89, p = 0.41). In particular, the propor-803

tion of “option transfer” error type was not significantly higher in Experiment804

1, compared to that in Experiment 3 (unpaired t-test, t(84) = 1, p = 0.32).805

This further shows that while there might be reduced option transfer in the806

second stage of Block 8 based on the error type profile (Fig. 11C), we could807

not rule out option transfer in Experiment 3.808

The Option Model could capture a reduction in option transfer (Fig.809

11B-D), with an increase in the second stage clustering coefficient γ2, which810

controls how likely the model is to select a new blank policy compared to811

previously learned ones in the second stage, as well as the forgetting param-812

eter in the second stage, f 2, which increases the speed at which the model813

forgets previously learned LO (Table 1.814

4.3.2. In-lab participants replicate results from Mturk participants815

In-lab participants replicated all aforementioned trends shown in Mturk816

participants (Supplementary Fig. S9). In particular, there was a main effect817

of block on number of choices in the second stage (F (2, 46) = 7.2, p = 0.002).818

In-lab participants also pressed significantly more times in the second stage819

of Block 8 than Blocks 5-6 (paired t-test, t(23) = 3.6, p = 0.0017), and820

marginally more than Block 7 (paired t-test, t(23) = 1.9, p = 0.067). More-821

over, similar to Mturk participants, the proportion of “option transfer” error822

type was not significantly different from “other” error type (paired t-test,823

t(23) = 0.8, p = 0.43). These results replicated reduced option transfer in824
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the second stage in a separate in-lab population. Note that we could not825

do the same comparison between Experiment 1 and Experiment 3 for in-lab826

participants, because the number of trials per block for Experiment 1 and827

Experiment 3 was different in-lab.828

5. Experiment 4829

Figure 12: Experiment 4 protocol. In Experiment 4, we tested participants’ ability to
recompose LO policies within MO policies. Blocks 1-6 were identical to Experiment 1.
In Block 7, green indicates positions of potential positive transfer: MO2 followed by LO2

was learned in Blocks 1, 3, 5. Orange indicates positions of option composition: although
MO1 previously included LO1 for second stage stimuli, it was modified to LO3 in Block
7. In Block 8, red indicates positions of negative transfer: LO5 and LO6 were completely
novel to participants. Blocks were color coded for later analysis: Blocks 1-4 gray; Blocks
5-6 purple; Block 7 orange; Block 8 blue.

Experiment 4 was administered to UC Berkeley undergraduates in ex-830

change for course credit. 31 (23 females; age: mean = 20.2, sd = 1.4, min831

= 18, max = 23) UC Berkeley undergraduates participated in Experiment832

4. 12 participants were excluded due to incomplete data or below chance833

performance, resulting in 19 participants for data analysis.834

An additional 110 (50 females; see age range distribution in Table 3)835

Mturk participants finished the experiment. 49 participants were excluded836
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due to poor performance, resulting in 61 participants for data analysis (see837

Sec. 2.1.4).838

5.1. Experiment 4 in-lab Protocol839

Experiment 4 (Fig. 12) was designed to test whether participants were840

able to compose options learned at different levels. Specifically, the protocol841

was identical to Experiment 1, except for Blocks 7 and 8. Block 8 in Exper-842

iment 4 was similar to Block 8 in Experiment 1, introducing two new LO’s843

(LOnew) at the second stage as a benchmark for pure negative transfer.844

The main difference between Experiment 4 and Experiment 1 was Block845

7. In Block 7, one of the first stage stimuli (e.g. square) elicited the same846

extended policy MO2 (A2 followed by LO2 in the second stage), allowing847

positive MO transfer (“match” condition LOmatch). In contrast, the other848

first stage stimulus (e.g. circle) elicited a new policy recomposed of old849

subpolicies: participants needed to combine what they learned in the first850

stage of MO1 in Blocks 1, 3, and 5 (A1) (allowing for first stage transfer of851

HO1), and the second stage of Blocks 2, 4, and 6 (LO3; “mismatch” condition852

LOmismatch). Extending the food analogy, in Blocks 1, 3, 5, participants853

learned to make potatoes (MO1) by cutting potatoes (the first stage) and854

then roasting (LO1). In Block 7, participants also needed to cut potatoes,855

but then steam them (LO3), which was already learned as part of MO3 (make856

vegetables) in Blocks 2, 4, 6. All blocks had 60 trials each.857
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5.1.1. Experiment 4 Mturk Protocol858

The Mturk version was shortened for online workers. Blocks 1 and 2 had859

a minimum of 32 and a maximum of 60 trials, but participants moved on860

to the next block as soon as they reached a criterion of less than 1.5 key861

presses per second stage trial in the last 10 trials (the 61 Mturk participants862

included for data analysis on average used 46 (SD = 11, median = 42, min863

= 32, max = 60) trials in Block 1 and 43 (SD = 11, median = 38, min = 32,864

max = 60) trials in Block 2). All other blocks had 32 trials each.865

5.2. Experiment 4 Results866

5.2.1. Mismatch impacted performance of in-lab participants867

Participants’ performance improved over Blocks 1-6 (Supplementary Fig.868

S10A) and within each block (Supplementary Fig. S16). First stage perfor-869

mance was similar in Blocks 5-8, as expected by the model (Supplementary870

Fig. S8). To test more specifically whether participants were able to com-871

pose options, we focused on comparing the second stage behavior for old872

LOs (LOmatch and LOmismatch) and the average of LO5 and LO6 (LOnew) in873

Blocks 7-8. The Option Model predicted that performance for LOmatch in874

Block 7 should be the best due to positive transfer, since participants should875

have learned the extended MO2 policy whereby LO2 followed A2 in Blocks 1,876

3, and 5 (Fig. 12). LOnew should be the worst due to negative transfer, with877

all 4 stimulus-action assignments in the second stage novel. Performance for878

LOmismatch in Block 7 should fall in between (as observed in the number of879
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Figure 13: Experiment 4 results show re-composition of options. (A)-(D) In-lab partici-
pants. (A) Average number of key presses for the first 3 trials for each of the 4 branches
in the second stage of Blocks 5-8 for participants (left) and the Option Model (right).
Block 7 was split into LOmatch and LOmismatch; Block 8 corresponded to LOnew. (B)
Proportion of correct choices on the first press of trials 1-3 for each of the 4 branches in the
second stage for LOmatch, LOmismatch and LOnew for participants (left) and the Option
Model (right). (C) Proportion of correct choices on the second press (for trials 1-3 for
each of the 4 branches with an incorrect first key press) for the mismatch (left) and the
new (right) condition. (D) Probability of a correct first key press for the second stage of
the first trial of each of the 4 branches in Blocks 5-8 for participants (left) and the Option
Model (right). (E)-(H) Same as (A)-(D) for Mturk participants.

key pressed, Fig. 13A). While there should be negative transfer, as MO1880

was usually followed by LO1, LO3 had been previously learned, so its per-881

formance should still surpass the performance in the second stage of Block882

8, where LO5 and LO6 were completely novel to the participants. Therefore,883

we predicted LOmatch > LOmismatch > LOnew in terms of performance.884

In the second stage (Fig. 13A), there was a main effect of block on885
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number of presses (1-way repeated measure ANOVA, F (2, 36) = 9.9, p =886

0.0004). Specifically, the average number of key presses in LOnew (Block 8)887

was significantly more than Blocks 5-6 and LOmatch (paired t-test, Blocks888

5-6: t(18) = 4.1, p = 0.0007; LOmatch: t(18) = 3.6, p = 0.002). There was no889

significant difference between Blocks 5-6 and LOmatch (paired t-test, t(18) =890

0.7, p = 0.49), supporting the model’s prediction of positive MO transfer in891

this condition. The model predicted that LOmismatch performance should be892

between LOnew and LOmatch: LOmismatch performance should reflect positive893

LO transfer but negative MO transfer. This was observed qualitatively,894

though the results did not reach significance (paired t-test, LOmatch: t(18) =895

1.6, p = 0.13; LOnew: t(18) = 1.4, p = 0.18). These results replicate the896

negative transfer effects in the second stage of Block 8 shown in Experiment897

1 (Fig. 4A) and Experiment 2 (Fig. 8D). In addition, they provide initial898

support for the compositionality hypothesis of the model, with intermediary899

transfer in the mismatch condition.900

We confirmed the previous results by analyzing the proportion of trials901

in which the first key press was correct. We found that, in the first 3 trials902

for each of the 4 branches in the second stage (Fig. 13B), there was a main903

effect of LO condition (1-way repeated measure ANOVA, F (2, 36) = 7.2, p =904

0.002) on the proportion of correct choices for the first press of each trial. In905

particular, we found no significant difference between LOmismatch and LOnew906

(paired t-test, t(18) = 0.56, p = 0.58), while the performance of LOmatch was907

significantly higher than LOmismatch and LOnew (paired t-test, LOmismatch:908

50

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.20.958587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958587
http://creativecommons.org/licenses/by-nc/4.0/


t(18) = 2.6, p = 0.017; LOnew: t(18) = 4.4, p = 0.0003). These results909

suggested that the mismatch between MO1 and LO3 impacted participants’910

performance, a marker of negative option (MO) transfer. In the first three911

iterations, participants’ first presses indicated that they were not able to912

efficiently re-compose the LOmismatch into a new mid-level option.913

To better investigate participants’ choices before they experienced any914

new information in a new block, we also computed the probability of a correct915

first key press for the second stage of the first trial of each of the 4 branches916

in the Blocks 5-8 (Fig. 13D). We found a main effect of block (Friedman917

Test, χ2(2, 36) = 20, p < 0.0001). Specifically, Blocks 5-6 and LOmatch were918

significantly above chance (sign test, both p < 0.0001); LOmismatch was not919

significantly different from chance (sign test, p = 0.34); LOnew was signifi-920

cantly below chance (sign test, p = 0.0007). There was a marginal difference921

between LOmatch and LOmismatch (sign test, p = 0.09), but no significant922

difference between LOmismatch and LOnew (sign test, p = 0.24). These results923

further showed that the mismatch condition impacted participants’ perfor-924

mance on the first press due to negative option (MO) transfer, and replicated925

the strong negative transfer in Block 8 in Experiment 1 and Experiment 2.926

The Option Model captured participants’ behavior well (Fig. 13ABD, see927

Table 1 for model parameters).928
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5.2.2. Second press reveals benefit of option composition929

The results so far supported one of our predictions, LOmatch > LOmismatch,930

by showing that performance in the mismatch condition was impacted due931

to negative MO transfer. We next sought evidence for our second predic-932

tion, LOmismatch > LOnew, where we hypothesized better performance in the933

mismatch condition by composing the first stage policy of MO1 and LO3.934

In terms of performance on the first press in each trial, we did not found935

a significant difference between the two conditions (Fig. 13B). However, this936

might be because the negative MO transfer reduced the benefit of compo-937

sitionality, making it less detectable on the first press, also reflected by the938

small effect from the Option Model in Fig. 13B. Positive LO transfer thus939

might only show a more significant effect after the first press unexpectedly940

failed (from negative transfer of MO1).941

Therefore, we further computed the proportion of correct choices on the942

second press in those trials where the first press was incorrect (Fig. 13C).943

Indeed, we found that the proportion of correct choices on the second press944

was significantly higher in the mismatch condition than the new condition945

(paired t-test, t(17) = 2.8, p = 0.012). This result supports our second pre-946

diction, LOmismatch > LOnew, revealing a benefit in the mismatch condition947

compared to the new condition in participants re-composing an old LO into948

a non-matching MO.949
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5.2.3. Mturk participants showed benefits of option composition950

We collected a larger and independent sample on Mturk. Mturk par-951

ticipants also improved over Blocks 1-6 (Supplementary Fig. S10B) and952

within block (Supplementary Fig. S17), though their asymptotic perfor-953

mance (Blocks 5-6) was lower than the in-lab population. Specifically, we954

compared the average number of key presses in Blocks 5-6 in the first and955

second stages for both in-lab and Mturk populations. There was a main ef-956

fect of stage and a marginal interaction of population and stage (2-way mixed957

ANOVA, stage: F (1, 78) = 7.1, p = 0.009; interaction: F (1, 78) = 3.1, p =958

0.08). In particular, for the first stage, Mturk population was not significantly959

worse than the in-lab population (unpaired t-test, t(78) = 0.17, p = 0.86);960

but for the second stage, which was the focus of our analysis, Mturk pop-961

ulation was significantly worse than the in-lab population (unpaired t-test,962

t(76) = 3.2, p = 0.002).963

In the second stage (Fig. 13E), there was a main effect of block on964

number of presses (F (2, 120) = 17, p < 0.0001). Specifically, the average965

number of key presses in LOnew was significantly more than LOmatch and966

LOmismatch (paired t-test, LOmatch: t(60) = 4.6, p < 0.0001; LOmismatch:967

t(60) = 3.8, p = 0.0004). LOmatch was not significantly different from Blocks968

5-6 and LOmismatch (paired t-test, Blocks 5-6: t(60) = 0.26, p = 0.8; LOmismatch:969

t(60) = 0.8, p = 0.42).970

The proportion of correct first press choices (Fig. 13F) showed a similar971

pattern: there was a main effect of LO condition (F (2, 120) = 15, p < 0.0001)972
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on the proportion of correct choices. In particular, the proportion of correct973

choice for LOnew was significantly lower than LOmismatch and LOmatch (paired974

t-test, LOmismatch: t(60) = 4.7, p < 0.0001; LOmatch: t(60) = 5.1, p < 0.0001)975

in Block 7. There was no significant difference between LOmismatch and976

LOmatch performance (paired t-test, t(60) = 0.54, p = 0.59). There was977

no difference between the mismatch condition and the new condition for sec-978

ond key presses (paired t-test, t(52) = 0.08, p = 0.94, Fig. 13G), contrary to979

in-lab participants (Fig. 13C). This difference could be attributed to MTurk980

participants’ lower task engagement. Indeed, contrary to in lab participants,981

MTurk participants’ performance was at chance for second key press (MTurk:982

paired t-test, t(53) = 1.6, p = 0.13; in-lab t(17) = 3.4, p = 0.003). Directly983

comparing MTurk and in-lab population for the proportion of correct sec-984

ond key press in both the mismatch and new conditions revealed a marginal985

effect of condition and a marginal interaction of population and condition986

(2-way mixed ANOVA, condition: F (1, 69) = 3.3, p = 0.07; interaction:987

F (1, 69) = 3.7, p = 0.06). This supports our interpretation that MTurk988

participants did not attempt to find the correct answer following an error,989

making the second press error analysis in this population difficult to interpret.990

Finally, we looked at the probability of a correct first press in the very991

first trial of each of the 4 branches in the second stage (Fig. 13H). There992

was a main effect of block (Friedman test, χ2(2, 120) = 17, p = 0.0002). In993

particular, Blocks 5-6 and LOmismatch were significantly above chance (sign994

test, both p = 0.004)l LOmatch was marginally above chance (sign test, p =995
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0.07); LOnew was significantly below chance (sign test, p < 0.0001).996

These results can be interpreted in one of two ways. The similar per-997

formance between LOmatch and LOmismatch suggests that participants were998

able to efficiently re-compose the first stage of MO1 with LO3 in the mis-999

match condition in Block 7, so that they did not suffer from MO negative1000

transfer, as did in-lab participants. Alternatively, this result might indicate1001

a lack of MO transfer (and only positive LO transfer) in both the match and1002

mismatch condition. The latter interpretation is supported by the fact that1003

second stage performance in LOmatch was lower in MTurk participants than1004

it was for in-lab participants in all measures (unpaired t-test, number of key1005

presses in the first 10 trials of Blocks 5-6: t(78) = 1.8, p = 0.08; proportion1006

of correct choices in match condition: t(78) = 2.4, p = 0.019).1007

The Option Model could capture the negative transfer effect in LOnew1008

and thus the difference between LOnew and LOmismatch (Fig. 13EF). How-1009

ever, it could not fully reproduce the lack of difference between LOmatch and1010

LOmismatch, since the model would first try to transfer LO1 in the mismatch1011

condition, resulting in worse performance for LOmismatch.1012
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Figure 14: Experiment 4 second stage errors reveal temporal options transfer and compo-

sitionality. Error type analysis of the second stage in Block 7 for the mismatch condition

for in-lab participants, Mturk participants, the Option Model and the Task-Set Model.

This interpretation might suggest that the Task-Set Model explains the1013

Mturk population better, indicating a lack of temporally extended options,1014

and makes a specific prediction: second stage errors should not be impacted1015

by first stage information. To test this prediction, we analyzed the spe-1016

cific errors participants made, as this is a specific hallmark of temporally1017

extended option transfer vs. task-sets (Fig. 4A). Contrary to the predic-1018

tion made by the Task-Set model, but consistent with the Option Model1019

prediction, Mturk participants did demonstrate the behavioral signature of1020

negative option (MO) transfer in the mismatch condition (Fig. 14): they1021

made significantly more “option transfer” errors than “other” errors (paired1022

t-test, t(53) = 4.8, p < 0.0001). While the comparison was not significant for1023

in-lab participants (paired t-test, t(17) = 1.5, p = 0.16), a direct comparison1024
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between in-lab and Mturk populations did not reveal an effect of population1025

(2-way mixed ANOVA, F (2, 140) = 0.74, p = 0.48). Thus, our results indi-1026

cate that both MTurk participants and in-lab participants used temporally1027

extended MOs, although MTurk participants were overall less successful at1028

transferring them to facilitate decision making in the second stage. The1029

results are consistent with participants re-composing low-level options into1030

higher-level options.1031

6. Discussion1032

Our findings provide novel and strong support for the acquisition of op-1033

tions in healthy human adults. Options can be thought of as choices that1034

are more abstract than simple motor actions, but can be taken as a single1035

choice. Using a novel two-stage protocol, we provide evidence that humans1036

create options, and flexibly transfer and compose previously learned options.1037

This transfer and composition ability guides exploration in novel contexts1038

and speeds up learning when the options are appropriate, but impairs per-1039

formance otherwise, as predicted by the options framework [11]. Model simu-1040

lations showed that only a model including temporal hierarchy could account1041

for all results, suggesting that human participants not only build state ab-1042

stractions with one-step task-sets ([67]), but also temporal abstractions in1043

the action space with multi-step options.1044

We developed a new model, the Option Model, to account for partic-1045

ipants’ behavior. The Option Model includes features from our previous1046
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hierarchical structure learning model ([9, 32, 66]) and the hierarchical rein-1047

forcement learning (HRL) options framework ([43]). In our previous hierar-1048

chical structure learning model, we used non-parametric priors (CRP) over1049

latent variables that represented the currently valid policy to create state1050

abstractions : this allowed the model to cluster different contexts together if1051

the same task-set applied. This CRP prior enables the agent to identify (via1052

Bayesian inference) novel contexts as part of an existing cluster if the cluster-1053

defined task-set proves successful, resulting in more efficient exploration and1054

faster learning.1055

On the other hand, the original formulation of the HRL options frame-1056

work ([43]) augments the action space of traditional flat RL with temporal1057

abstractions called options. Each option is characterized by an initiation set1058

that specifies which states the option can be activated, a termination func-1059

tion that maps states to a probability of terminating the current option, and1060

an option-specific policy (that leads the agent to a potentially meaningful1061

and useful subgoal).1062

Our Option Model is inspired by the fact that task-sets and options are1063

similar in essentials: they are policies that an agent can select as a whole, and1064

then apply at a lower level of abstraction (applying it to make a motor choice1065

in response to a stimulus for task-sets, or applying it across time until ter-1066

mination in the case of an option [cite my structure learning book chapter]).1067

Thus, our model brings together state and temporal abstractions by using1068

option-specific CRP priors to implement option-specific policies that can be1069
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flexibly selected in different contexts if they share the same environmental1070

contingencies. Our model captures the essence of the options framework de-1071

spite some subtle differences. Here, we discuss how our Option Model relates1072

to each part of the HRL options framework.1073

Initiation set1074

The initiation set specifies the set of states where an option can be se-1075

lected. The observable states in our tasks are the shapes shown on the screen.1076

Therefore, at first, the initiation sets of HO and MO are first stage stimuli1077

(e.g. circle and square, Fig. 1B), whereas the initiation sets of LO are sec-1078

ond stage stimuli. However, the optimal policies were also dependent on the1079

block; thus participants needed to infer the hidden context (state abstrac-1080

tion) dictated by block. Our CRP implementation can thus be thought of1081

as continuously adding new block contexts to the initiation set of an option1082

throughout the task. The ability to add new contexts to the initiation sets1083

provides our Option Model the crucial flexibility needed to achieve transfer1084

and composition, as demonstrated by human participants. For example, if1085

LO3 was tied solely to the context of Block 2, where it was first learned, we1086

would not observe the benefit of option composition in Experiment 4 in the1087

mismatch condition.1088

Termination function1089

An option’s termination function maps each state to the probability of1090

terminating the current option (i.e. not using its policy anymore). How to1091
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terminate an option is closely related to the underlying theoretical question1092

of credit assignment, which arises naturally in tasks that require hierarchi-1093

cal reasoning ([71]): if the current policy does not generate any (pseudo-)1094

reward for a while, should the agent continue improving the current policy1095

or terminate it and use another policy or even something new?1096

With a termination function as described in the original HRL options1097

framework, credit assignment happens in a very specific way: the policy of the1098

currently selected option (or options if multiple nested options are selected) is1099

updated until termination is reached. In our task, this would make behavior1100

very inflexible. For example, when an agent entered the second stage of1101

Block 8 in Experiment 1 (Fig, 1B) for the first time after having correctly1102

made a choice for the circle in the first stage, the agent would likely use1103

LO1 due to negative transfer of MO1 and thus not receive reward. Because1104

the termination function only takes state as an input, the agent would keep1105

overwriting the LO1 policy with LO5 policy until termination, and thus not1106

be able ot reuse LO1 down the line.1107

Our Option Model, however, uses a more flexible form of option ter-1108

mination. Specifically, we use Bayesian inference (Sec. 2.1.5), which was1109

introduced in our previous hierarchical structure learning model ([9]). At1110

the end of each choice, the model updates the likelihood of each option being1111

valid based on the observed reward feedback, which then determines whether1112

the model should stop using the current option. Moreover, Q-learning only1113

operates on the option that has the highest posterior, thus assigning credit1114
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retrospectively to the best cause ([72]). Therefore, the Option Model is more1115

likely to create a new LO5 and learn its policy from scratch, making it more1116

flexible at learning and selecting options.1117

The crucial difference between the two is that the Option Model would1118

create a new LO5 and learn its policy from scratch, without overwriting1119

the original LO1 policy. While the Option Model can capture participants’1120

choices well across all four experiments, the current experimental protocol1121

was not designed specifically to test credit assignment to options, and could1122

not distinguish between these two possibilities. This remains an important1123

question for future research.1124

There is another credit assignment problem that is not fully addressed by1125

our current protocol and modeling: choices by lower level options may affect1126

the termination of higher level options. For example, if you get punished for1127

boiling potatoes, should you credit this to the lower level option (boiling) or1128

to the higher level option (making potatoes in the first place). Should you1129

plan to cook vegetables instead, or just roast the potatoes? We have some1130

evidence for both levels of credit assignment (e.g. in Block 7 of Experiment1131

2, or Block 8 in Experiment 1; Fig. 1B), when participants were experiencing1132

many errors in the second stage using LO1 and LO2. Participants might not1133

only consider terminating or re-learning the current LO, but also naturally1134

attribute some of the negative feedback to the choices they made in the1135

first stage regarding MO or HO. Indeed, we observed that second stage1136

errors potentially resulted in more “wrong HO” errors in the first stage of1137
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Experiment 2 (Supplementary Fig. S7).1138

In our Option Model (Sec. 2.1.5), for simplicity, first stage choices were1139

only determined by learning within the first stage and were not sensitive to1140

reward feedback in the second stage. It will be important in future research1141

to better understand interactions between option levels for credit assignment.1142

When considered together with the termination problem, these future direc-1143

tions may help trace the underlying neural mechanisms for credit assignment1144

in human learning and hierarchical decision making.1145

Option-specific policy1146

The most important component of an option is the option-specific policy:1147

what lower level-choices (either simpler options or basic actions) it constrains.1148

In this paper, we focused on the transfer of option-specific policy to test1149

theoretical benefits of the options framework.1150

Theoretical work ([11]) suggested that useful options should facilitate1151

exploration and speed up learning. Indeed, we observed speed up in learning1152

through the positive transfer effects. For example, in Experiment 1, the1153

second stage of Block 7 provided a test of positive option transfer in terms1154

of both number of presses (Fig. 2B) and choice types (Supplementary Fig.1155

S6). Importantly, this positive transfer was not interfered by the negative1156

transfer in its first stage (Fig. 2B), suggesting that participants transferred1157

mid-level options (MO) as a whole.1158

Moreover, the learning benefit was evident even in the first press (Fig.1159
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4B, Fig. 6E, Fig. 8D): participants were already significantly above chance in1160

the first press, indicated that they could explore by immediately transferring1161

previously learned options.1162

Previously learned option-specific policies also helped with option com-1163

position in the mismatch condition (Fig. 12) of Experiment 4 (Fig. 13).1164

While MO1 was usually followed by LO1 in Blocks 1, 3, 5, in the mismatch1165

condition, MO1 was followed by LO3 instead. This change indeed resulted1166

in “option transfer” errors (Fig. 14). However, the fact that LO3 had been1167

previously learned helped participants explore more efficiently. For example,1168

once participants figured out A2 was correct for the diamond, they would1169

more likely explore LO3, and thus A4 for triangle.1170

The HRL options framework also suggested that non-useful options can1171

slow down learning. Indeed, we observed negative option transfer effects in1172

the second stage across multiple experiments in terms of number of presses1173

(Fig. 2B, Fig. 6C, Fig. 8C, Fig. 13AE), and more importantly, error types1174

(Fig. 4A, Fig. 6D, Fig. 8D, Fig. 9, Fig. 14), that are consistent with1175

the predictions of the options framework. Note that the slow down was1176

due to negative transfer of previously learned option-specific policies. Thus1177

testing how having a wrong subgoal can impact learning performance is an1178

interesting future direction.1179

We sought to confirm that participants were indeed learning option-1180

specific policies, not just action sequences. Our protocol specifically used1181

two second stage stimuli following each first stage stimulus (Fig. 1B) to1182
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avoid this potential confound. If, for example, circle was always followed by1183

diamond and square by triangle, participants would not need to pay atten-1184

tion to the actual stimulus in the second stage, and could instead plan a1185

sequence of actions in the first stage. In contrast, here, participants could1186

only perform well by selecting options (i.e. stimulus-dependent temporally1187

extended policies). While pure sequence learning could not account for our1188

results, we investigated whether it could contribute to some of its aspects.1189

Sequence learning would predict faster reaction times for actions that often1190

follow in a sequence ([73]). Therefore, we compared the reaction time for1191

the “sequence” and “non-sequence” error types in the second stage (Sec.1192

9.2). We did not find significant difference between the reaction time for1193

“sequence” and “non-sequence” error types at the beginning of blocks; we1194

only found such difference at the end of blocks (Supplementary Fig. S1, Fig.1195

S2, Sec. 9.2). This suggests that while the transfer effects we observe at the1196

beginning of each block could not be explained by pure sequence learning,1197

participants might develop sequence learning-like expectations over time in1198

a block, speeding up choices that came more frequently after each other.1199

We tested predictions of HRL options framework through positive and1200

negative transfer of option-specific policies in the simplest possible set up of1201

tabular representation of state and action space. Multiple aspects could be1202

expanded on in future research to increase the generalizability of the policy in1203

real world scenarios. First, real world policies apply to much more complex1204

(continuous, multidimensional) state spaces. Recent work in AI expands the1205
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options framework to more realistic situations ([74]), where artificial agents1206

learn how to navigate a sequence of rooms with different shapes and sizes.1207

If each state in a room is naively paramatrized in a tabular way by (x, y)1208

coordinates, when the agent is placed in a new room of a different shape,1209

previously learned policy would be of not use. It is thus crucial to identify1210

meaningful features of the state space shared by different rooms. ([74]) pro-1211

posed learning options in a state space parametrized by distance from goals1212

(“agent space”) to bypass this limitation.1213

Second, the low-level action space in real life conditions is also more com-1214

plex. A good example is our flexible use of tools ([75]). We can conceptualize1215

using various tools as taking actions. Humans demonstrate great flexibility1216

when improvising using different tools to solve the same problem or even1217

crafting new tools. If we simply represent actions in a tabular way, after1218

participants associated a particular tool (action) to solve a task, the policy1219

would be of no use if this particular tool is no longer provided in the fu-1220

ture. The key might again be figuring out meaningful dimensions of the tool1221

(action) space that are shared in different task scenarios, such as shape and1222

weight of the tool.1223

Finally, even if two problems are different in terms of both state and1224

action space (e.g. learning to play piano vs learning to play violin ([38])),1225

knowledge of one might still help the other. Once one learned a piece on the1226

piano, the knowledge of music theory might serve as a model to guide option1227

transfer when learning the same piece on violin. These are important future1228
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directions for testing how humans transfer in those more real life scenarios,1229

which might provide insight into developing more flexible and human-like AI1230

systems with the HRL options framework.1231

Option discovery1232

One of the most important questions regarding options in AI is how to1233

discover meaningful options. Discovering useful options entails learning all1234

components of an option: initiation set, termination function, and option-1235

specific policy that leads to a meaningful sub-goal. In this paper, we designed1236

a protocol that focused on learning option-specific policies by making all other1237

features, including subgoals, trivial.1238

Discovering options may be useful because of a key feature of our inter-1239

actions with our environment. In real world scenarios, it is frequent that1240

for a given observable state, the right choice to make depends on hidden1241

context, task demand, or past information. This property is refered to as1242

non-Markovian: the current observable information is insufficient to deter-1243

mine the next step. For example, when potatoes are peeled, we can use them1244

to make either roasted potatoes or mashed potatoes. Therefore, the state “1245

peeled potatoes” is a meaningful subgoal state, and peeling potatoes is its1246

corresponding option-specific policy.1247

This non-Markovian property might contribute to the hierarchical and1248

compositional nature of human behavior. It is central to the original for-1249

mulation of the options framework ([43]), and is also a natural objective for1250
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option discovery. In relation to our protocol, the correct action for diamond1251

(Fig. 1B) varies from time to time in the same block. It makes sense to1252

create different options to capture this, and relate it to the inferred hidden1253

cause for why the correct actions change. Indeed, we observed that the non-1254

Markovian feature in our experiments encouraged participants to create and1255

transfer options at multiple levels of abstractions.1256

We tested whether the environment needs to be non-Markovian to trigger1257

option creation. Specifically, we designed Experiment 3 by eliminating the1258

non-Markovian property from Experiment 1 and testing if that affects op-1259

tion learning and transfer (Fig. 11). Unsurprisingly, we found weaker option1260

transfer effects in Experiment 3; however, participants’ behavior was still not1261

flat (Fig. 11, Supplementary Fig. S9). Thus, our results hint at the possibil-1262

ity that participants create temporal options (MO), even in the absence of a1263

need for it, echoing past results showing that humans tend to create structure1264

unnecessarily ([9, 70, 76, 77]). Furthermore, this may also show that objec-1265

tives for option discovery are not limited to solving non-markovian problems.1266

For example, ([12]) showed that humans could identify bottleneck states from1267

transition statistics, reflecting graph-theoretic objectives for option discovery1268

in humans.1269

The options framework and other learning systems1270

While our Option Model uses a simple form of model-free RL (Q-learning;1271

[1]) to learn option-specific policies, the options framework is general and not1272
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limited to just Q-learning. Options can be learned or used with model-free1273

methods ([11]) and model-based methods ([44]). It also has strong connec-1274

tions to successor representations ([78, 79]), which might provide objectives1275

for subgoal discovery.1276

Moreover, in this paper, we gave examples of potential interaction of1277

options with the meta-learning system (Fig. 9) and sequence learning (Sec.1278

9.2) in human participants. How options might interact with other learning1279

systems is an important question for future research.1280

7. Conclusion1281

In summary, we found compelling evidence of option learning and transfer1282

in human participants by examining the learning dynamics of a novel two-1283

stage experimental paradigm. Through analyzing participants’ behavioral1284

patterns and model simulations, we demonstrated the flexibility of option1285

transfer and composition at distinct levels in humans.1286

Humans’ ability to flexibly transfer previously learned skills is crucial for1287

learning and adaptation in complex real world scenarios. This ability is also1288

one of the fundamental gaps that sets humans apart from current state-of-1289

the-art AI algorithms. Therefore, our work trying to probe learning and1290

transfer in humans might also help provide inspirations for AI algorithms to1291

be more flexible and human-like.1292
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9. Supplement1298

9.1. Potential asymmetry in Block 7 of Experiment 11299

We checked whether the performance of circle and square in Block 71300

was asymmetrically affected due to the interleaving of odd and even blocks1301

(Fig. 1B). Specifically, participants might start Block 7 by using HO1 in1302

odd blocks; thus the negative transfer in the first stage of Block 7 would be1303

primarily due to more key presses from the square, not the circle.1304

To test this possibility, we calculated average number of key presses in1305

the first 5 trials for circle and square respectively in Block 7. However, we1306

found no significant difference between the performance of circle and square1307

in the first stage (paired t-test, t(24) = 1.38, p = 0.18); we also found no1308

significant difference between the performance in the second stage following1309

circle and square (paired t-test, t(24) = 0.44, p = 0.66).1310

9.2. Second stage reaction time and sequence learning effects1311

Sequence learning ([73]) predicts that the reaction time of the “sequence”1312

type to be faster than the “non-sequence” type. Therefore, we calculated the1313
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average reaction time (Fig. S1) for both “sequence” and “non-sequence” error1314

types in Experiment 1 and 2.1315

9.2.1. Experiment 11316

Supplementary Figure S1: Experiment 1 reaction time. (A) Average reaction time for
trials 1-7 for each of the 4 branches in the second stage for Blocks 3-6 for sequence (left)
and non-sequence (right) error types. (B) Same as (A) for trials 8-15. (C) Average reaction
time for sequence (left) and non-sequence (right) error types in the second stage of Block
7.

We broke down each block to 2 different time periods: early (trials 1-7 for1317

each of the 4 branches in the second stage) and late (trials 8-15 for each of1318

the 4 branches). Aggregating Blocks 3-6, we found a marginal effect of time1319

period (2-way repeated measure ANOVA, F (1, 21) = 3.0, p = 0.099), which1320

might be due to participants generally becoming faster as they progressed1321

within a block. We also found a main effect of error type (2-way repeated1322

measure ANOVA, F (1, 21) = 4.5, p = 0.046) on reaction time. Specifically,1323

we found no significant difference (t(23) = 1.3, p = 0.2) between the reaction1324

time of the “sequence” and “non-sequence” error types in the early time1325

periods (Supplementary Fig. S1A). The “sequence” type was marginally1326

faster (paired t-test, t(22) = 1.9, p = 0.072) than the “non-sequence” type in1327
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the late time period (Supplementary Fig. S1B). We also found no significant1328

difference (paired t-test, t(20) = 1.1, p = 0.3) between the “sequence” and1329

“non-sequence” types in the entire Block 7 (Supplementary Fig. S1C). These1330

results suggest that the transfer effects we observed at the beginning of each1331

block could not be due to pure sequence learning, which only start to take1332

effect during learning saturation.1333

9.2.2. Experiment 21334

Supplementary Figure S2: Experiment 2 reaction time. (A) Average reaction time for
trials 1-4 for each of the 4 branches in the second stage for Blocks 3-6 for sequence (left)
and non-sequence (right) error types. (B) Same as (A) for trials 5-8.

We also analyzed the reaction time (Fig. S2) of the “sequence” and “non-1335

sequence” error types in Blocks 5-6 in Experiment 2. As in Experiment 1,1336

we broke down each block into 2 halved time periods: early (trials 1-4 for1337

each of the 4 branches in the second stage) and late (trials 5-8 for each of1338

the 4 branches). We found a main effect of time period and error type,1339

and a significant interaction (2-way repeated measure ANOVA, time period:1340
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F (1, 16) = 8, p = 0.012; error type: F (1, 16) = 16, p = 0.0009; interaction:1341

F (1, 16) = 15, p = 0.0013). Specifically, there was no significant difference1342

(Supplementary Fig. S2A) between the reaction time of the “sequence” and1343

“non-sequence” types in the early time period (paired t-test, t(21) = 0.61, p =1344

0.55). However, the “sequence” type was significantly faster (Supplementary1345

Figure S2B) than the “non-sequence” type in the late period (paired t-test,1346

t(17) = 4.8, p = 0.0002). These results replicated the trend observed in1347

the second stage of Experiment 1 (Supplementary Fig. S1A-B): sequence1348

learning might take effect during learning saturation, but not the beginning1349

of blocks, where we typically expect to observe transfer effects.1350

9.3. Parameters for model simulations1351

9.3.1. Parameters used for main text1352

We used the set of parameters from Table 1 in the main text to track1353

participants’ behavioral patterns both qualitatively and quantitatively.1354

Exp Sample Model α1 β1 γ1 f1 α2 β2 γ2 f2 m

Exp 1
In-lab

Naive 0.5 4 NA 0.0025 0.7 10 NA 0.0001 0.01
Flat 0.5 4 NA 0.0025 0.7 10 NA 0.0001 0.01

Task-Set 1 2 14 0.0004 0.8 3 3 0.0002 0.01
Option 1 2 14 0.0004 0.8 3 3 0.0002 0.01

Mturk Option 0.8 3 100 0.01 0.6 6 5 0.004 0.01

Exp 2 In-lab Option 0.7 3 13 0.001 0.6 4 5 0.001 0.01

Exp 3
In-lab Option 0.7 4 100 0.01 0.8 5 15 0.001 0.01
Mturk Option 0.7 4 100 0.01 0.8 5 15 0.005 0.01

Exp 4
In-lab Option 0.6 4 100 0.01 0.8 5 4 0.0002 0.01

Mturk
Option 0.6 4 100 0.01 0.4 4 5 0.002 0.01

Task-Set 0.6 4 100 0.01 0.4 4 5 0.002 0.01

Table 1: Parameters for the main text.
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Exp Sample Model α1 β1 γ1 f1 α2 β2 γ2 f2 m

Exp 1
In-lab

Naive 0.7 4 NA 0.001 0.7 4 NA 0.001 0.01
Flat 0.7 4 NA 0.001 0.7 4 NA 0.001 0.01

Task-Set 0.7 4 14 0.001 0.7 4 4 0.001 0.01
Option 0.7 4 14 0.001 0.7 4 4 0.001 0.01

Mturk Option 0.7 4 100 0.01 0.5 4 4 0.005 0.01

Exp 2 In-lab Option 0.7 4 100 0.01 0.7 4 4 0.001 0.01

Exp 3
In-lab Option 0.7 4 100 0.01 0.7 4 20 0.001 0.01
Mturk Option 0.7 4 100 0.01 0.5 4 20 0.005 0.01

Exp 4
In-lab Option 0.7 4 100 0.01 0.7 4 4 0.001 0.01
Mturk Option 0.7 4 100 0.01 0.5 4 4 0.005 0.01

Table 2: A second set of parameters that is constrained but still replicate transfer effects
qualitatively.

9.3.2. A set of constrained parameters that capture behavior across all tasks1355

qualitatively1356

In the main text, we selected parameters to try to trace participants’1357

behavior patterns both quantitatively and qualitatively (Table 1). Here we1358

used another set of parameters (Table 2) to (1) constrain parameters so1359

that most experiments shared the same parameters while showing the qual-1360

itatively trends in participants’ behavior and (2) show that the model can1361

reproduce the same qualitative effects with a range of parameters.1362

In particular, we used α1 = 0.7, β1 = 4, β2 = 4,m = 0.01 for all1363

experiments. For all in-lab experiments, we used α2 = 0.7, f 2 = 0.001;1364

for all Mturk experiments, we used α2 = 0.5, f 2 = 0.005, which indicate1365

slower learning rate and faster forgetting. For Experiment 1 in-lab, we used1366

γ1 = 14, f 1 = 0.001; for all other experiments, we used γ1 = 100, f 1 = 0.011367

to implement a lack of transfer effects in the first stage. We used γ2 = 20 in1368
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Experiment 3 to model reduced option transfer in the second stage; for all1369

other experiments, we used γ2 = 4.1370

We recreated some of the representative analysis in the main text to1371

demonstrate that this second set of parameters can replicate the transfer1372

effects in human participants qualitatively well.1373

Supplementary Figure S3: Experiment 1 with parameters from Table 2. (A) Error type

analysis of the second stage in Block 8 for participants (left), the Option Model (middle)

and the Task-Set Model (right). (B) Choice type analysis of the first stage in Blocks 5-7

for the Option Model.
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Supplementary Figure S4: Experiment 2 second stage choices with parameters from Table

2 (A) Error type analysis of the second stage in Block 7 for participants (left) and the

Option Model (right). (B) Error type analysis for each of the 4 branches in the second

stage of Block 7 for the Option Model.

Supplementary Figure S5: Experiment 3 second stage choices with parameters from Table

2. Error type analysis of the second stage in Block 8 for (A) in-lab participants (left) and

the Option Model (right), and (B) Mturk participants (left) and the Option Model (right).
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Supplementary Figure S6: Experiment 1 second stage choices. Choice type analysis of the

second stage comparing Blocks 5-6 and Block 7 for (A) participants and (B) the Option

Mode. There was no significant difference across all choice types, indicating positive

transfer in the second stage of Block 7.
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Supplementary Figure S7: Experiment 2 first stage choices. Choice type analysis of the

first stage comparing Blocks 5-6 and Block 7. The only error type that significantly

increased was the wrong HO error, suggesting that participants were perseverating in the

first stage while learning the new mappings in the second stage of Block 7.
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Supplementary Figure S8: Experiment 3 Mturk first stage choices. Average number of

presses in the first 10 trials of Blocks 5-8 in the first stage for participants (left) and the

Option Model (right). This shows a lack of transfer in the first stage, representative of

Experiments 3-4 first stage for both in-lab and Mturk populations.
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Supplementary Figure S9: Experiment 3 summary. (A) Average number of key presses

in the first and the second stages per block. (B) Average number of key presses for the

first 10 trials of Blocks 5-8 for the first stage for participants (left) and the Option Model

(right). (C) Same as (B) for the second stage. (D) Error type analysis of the second stage

in Block 8 for participants (left) and the Option Model (right). The proportion of option

transfer error was not significantly different from other error, different from Experiment

1 and Experiment 2, suggesting reduced option transfer. (E) Probability of a correct first

key press for the second stage of the first trial of each of the 4 branches in Blocks 7-8 for

participants (left) and the Option Model (right).
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Supplementary Figure S10: Experiment 4 number of presses. Average number of key

presses in the first and the second stages per block for (A) in-lab participants and (B)

Mturk participants.

Supplementary Figure S11: Experiment 1 performance within Blocks 5-8 for in-lab par-

ticipants. (A) First stage. (B) Second stage.
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Supplementary Figure S12: Experiment 1 performance within Blocks 5-8 for Mturk par-

ticipants. (A) First stage. (B) Second stage.

Supplementary Figure S13: Experiment 2 performance within Blocks 5-7. (A) First stage.

(B) Second stage.
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Supplementary Figure S14: Experiment 3 performance within Blocks 5-8 for in-lab par-

ticipants. (A) First stage. (B) Second stage.

Supplementary Figure S15: Experiment 3 performance within Blocks 5-8 for Mturk par-

ticipants. (A) First stage. (B) Second stage.

82

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.20.958587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958587
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure S16: Experiment 4 performance within Blocks 5-8 for in-lab par-

ticipants. (A) First stage. (B) Second stage.

Supplementary Figure S17: Experiment 4 performance within Blocks 5-8 for Mturk par-

ticipants. (A) First stage. (B) Second stage.

83

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.20.958587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958587
http://creativecommons.org/licenses/by-nc/4.0/


Exp 18-25 26-30 31-35 36-40 41+ Unknown Total

Exp 1 14 18 26 23 33 2 116

Exp 3 4 9 18 9 25 0 65

Exp 4 14 17 24 15 40 0 110

Table 3: Age range distribution for Mturk participants in Experiments 1, 3, and 4.
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