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Abstract 

Monocytes are a critical component of the cellular innate immune system, and can be 

subdivided into classical, intermediate and non-classical subsets on the basis of surface CD14 

and CD16 expression. Classical monocytes play the canonical role of phagocytosis, and 

account for the majority of circulating cells. Intermediate and non-classical cells are known to 

exhibit varying levels of phagocytosis and cytokine secretion, and are differentially expanded 

in certain pathological states. Characterisation of cell surface proteins expressed by each 

subset is informative not only to improve understanding of phenotype, but may also provide 

biological insights into function. Here we use highly multiplexed Tandem-Mass-Tag (TMT)-

based mass spectrometry with selective cell surface biotinylation to characterise the classical 

monocyte surface proteome, then interrogate the phenotypic differences between each 

monocyte subset to identify novel protein markers. 
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Introduction 

 Monocytes play critical roles in the response to infection and inflammation and antigen 

presentation. Key effector functions are mediated by differentiated cells, including 

macrophages and myeloid dendritic cells. Monocytes can be divided into subsets based on 

the presence of the cell surface lipopolysaccharide (LPS) co-receptor CD14, and Fc-Gamma 

Receptor III (CD16). CD14++ CD16- classical monocytes account for ~85% of circulating 

monocytes; intermediate cells (CD14++ CD16+) for ~5% and non-classical cells (CD14+ 

CD16++) for ~10% of circulating monocytes1, 2. It has become increasingly well established 

that each subset plays divergent roles in different diseases, as well as differing in the ability 

to secrete cytokines and respond to pathogen associated molecular patterns (PAMPs). 

Classical monocytes are phagocytic and readily secrete inflammatory cytokines. Conversely, 

the CD16 positive non-classical cells are poorly phagocytic and are suggested to secrete TNFα 

in response to some stimuli, but less of other pro-inflammatory molecules2,3, 4. Intermediate 

monocytes are increased in diseases such as severe asthma, rheumatoid arthritis and 

sarcoidosis, and there is some evidence for expansion of classical monocytes in 

atherosclerosis5-8. It is still unclear whether intermediate monocytes represent a truly distinct 

monocyte subset, or merely a transitional stage between classical and non-classical cells9.  

 Cells of the innate and adaptive immune systems can be categorised on the basis of 

microscopic appearance and expression of plasma membrane (PM) proteins, enabling 

separation by fluorescence activated cell sorting (FACS). As such, systematic evaluation of the 

entire cell surface proteome expressed by a given immune cell population is a powerful tool 

to characterise cellular function and distinguish cell types. Previous studies of monocytes 

subsets have exclusively examined transcriptional differences and offer varying depths of 
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information about subset markers, suitability of individual proteins for discriminating subsets 

by cell surface flow cytometry and the importance of each protein in different pathological 

states2, 8, 10, 11. Usage of multiple complementary grouping systems has the benefit of 

improving cellular assignment, in addition to enabling discovery of new cellular phenotypes8, 

12. 

Here we use selective surface protein biotinylation with multiplexed tandem mass tag (TMT)-

based mass spectrometry to directly measure the first comprehensive surface proteome of 

primary human classical monocytes from three donors. 373 classical monocyte cell surface 

proteins were quantified, and the relative abundance of each protein estimated. The surface 

proteome of classical, intermediate and non-classical cells was then compared to identify 

unique markers of each subset. Amongst these, Integrin alpha subunit 5 (ITGA5), complement 

receptor 1 (CR1/CD35) and Leukotriene B4 receptor (LTB4R) were defined as markers of 

classical monocytes, and Sialic Acid Binding Ig Like Lectin 10 (SIGLEC10) as a marker of non-

classical cells. 
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RESULTS 

Establishing a definitive classical monocyte surface proteome 

 To establish a surface proteome map, monocytes were enriched from three independent 

peripheral blood mononuclear cell (PBMC) donations from healthy donors by negative 

selection with magnetic beads. Classical monocytes were then enriched by FACS after staining 

for CD86, CD14 and CD16 (Supplementary Fig. S1). Selective surface oxidation and 

aminoxybiotinylation was used to label cell surface glycoproteins, which were enriched from 

cellular lysates using streptavidin beads, then digested into peptides using trypsin. Peptides 

were labelled with TMT, samples combined and then quantified by MS3 mass spectrometry13, 

14 (Fig. 1a).  

 437 proteins were identified from the three samples, of which 373 were annotated ‘cell 

surface’, ‘plasma membrane’, ‘extracellular’ or with a short Gene Ontology term as previously 

described13, 14 (Supplementary table S1d). Application of DAVID software to determine which 

pathways were enriched amongst these proteins indicated the presence of multiple 

components of integrin complexes and cell-cell junctions in addition to ‘glycosylation’ and 

‘disulphide bond’, serving to validate our selective labelling approach (Fig. 1b). 
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Figure 1 

 

Figure 1 – Overview of experimental strategy and protein enrichment scores. a) A schematic 

overview of the experimental approach. b) Enrichment of pathways within all 373 classical 

monocyte surface proteins in comparison to all human proteins as background, using DAVID 

software. Benjamini-Hochberg adjusted p-values are shown for each pathway. 
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Quantification of the classical monocyte cell surface proteome 

We used a method derived from identity based absolute quantitation (iBAQ) to compare the 

contribution of each protein to the classical monocyte cell surface proteome. The summed 

MS1 maximum precursor intensity for each protein across all matching peptides was divided 

by the theoretical number of tryptic peptides 7-30 amino acids in length. Values thus 

effectively represent an average across three donors, offering the opportunity to provide 

precise information on the overall abundance of each PM protein, independent of individual 

genetic variation. Abundance values ranging over approximately five orders of magnitude 

were found, with 21 proteins collectively contributing 68.6% of the cell surface proteome, 

whilst individually contributing >1% (Fig. 2). The five most abundant surface proteins, CD44, 

SPN, ICAM3, ITGB2 and BSG accounted for ~25% of the surface proteome, with CD14 

representing ~3.5% (Fig. 2). The summed abundance of class I Major Histocompatability 

antigen (MHC) accounted for 2.0% of surface proteins, and class II MHC 0.7%.  

By using multiplexed TMT-based proteomics, this study offered the opportunity to directly 

measure the variability in expression of whole surface proteomes across different donors. 

76.1% of proteins exhibited a <30% coefficient of variation (%CV). There was also no 

systematic inverse relationship between abundance and variability, i.e. less abundant 

proteins were not systematically more poorly quantified (Supplementary Fig. S2).  
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Figure 2 

 

Figure 2 – Pie chart showing the relative contribution of individual proteins to the classical 

monocyte surface proteome. Proteins contributing <1% are included in the ‘other’ category. 

The summed abundances of all MHC class I molecules and MHC class II molecules were 

considered in order to account for different alleles expressed by individual donors. 
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Comparison of the cell surface proteome of different monocyte subsets 

 Although the majority of circulating monocytes belong to the classical subset, the non-

classical and intermediate subsets play an increasingly appreciated role in different diseases. 

Selective cell surface biotinylation with MS3-based mass spectrometry was used to 

investigate phenotypic differences between each subset in biological triplicate. From this 

analysis, 313 proteins annotated ‘cell surface’, ‘plasma membrane’, ‘extracellular’ or with a 

short GO term were quantified (Supplementary table S1e). Principle component analysis 

(PCA) suggested that classical monocytes had a more distinct cell surface proteome in 

comparison to non-classical and intermediate cells (Fig. 3a). K-means clustering with 1-20 

classes suggested there were at least eight distinct patterns of protein expression between 

monocyte subsets (Fig. 3b-c). Examples of proteins selectively enriched on classical 

monocytes (Cluster A) included CD99 antigen and Sialic Acid-Binding Ig-Like Lectin 3 (CD33), 

validating previous transcriptomic studies2, 10. Clustering also highlighted a number of 

proteins enriched in non-classical cells (Cluster C), including CD16a (FCGRIIIA), the previously 

reported non-classical monocyte marker SIGLEC102 and Tetraspanin 14 (TSPAN14), which had 

not previously been reported. Distinguishing intermediate monocytes from other subsets was 

more challenging, however several candidate cell surface markers were identified including 

Solute Carrier Family 6 Member 6 (SLC6A6) (Cluster B). We then calculated the Benjamini-

Hochberg corrected p-values for each monocyte subset comparison. This confirmed that the 

‘classical’ and ‘intermediate’ clusters were enriched in proteins showing significantly 

differential abundance between the subsets (Supplementary table S1e). The enrichment for 

the third ‘non-classical’ cluster was poor, in keeping with the appearance of the k-means 

analysis. 
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Figure 3 

 

Figure 3 - Analysis of the surface proteome of monocyte subsets. (a) Principal component 

analysis of all 313 proteins annotated ‘cell surface’, ‘plasma membrane’, ‘extracellular’ or with 
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a short GO term. The grouping of the samples suggested that subset type was the major driver 

of variability as opposed to donor-specific differences. (b) The number of distinct classes of 

protein expression between monocyte subsets plotted against within-class variance. Proteins 

were clustered using a k-means approach with 1-20 classes, and the summed distance of each 

protein from its cluster centroid was determined. This summed distance becomes smaller as 

more clusters are added, but the rate of decline decreases with each iteration, eventually 

reaching a fairly steady rate of decline (orange line) that is reflective of overfitting. Clusters 

added before this point reflect the underlying structure in the protein data, whereas clusters 

subsequently added through overfitting add no additional useful information. For these data 

the point of inflexion was between eight and nine classes, suggesting that there are at least 

eight distinct surface protein profiles. (c) K-means based hierarchical cluster analysis of the 

313 proteins identified at the surface of the different classes of monocyte. Right panels – 

enlargements of clusters particularly enriched in proteins of one class (the adjacent bar colour 

indicates where each enlargement matches the original cluster plot). C – Classical monocyte 

sample, I – Intermediate monocyte sample, NC – Non-classical monocyte sample. 
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Comparison to RNA microarray data 

 Previous analyses of monocyte subsets have mostly been performed at the level of RNA 

expression2, 8, 10, 11. Hierarchical clustering was used to assess the complementarity between 

one of the most comprehensive previous transcriptomic studies2 and this proteomic analysis. 

For each protein, each data type was normalised to a maximum of 1 after averaging 

signal:noise (proteomics) or median fluorescent intensity values (microarray) across donors 

(Supplementary Fig. S3). RNA and protein data for the classical subset clustered separately 

from non-classical and intermediate subsets. However, intermediate protein-RNA did not 

neatly separate from the non-classical pair suggesting that these cells may be more 

phenotypically similar to one another than classical monocytes, in keeping with the PCA (Fig. 

3a). Another recently published transcriptomic analysis15 used single-cell RNAseq to analyse 

Lin-HLA-DR+ index sorted cells. These included dendritic cells, monocytes and a population of 

contaminating NK cells. A phenograph-clustering algorithm aimed to identify within each 

cluster (i) cell types and (ii) differentially-expressed genes (DEGs). Eight clusters were 

identified, and clusters 1 and 3 were related most closely to classical monocytes (CD14hi CD16-

, Figure 3B from Duterte et al15), with cluster 7 most closely related to mixed intermediate 

and non-classical monocytes (CD16+, Cluster 7 in the same figure). Comparison of DEGs to our 

cell surface protein-level data largely confirmed that these markers were differentially 

expressed at both the level of protein and RNA within classical and non-classical monocytes 

(Supplementary Fig. S4). 

 

 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.958009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958009
http://creativecommons.org/licenses/by/4.0/


13 
 

Validation of cell surface subset markers  

 Flow cytometry was used to validate a group of monocyte subset markers identified by 

proteomics, using independent samples from three different healthy donors of European 

heritage. SIGLEC10 validated as a marker most abundantly expressed by non-classical 

monocytes (Fig. 4a-b)2. ITGA5, CR1 and LTB4R also validated as markers of classical 

monocytes identified by proteomic data (Fig. 4a-b), in line with previous high throughput 

analyses for ITGA5 and LTB4R 2. 
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Figure 4 

 

Figure 4 – Validation of proteomics data by flow cytometry. a) Fresh human monocytes from 

three different donors were analysed by flow cytometry with antibodies specific to the 

indicated protein, in addition to anti-CD86, anti-CD14 and anti-CD16 to distinguish each 

monocyte subset. Corresponding profiles as determined by MS are shown in the lower panel. 

For both types of analyses, data were normalised to a maximum of one then averaged across 

the three replicates. Data are shown as mean +/- SEM. For proteomic data, a Benjamini-

Hochberg-corrected two-tailed t-test was used to estimate p-values. For flow cytometry data, 
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a two-tailed t-test was used to estimate p-values. *p< 0.05; **p<0.005. b) Representative 

contour plots from a single donor of flow cytometry data for each illustrated marker coloured 

by cell subset. FSC-A (Forward Scatter Area.) was used as an intrinsic description of cell size 

(which would not be expected to change between subsets) to separate the points on a second 

axis. This representation was advantageous compared to the alternative of histograms as it 

more clearly visually represents the distribution of data points with less confounding by 

absolute cell number. The relative proportion of each monocyte subset is different in 

peripheral blood, with classical monocytes predominating. 

 

DISCUSSION 

Here we use cell surface specific protein enrichment in combination with isobaric tagging and 

MS3 mass spectrometry to define at high resolution the cell surface proteomes of monocyte 

subsets. This has not only identified novel markers of each subset but also provided a valuable 

resource for the future study of these crucial immune cells. This represents the first cell 

surface proteomic study in primary monocyte subsets. Up to now, other cell surface 

proteomic analyses in primary cells have been limited to CD4+ T-cells 16, erythrocytes 17, 18, 

NK cells, adipocytes and a subset of tumour cells19. We quantify 373 cell surface proteins from 

classical monocytes, and further quantify 313 proteins across all monocyte subsets. Based on 

our data we predict that the majority of the classical monocyte cell surface proteome is 

composed of a relatively small number of different proteins. Limitations to this study include 

the number of donors. To ensure all samples could be directly compared in a single TMT 

analysis, three subpopulations of monocytes from three donors were analysed, since only 10 

different TMT tags were available. Furthermore, demographic information for each donor 
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was not available, meaning that characteristics such as gender might bias our analysis. 

Nevertheless, we believe this study provides important cell surface protein level data to 

complement the rapidly growing array of RNA studies of different leucocyte subsets. 

Here we show CR1, LTB4R and ITGA5 are markers of classical monocytes, and SIGLEC10 is a 

marker of non-classical monocytes. CR1 (Complement Receptor type 1 / CD35), acts as a cell 

surface receptor for particles opsonised by complement, facilitating their phagocytosis20. The 

specific elevation of CR1 on classical monocytes is consistent with their predominant 

phagocytic role. 

LTB4R (also known as BLT1) is a cell surface G-protein coupled receptor for the 

proinflammatory leukotriene B4 (LTB4). It was originally functionally identified by subtractive 

cloning of cDNAs from cells differentially able to bind LTB4, and was observed to enable 

chemotactic response to LTB4 even in non-specialised non-immune cells21. Furthermore, 

LTB4R deletion has previously been reported to confer resistance to histopathological 

changes in response to a rodent model of inflammatory arthritis22. Given the previous link of 

certain monocytic subsets to inflammatory arthrititis6 it may be of interest to reassess the 

role of LTB4R positive classical monocytes in this pathology. 

Integrin Alpha 5 (ITGA5, CD49e), is one of 18 mammalian alpha integrin chains which form 

cell surface heterodimers with integrin beta subunits23. Integrins are classically involved in 

extracellular adhesion and invasion, and also play roles in bidirectional transmembrane 

signalling24. SIGLEC10 was initially identified as a sialic acid binding protein expressed across 

a variety of tissues, but found at a particularly high level in organs rich in haematopoietic cells, 

and is notably expressed on dendritic cells and CD16+ cells 10, 25, 26. SIGLEC10 acts as a ligand 

for vascular adhesion protein 1 (VAP1), and plays a role in lymphocyte adhesion to endothelial 
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surfaces27. The differential expression of both of these adhesion molecules between classical 

and non-classical monocytes may thus contribute to independent mobility or effector 

function, although future studies will be required to assess the biological function of SIGLEC10 

on these cell types. 

The abundance of SLC6A6 was elevated at the surface of intermediate monocytes. SLC6A6 is 

a known taurine and beta-alanine transporter with proposed roles in regulation of apoptosis 

28, 29. Further studies will be required to investigate whether this molecule modulates the 

survival of intermediate monocytes relative to the other subsets. Similarly, our data 

suggested that TSPAN14 was relatively enriched on non-classical monocytes. TSPAN14 is a 

member of a family of tetraspanins known to regulate the subcellular localisation of 

metalloproteinase ADAM1030; this might in part explain differences in ADAM10 expression 

we observed between different monocyte subsets. 

To determine if any particular functional class of protein was enriched in each monocyte 

subpopulation, we used DAVID analysis to compare proteins enriched in different subsets 

from our k-means analysis (Fig. 3c). Unfortunately, at least partly due to the relatively small 

background of proteins (313 proteins in total), only a single term was significantly enriched 

(p<0.05) within these groupings. It is therefore difficult to make confident, global statements 

about differences in the function of each monocyte subset. Manual inspection of the proteins 

enriched in each subset highlighted the presence of different cell adhesion and interaction 

molecules: classical – CD33, CD93, CD99; intermediate – ALCAM; non-classical – ICAM2, CD97, 

SELPLG (Supplementary table S3). We speculate that the divergent role of the monocyte 

subsets in varying disease states could partially be explained by their differential interactions 

consequent on differential expression of these molecules. For example, CD33 polymorphisms 
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have been implicated in genetic susceptibility to Alzheimer’s disease, with risk alleles 

correlating with increased CD33 expression and altered phagocytic activity31.  

As standard in our cell surface proteomic analyses we included proteins annotated with the 

Gene Ontology Cellular Compartment terms ‘plasma membrane’ (267/313 proteins), 

‘extracellular’ (110/313 proteins), ‘cell surface’ (95/313 proteins) and a short term that 

indicates that the protein is membrane-integral, however that the subcellular localisation is 

presently unknown (7/313 proteins) (shown in Supplementary Table 1E)13, 32. This strategy 

facilitates a comprehensive coverage of the cell surface proteome. From the 313 proteins, 31 

were annotated ‘extracellular’ but not ‘plasma membrane’ or ‘cell surface’. These included 

Lysozyme and Haptoglobin. Certain extracellular proteins can clearly bind to proteins or 

receptors at the plasma membrane. For example, Haptoglobin is known to bind CD16333, 

which we also detected in our analysis.  

Although two previous reports have quantified the whole cell proteome of monocyte 

subsets34, 35, ours represents the first selective study of the cell surface proteome of these 

primary cell types. Furthermore, one of the previous studies34 pooled non-classical and 

intermediate phenotype cells prior to analysis, and the other did not examine intermediate 

phenotype cells35. We compared our data to both studies. As might be anticipated due to the 

low abundance and hydrophobic nature of cell surface proteins, each prior study only 

identified a fraction of the cell surface proteins found by selective surface biotinylation. 

Furthermore, for each subset of proteins previously identified as differentially expressed, 

there was generally poor correspondence to our data. There are a number of possible 

explanations for this finding, particularly including a small sample size of differentially 

expressed proteins that were also quantified in our study in each case. Additionally, 
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correspondence between cell surface and whole-cell protein abundances can in any case be 

poor, and there may have been some confounding in one of the prior studies from isolation 

and measurement of protein samples in five different locations, using four different types of 

mass spectrometer35. Neither prior study examined intermediate-phenotype cells. We 

believe this shows the clear benefits of selective interrogation of the cell surface proteome, 

in a single multiplexed experiment that can make precise quantitative comparisons. 

Although the monocyte subsets can be delineated using CD14/CD16 expression, use of 

further markers in parallel could aid distinction of subgroups which may appear as a near 

continuum if viewed in only two dimensions12.  It has previously been suggested that the 

intermediate monocyte subset may be a transitional state between the two larger circulating 

monocyte populations, and the classical subset are more distinct from intermediate and non-

classical cells than the latter two populations are from one another. Our data support this 

second observation. However, we also identified proteins that are uniquely up- or down-

regulated in intermediate cells, arguing against the hypothesis that these cells may be purely 

transitional. Future work will be required to determine which combinations of markers can 

be used to definitively separate individual subsets, and will expand recent single cell 

transcriptomic data which has suggested that intermediate monocytes are more 

heterogenous than previously anticipated9, 36. Additionally, further studies will also be 

required to examine the monocyte cell surface from individuals with diseases including 

asthma, rheumatoid arthritis and sarcoidosis to determine whether subpopulations exhibit 

phenotypic differences in these conditions. We thus provide an orthogonal analysis of 

monocyte subgroups to complement previous transcriptomic studies which will facilitate 

many future studies of monocytes. This valuable resource may also be useful to assist 

elucidation of the true nature of intermediate monocytes. 
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MATERIALS AND METHODS 

Monocyte isolation 

For proteomic studies, leukocyte enriched blood samples were obtained from healthy UK-

based blood donors via NHS blood and transplant (NHSBT, Cambridge, UK). No further 

information about these donors was available from NHSBT, in line with their conditions of 

supply. Cells were eluted and PBMC isolated by centrifugation on a Ficoll gradient (GE 

Healthcare) for 20 minutes at 800g. PBMC were aspirated from the interface, and monocytes 

isolated using a negative selection kit (‘Pan Monocyte Enrichment’, Miltenyi Biotec, 130-096-

537). Monocyte subsets were subsequently defined by flow cytometry after staining with 

anti-CD14, anti-CD16 and anti-CD86. For fluorescence activated cell sorting on either Influx or 

Aria III cell sorter (Becton Dickinson), gating strategies are shown in Fig. 1. Live cells were 

defined by a forward and side-scatter gate. Live CD86+ cells were sorted into three subsets 

defined by CD14 and CD16 expression. Samples used for flow-cytometry based phenotypic 

validation of cell surface marker expression (Fig. 4) were derived from healthy donors of 

European ancestry local to Cambridge, UK. Here, 5-10ml of whole anticoagulated blood was 

collected from each donor and subjected to enrichment and staining as described above, 

including stains for anti-CD14, anti-CD16 and anti-CD86 in addition to individual markers of 

interest. Donated blood was collected with informed consent in accordance with the 

Declaration of Helsinki. Ethical approval was obtained from University of Cambridge Human 

Biology Research Ethics Committee (HBREC.2016.011).    

Plasma membrane profiling 

Plasma membrane profiling was performed broadly as previously described13, with the 

following modifications. The total number of monocytes biotinylated was dependent on the 
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yield from enrichment procedures detailed above, typically in the range of 105-106 cells for 

intermediate and non-classical monocytes, and 107 for classical monocytes. Precise sorted 

counts were collected during each enrichment from the Influx or Aria III cell sorter. Each of 

the three donated samples was biotinylated and labelled separately, combining at the final 

stage prior to TMT analysis. Briefly, for each enriched monocyte subset sample, sialic acid 

residues at the cell surface were oxidized using sodium meta-periodate (Thermo) and 

biotinylated with aminooxy-biotin (Biotium). Following quenching, cells were incubated in 1% 

(v/v) Triton X-100 lysis buffer (10mM Tris HCl, 1.6% Triton, 150mM NaCl). Biotinylated 

glycoproteins were precipitated using high affinity streptavidin agarose beads (Pierce), and 

washed extensively. Captured protein was then reduced with dithiothreitol (DTT), alkylated 

with iodoacetamide (Sigma) and digested on-bead with trypsin (Promega) in 200 mM HEPES 

pH 8.5 for 3 hours. Trypsin cleaves C-terminal to basic residues, except when they are N-

terminal to a Proline residue. Tryptic peptides were collected and the whole sample labelled 

using TMT reagents following dilution in 200mM HEPES pH 8.5 adjusted to a final 30% 

acetonitrile concentration (v/v). To ensure analysis of each cell type in a 1:1:1 ratio, a fraction 

of each labelled peptide sample was combined in proportion to the number of cells collected 

for each subset. Labelling was as follows; classical monocytes donation 1 (126), intermediate 

monocytes donation 1 (127N), non-classical monocytes donation 1(127C), classical 

monocytes donation 2 (128N), intermediate monocytes donation 2 (128C), non-classical 

monocytes donation 2 (129N), classical monocytes donation 3 (129C), intermediate 

monocytes donation 3 (130N), non-classical monocytes donation 3 (130C). The reaction was 

quenched with hydroxylamine, and TMT-labelled samples combined in a 1:1:1:1:1:1:1:1:1 (all 

subsets) or 1:1:1 (Classical only) ratio. Labelled peptides were subjected to C18 solid-phase 

extraction (Sep-Pak, Waters) and vacuum-centrifuged to near-dryness. 
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Offline SCX fractionation 

  Offline fractionation was performed as previously described14, 37 with the following 

modifications.  10 mg of PolySulfethyl A bulk material (Nest Group Inc) was loaded on to a 

fritted 200 l tip in 100% Methanol using a vacuum manifold. SCX material was conditioned 

slowly with 1ml SCX buffer A (7 mM KH2PO4, pH 2.65, 30% Acetonitrile), then 0.5 ml SCX buffer 

B (7 mM KH2PO4, pH 2.65, 350mM KCl, 30% Acetonitrile) then 2ml SCX buffer A. Dried 

peptides were resuspended in 500 l SCX buffer A and added to the tip at a flow rate of ~150 

l/min, followed by a 150 l wash with SCX buffer A. Fractions were eluted in 150 l buffer at 

increasing K+ concentrations (10, 25, 40, 60, 90, 150 mM KCl), vacuum-centrifuged to near 

dryness then desalted using StageTips. 

 

LC-MS3 

 LC-MS3 was performed with modifications as previously described38, 39. Mass spectrometry 

data was acquired using an Orbitrap Lumos (Thermo Fisher Scientific, San Jose, CA). An 

Ultimate 3000 RSLC nano UHPLC equipped with a 300 µm ID x 5 mm Acclaim PepMap µ-

Precolumn (Thermo Fisher Scientific) and a 75 µm ID x 50 cm 2.1 µm particle Acclaim PepMap 

RSLC analytical column was used. An unfractionated singleshot was analysed initially to 

ensure similar peptide loading across each TMT channel, thus avoiding the need for excessive 

electronic normalization. As all normalisation factors were >0.33 and <3.0, data for each 

singleshot experiment was analysed with data for the corresponding fractions to increase the 

overall number of peptides quantified. For monocyte subset analysis, 2µl of fractionated 
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peptide was initially analysed by mass spectrometry, followed by the remainder of the sample 

having observed satisfactory chromatography. 

 
 For LC/MS3, loading solvent was 0.1% trifluoroacetic acid (TFA), analytical solvent A: 0.1% FA 

and B: 80% acetonitrile + 0.1% FA. All separations were carried out at 55°C. Samples were 

loaded at 10 µl/minute for 5 minutes in loading solvent before beginning the analytical 

gradient. The following gradient was used: 3-7% B over 4 minutes, 7-37% B over 58 minutes, 

37-95% B over 4 minutes followed by a 2 minute wash at 95% B and equilibration at 3% B for 

15 minutes. Each analysis used a MultiNotch MS3-based TMT method 40, 41. The following 

settings were used: MS1: 380-1500 Th, Quadrupole isolation, 120,000 Resolution and 2x105 

AGC target, 50 ms maximum injection time. MS2: Quadrupole isolation at an isolation width 

of m/z 0.7, CID fragmentation (NCE 35) with ion trap scanning out in rapid mode from m/z 

120, 1.5x104 AGC target, 300 ms maximum injection time in centroid mode. MS3: in 

Synchronous Precursor Selection mode the top 10 MS2 ions were selected for HCD 

fragmentation (NCE 65) and scanned in the Orbitrap at 60,000 resolution with an AGC target 

of 1.5x105 and a maximum accumulation time of 250 ms, ions were not accumulated for all 

parallelisable time. The entire MS/MS/MS cycle had a target time of 3 s. Dynamic exclusion 

was set to +/- 10 ppm for 70 s. MS2 fragmentation was trigged on precursors 5x103 counts 

and above. 

 

Data analysis 

   Data analysis was performed with modifications as previously described18, 38. In the 

following description, we list the first report in the literature for each relevant algorithm. 

Mass spectra were processed using a Sequest-based software pipeline for quantitative 
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proteomics, “MassPike”, through a collaborative arrangement with Professor Steve Gygi’s 

laboratory at Harvard Medical School. MS spectra were converted to mzXML using an 

extractor built upon Thermo Fisher’s RAW File Reader library (version 4.0.26). In this 

extractor, the standard mzXML format has been augmented with additional custom fields that 

are specific to ion trap and Orbitrap mass spectrometry and essential for TMT quantitation. 

These additional fields include ion injection times for each scan, Fourier Transform-derived 

baseline and noise values calculated for every Orbitrap scan, isolation widths for each scan 

type, scan event numbers, and elapsed scan times. This software is a component of the 

MassPike software platform and is licensed by Harvard Medical School. 

  A combined database was constructed from the human Uniprot database (26th January, 

2017), and common contaminants such as porcine trypsin. The combined database was 

concatenated with a reverse database composed of all protein sequences in reversed order. 

Searches were performed using a 20 ppm precursor ion tolerance42. Fragment ion tolerance 

was set to 1 Da. TMT tags on lysine residues and peptide N termini (229.162932 Da) and 

carbamidomethylation of cysteine residues (57.02146 Da) were set as static modifications, 

while oxidation of methionine residues (15.99492 Da) was set as a variable modification. 

  To control the fraction of erroneous protein identifications, a target-decoy strategy was 

employed 43, 44. Peptide spectral matches (PSMs) were filtered to an initial peptide-level false 

discovery rate (FDR) of 1% with subsequent filtering to attain a final protein-level FDR of 1% 

45, 46. PSM filtering was performed using a linear discriminant analysis, as described previously 

47. This distinguishes correct from incorrect peptide IDs in a manner analogous to the widely 

used Percolator algorithm 48, though employing a distinct machine learning algorithm. The 

following parameters were considered: XCorr (minimum 1), ΔCn, missed cleavages, peptide 
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length, charge state, and precursor mass accuracy. Protein assembly was guided by principles 

of parsimony to produce the smallest set of proteins necessary to account for all observed 

peptides 47. 

  Proteins were quantified by summing TMT reporter ion counts across all matching peptide-

spectral matches using ”MassPike”, as described previously 40, 41. Briefly, a 0.003 Th window 

around the theoretical m/z of each reporter ion (126, 127n, 127c, 128n, 128c, 129n, 129c, 

130n, 130c) was scanned for ions, and the maximum intensity nearest to the theoretical m/z 

was used. The primary determinant of quantitation quality is the number of TMT reporter 

ions detected in each MS3 spectrum, which is directly proportional to the signal-to-noise (S:N) 

ratio observed for each ion 49. Conservatively, every individual peptide used for quantitation 

was required to contribute sufficient TMT reporter ions so that each on its own could be 

expected to provide a representative picture of relative protein abundance 40. An isolation 

specificity filter was additionally employed to minimise peptide co-isolation 50. Peptide-

spectral matches with poor quality MS3 spectra (more than 9 TMT channels missing and/or a 

combined S:N ratio of less than 135 (9-plex, monocyte subsets) or 45 (3-plex, classical 

monocytes) across all TMT reporter ions) or no MS3 spectra at all were excluded from 

quantitation. Peptides meeting the stated criteria for reliable quantitation were then summed 

by parent protein, in effect weighting the contributions of individual peptides to the total 

protein signal based on their individual TMT reporter ion yields. Protein quantitation values 

were exported for further analysis in Microsoft Excel. 

  For protein quantitation, reverse and contaminant proteins were removed. For further 

analysis and display in figures, fractional TMT signals were used (i.e. reporting the fraction of 

maximal signal observed for each protein in each TMT channel, rather than the absolute 
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normalized signal intensity). This effectively corrected for differences in the numbers of 

peptides observed per protein. 

  Proteins were filtered to include those most likely to be present at the cell surface with high 

confidence. These contained proteins with the Gene Ontology (GO) terms of ‘plasma 

membrane’ (PM), ‘cell surface’ (CS), ‘extracellular’ (XC) or with a short 4- or 5-part GO cellular 

compartment term that included ‘integral to membrane’, but with no subcellular assignment 

13 (ShG).  

 To estimate the relative abundance of each protein, a method based on iBAQ was employed. 

The summed MS1 maximum precursor intensity for each protein across all matching peptides 

was calculated. Each value was divided by the number of theoretically observable tryptic 

peptides 7-30 amino acids in length for the respective protein, as determined by in silico 

trypsin digestion of human Swissprot canonical and isoform database (2017_01_26) using the 

OrgMassSpecR51 package in R 3.5.152. 

For Fig. 1b, the Database for Annotation, Visualisation and Integrated Discovery (DAVID) 

version 6.8, was used to determine pathway enrichment53. 373 proteins identified at the 

plasma membrane of classical monocytes were searched against a background of the whole 

human proteome. 

  Hierarchical centroid clustering based on Euclidian distance or uncentered correlation was 

performed using Cluster 3.054 (Stanford University) and visualised using Java Treeview55 

(http://jtreeview.sourceforge.net). Principle component analysis and K-means analysis to 

determine the number of distinct patterns of protein expression between monocyte subsets 

was performed using XLSTAT v2019.1.2 (Addinsoft). Once the number of expression profiles 

was determined, Cluster 3.0 was used to perform K-means clustering. 
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Flow cytometric analysis of monocyte surface proteins 

 Monocytes were obtained by negative selection using a Pan-Monocyte enrichment kit as 

described above. Cells were incubated with Fc blocking reagent (Biolegend Human Trustain 

FcX) for 15 min at 4oC. Four-colour staining was then used to validate phenotype, using anti-

CD14, anti-CD16, anti-CD86 and an antibody against the marker of interest for 15 min at 4oC. 

Specific antibodies used were: APC-Cy7 anti-CD14 (Biolegend, 325620), PE anti-CD14 

(Biolegend, 301850), BV421 anti-CD16 (Becton Dickinson, 562874), PE-Cy7 anti-CD86 (Becton 

Dickinson, 561128), FITC anti-ITGA5 (Miltenyi Biotec, 130-110-592), APC anti-SIGLEC10 

(Miltenyi Biotec, 130-103-731), PE anti-LTB4R (BioRad, MCA2108PET), PE anti-CD35 (Miltenyi 

Biotec, 130-099-913). Cells were washed in PBS/0.4% (v/v) citrate/0.5% (v/v) BSA prior to 

fixation and analysis on a BD LSR Fortessa (Beckton Dickinson). After gating by forward and 

side-scatter, ≥30,000 events were captured. Data was analysed using FlowJo V10 (FlowJo, 

LLC). Monocytes were defined using forward and side-scatter filters and positive CD86 

expression as shown in Supplementary Fig. S1. 

For Fig. 4, monocytes were gated into subsets: CD14++, CD16- (Classical), CD14++, CD16+ 

(Intermediate), CD14+, CD16++ (Non-classical). MFI values for each subset were normalised 

to a maximum of 1 prior to averaging and calculation or the standard deviation and standard 

error of the mean. 

 

Experimental design 
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For each proteomic analysis (classical monocyte or subset analysis) three independent 

samples were obtained and prepared separately prior to simultaneous isobaric tag labelling 

and further analysis. Triplicate analysis was chosen to take advantage of the capability to 

study up to 10 samples simultaneously using tandem mass tags. As such, three complete sets 

of three subsets were chosen. Validation studies using flow cytometry were performed in 

biological triplicate from three independent donors as described above. Flow cytometry 

fluorophore staining was performed with singly stained and unstained control populations in 

addition to the test samples. For proteomic data, a Benjamini-Hochberg-corrected two-tailed 

t-test was used to estimate p-values. For flow cytometry data, a two-tailed t-test was used to 

estimate p-values based on an observed near-normal distribution of signal within subgroups. 

 

Data availability 

The mass spectrometry proteomics data has been deposited to the ProteomeXchange 

Consortium (http://www.proteomexchange.org/) via the PRIDE56 partner repository, project 

identifier PXD013832. Project name ‘Comprehensive cell surface proteomics defines markers 

of classical, intermediate and non-classical monocytes’.  
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