4
_

⁴ Kinfitr – an open source tool for reproducible

- ⁵ PET modelling: validation and evaluation of
- 6 test-retest reliability

7	Jonath	an Tjerkaski ^{1,2} , Simon Cervenka ¹ , Lars Farde ¹ , Granville James Matheson ¹
8	1.	Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska
9		Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska
10		University Hospital, SE-171 76 Stockholm, Sweden
11	2.	Corresponding author. Email: jonathan.tjerkaski@stud.ki.se
12		
13		

Abstract

In positron emission tomography (PET) imaging, binding is typically estimated by fitting pharmacokinetic models to the series of measurements of radioactivity in the target tissue following intravenous injection of a radioligand. However, there are multiple different models to choose from and numerous analytical decisions which must be made when modelling PET data. Therefore, full communication of all the steps involved is often not feasible within the confines of a scientific publication. As such, there is a need to improve analytical transparency. *Kinfitr*, written in the open-source programming language R, is a tool developed for flexible and reproducible kinetic modelling of PET data, i.e. performing all steps using code which can be publicly shared in analysis notebooks. In this study, we compared outcomes obtained using *kinfitr* with those obtained using PMOD: a widely-used commercial tool.

Using previously-collected test-retest data obtained with four different radioligands, a total of six different kinetic models were fitted to time-activity curves derived from different brain regions. We observed high agreement between the two kinetic modelling tools both for binding estimates and for microparameters. Likewise, no substantial differences were observed in the test-retest reliability estimates between the two tools. In summary, we showed excellent agreement between the open source R package *kinfitr*, and

the widely-used commercial application PMOD. We therefore conclude that *kinfitr* is a valid and reliable tool for kinetic modelling of PET data.

Background

Positron emission tomography (PET) is an imaging modality with high sensitivity and specificity for biochemical markers and metabolic processes *in vivo* [1]. It is an important tool in the study of psychiatric and neurological diseases, as well as for evaluating novel and established pharmacological treatments [2–4]. In PET imaging, study participants receive an intravenous injection of a radioligand, which binds specifically to a target molecule [5]. The concentration of radioligand in a region of interest (ROI) is measured over time to produce a time-activity curve (TAC) [6]. Radioligand binding, and thereby the concentration of the target molecule, can then be estimated using quantitative kinetic models [7, 8], of which there are many.

Importantly, the choice of a certain kinetic modelling approach should be based on several considerations, including the pharmacokinetic properties of the radioligand, the signal-to-noise ratio of the TAC, the availability of arterial blood sampling and the biological research question. Furthermore, there are various other analytical decisions that must be made in conjunction with modelling, such as the selection of statistical weighting. The sheer number of options available for kinetic modelling, in addition to those in prior pre-processing of image data [9] and blood data [10, 11] means that the communication of all analytical steps may not be feasible within the confines of a scientific publication. This limitation may, in turn, impede replication efforts and obscure potential errors [12]. Such problems have been described in numerous fields, and reproducible research practices have been proposed as a solution: this means increasing transparency by exposing more of the research workflow to the scientific community, through sharing of code and (when possible) data [12–14].

Several tools, both commercial and open-source, have been developed to facilitate the analysis of PET data [15–18]. These tools differ in their focus on various levels of analysis

3

such as image reconstruction, image processing or high-throughput quantification. *Kinfitr* is an open source software package specifically developed for the purpose of performing PET kinetic modelling in a flexible and reproducible fashion. It is written in the R programming language [19], which provides access to a rich ecosystem of tools for reproducible research. The overall aims of *kinfitr* are to provide researchers with a high degree of flexibility during modelling as well as to provide the user with the ability to report all the steps taken during this process in a transparent manner [20]. This software package has been used in several scientific publications [21–24], however, it has not yet been formally evaluated against other software. This is an important safeguard for open-source software, as bugs can otherwise go unnoticed (e.g. [25]).

The purpose of this study was to validate *kinfitr* by comparing its estimates to those obtained with the widely-used commercially available software PMOD [17], which for the purposes of this analysis was considered to be the gold standard within the field. Making use of previously collected test-retest data for four different radioligands, we evaluated the agreement between these tools, using three different kinetic models each.

Methods

Data and study participants

This study was performed using data from four previous studies carried out at the Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. In all studies, the data collection was approved by the Regional Ethics and Radiation Safety Committee of the Karolinska Hospital, and all subjects had provided written informed consent prior to their participation. All participants were young (aged 20-35 years), healthy individuals who underwent two PET measurements each with the same radioligand. The radioligands used were [¹¹C]SCH23390 [26], [¹¹C]AZ10419369 [27], [¹¹C]PBR28 [28] and (R)- [¹¹C]PK11195 [29]. Data from two target ROIs were selected as representative for each dataset. The two ROIs correspond to a region with higher and a region with lower specific binding for the radioligand used.

The [¹¹C]SCH23390 cohort consisted of fifteen male subjects [30]. [¹¹C]SCH23390 binds to the dopamine D1 receptor, which is highly concentrated in the striatum, with a lower concentration in cortical regions and negligible expression in the cerebellum [31]. In this study, the target ROIs were the striatum and the frontal cortex.

The [¹¹C]AZ10419369 cohort consisted of eight male subjects [32]. [¹¹C]AZ10419369 binds to the serotonin 5-HT_{1B} receptor, which is highly concentrated in the occipital cortex, with a moderate concentration in the frontal cortex and negligible expression in the cerebellum. The occipital and frontal cortices were selected as the target ROIs for [¹¹C]AZ10419369 [32].

The [¹¹C]PBR28 cohort consisted of 6 males and 6 females[33] and the (R)-[¹¹C]PK11195 cohort was comprised of 6 male individuals[34]. Both [¹¹C]PBR28 and (R)- [¹¹C]PK11195 bind to the 18 kDa translocator protein (TSPO), a proposed marker of glial cell activation [35–37]. TSPO has a widespread distribution across the whole brain, predominantly in grey matter [38]. In this study, the ROIs used for both TSPO ligands were the thalamus and the frontal cortex. Furthermore, arterial blood sampling, plasma measurements and plasma metabolite analysis were performed and used in the analysis for the [¹¹C]PBR28 and (R)-[¹¹C]PK11195 cohorts as described previously [33, 34], as no true reference region is available for these radioligands.

Kinetic modelling

In total, a total of six commonly-used kinetic models were used to quantify radioligand binding in the different datasets. For each analysis, both *kinfitr* (version 0.4.3) and PMOD (version 3.704, PMOD Technologies LLC., Zürich, Switzerland) was used. These estimates were subsequently compared to assess the agreement between the two kinetic modelling tools. The same investigator (JT) performed the analysis with both tools.

For the quantification of [¹¹C]SCH23390 and [¹¹C]AZ10419369, the Simplified Reference Tissue Model (SRTM) [39], Ichise's Multilinear Reference Tissue Model 2 (MRTM2) [40] and the non-invasive Logan plot [41] were used, with the cerebellum as a reference region for both radioligands. These models will be referred to as the "reference tissue models", whose main outcome was the binding potential (BP_{ND}). Prior to performing MRTM2, k_2 ' was estimated by fitting MRTM1 [40] for the TAC of the higher-binding region for each subject, the result of which was used as an input when fitting MRTM2 for all regions of that particular subject.

For the quantification of (R)- [¹¹C]PK11195 and [¹¹C]PBR28, the two-tissue compartment model (2TCM) [42–44], the Logan plot [45] and Ichise's Multilinear Analysis 1 (MA1) [46] were used to estimate the distribution volume (V_T) using the metabolite-corrected arterial plasma (AIF) as an input function. These will henceforth be referred to as the "invasive models". The delay between the TACs and arterial input function was fitted by the 2TCM using the TAC for the whole brain ROI. The default values in PMOD for the blood volume fraction (v_B) were maintained throughout all analyses, which amounted to a $v_B = 0$ for MA1 and the invasive Logan plot and $v_B = 0.05$ for 2TCM.

The manner by which the analysis was performed was based on the explicit instructions provided along with each tool. However, when no explicit instructions were available, we

6

resorted to making inferences based on the instructions for previous analytical steps and the design of the user interface of each kinetic modelling tool to emulate best how users might actually use each tool. For instance, one difference between how both tools are used relates to the selection of t*, which is required when fitting the linearized models (MA1, MRTM2 and both invasive and non-invasive Logan plots). These linearized models rely on asymptotic approximations, and t* is the time point after which these approximations apply. In *kinfitr*, a single t* value was selected and used across individuals, while in PMOD, a unique t* value was selected for each individual PET measurement. In both cases, the design of the software makes it more difficult and time-consuming to do this the other way (more details provided in Supplementary Materials S1), and in the former case this was a deliberate design decision to prevent over-fitting [20]. Importantly, the decision to focus on how the tools might be used in practice, rather than simply optimising the similarity of processing, provides more information about the extent to which outcomes might differ between tools, rather than the extent to which they might be made to be the same. We believe that this is of greater relevance to the research community.

Statistics

The primary aim of this study was to assess the agreement between estimates of BP_{ND} (for reference tissue models) or V_T (for invasive models) obtained using *kinfitr* or PMOD, using a total of 6 different kinetic models. By using test-retest data, we were also able to evaluate the secondary aim of comparing the test-retest reliability within individuals for each tool.

The agreement between *kinfitr* and PMOD was evaluated using the intraclass correlation coefficient (ICC), the Pearson correlation coefficient, and bias.

The ICC represents the proportion of the total variance which is not attributable to measurement error, or noise. Therefore, an ICC of 1 represents perfect agreement, while an

ICC of 0 represents no signal and only noise. We used the ICC(A,1) [47], which is computed using the following equation:

$$ICC = \frac{MS_R - MS_E}{MS_R + (k-1)MS_E + \frac{k}{n}(MS_C - MS_E)}$$

where MS_R is the mean sum of squares of the rows, MS_E is the mean sum of squares of the error and MS_C is the mean sum of squares of the columns; and where k refers to the number of raters or observations per subject (in this case 2), and n refers to the number of subjects [48].

Bias was defined as the percentage change in the means of the values of the binding estimates. This measure was calculated as follows:

$$Bias = \frac{X_{kinfitr} - X_{PMOD}}{X_{PMOD}} \times 100\%$$

where X represents estimates of radioligand binding.

To compare the performance of each tool for assessing within- and between-subject variability, we calculated the mean, coefficient of variation (CV), ICC, within-subject coefficient of variation (WSCV) and absolute variability (AV).

The CV is calculated as a measure of dispersion. It is defined as follows:

$$CV = \frac{\hat{\sigma}}{\hat{\mu}} \times 100\%$$

Where $\hat{\sigma}$ represents the sample standard deviation and $\hat{\mu}$ the sample mean of the binding estimate value.

The ICC was calculated as above, since inter-rater agreement and test-retest reliability are both most appropriately estimated using the two-way mixed effects, absolute agreement, single rater/measurement ICC, the ICC(A,1) [49].

The within-subject coefficient of variation was calculated as a measure of repeatability and expresses the error as a percentage of the mean. It is calculated as follows:

$$WSCV = \frac{\hat{\sigma}_e}{\hat{\mu}} \times 100\%$$

where $\hat{\sigma}_e$ represents the standard error of the binding estimate value, which is analogous to the square root of the within subject mean sum of squares (MS_W), which is also used in the calculation of the ICC above. $\hat{\mu}$ is the sample mean of the binding estimate value.

Finally, we also calculated the absolute variability (AV). This metric can be considered as an approximation of the WSCV above. While not as useful as the WSCV [50], AV has traditionally been applied within the PET field, and is included for historical comparability.

$$AV = \frac{2 \times |X_{PET 1} - X_{PET 2}|}{|X_{PET 1} + X_{PET 2}|} \times 100$$

Where "X" refers to the value of the binding estimate and "PET 1" and "PET 2" refer to the first and second PET measurements in a test-retest experiment (in chronological order).

Exclusions and Deviations

All subjects in the [¹¹C]SCH23390, [¹¹C]AZ10419369 and (R)- [¹¹C]PK11195 cohorts were included in the final analysis. However, one study participant belonging to the [¹¹C]PBR28 cohort, was excluded due to exhibiting a poor fit in the PMOD analysis which resulted in an abnormally high V_T estimate (>5 standard deviations from the mean of the rest of the sample, and a >500% increase from the other measurement of the same individual) (Supplementary

Materials S2). We were unable to resolve this problem using different starting, upper and lower limits.

Moreover, in the analysis of the [¹¹C]PBR28 cohort, *kinfitr* returned warnings about high values of k_3 and k_4 for some fits. When parameter estimates are equal to upper or lower limit bounds, the software recommends either altering the bounds, or attempting to use multiple starting points to increase the chance of finding the global minimum as opposed to a local minimum. Since in this case we deemed the values to be abnormally high, we opted for the latter strategy using the multiple starting point functionality of *kinfitr* using the *nls.multstart* package [51]. This entails fitting each curve a given number of times (we selected 100) using randomly sampled starting parameters from across the parameter space. This process led to negligible changes in the V_T estimates, but yielded microparameter estimates whose values were no longer equal to the upper or lower limit bounds.

Data and Code Availability

All analysis code is available at https://github.com/tjerkaskij/agreement_kinfitr_pmod. The data are pseudonymized according to national (Swedish) and EU legislation and cannot be fully anonymized, and therefore cannot be shared openly within this repository due to current institutional restrictions. Metadata can be openly published, and the underlying data can instead be made available upon request on a case by case basis as allowed by the legislation and ethical permits. Requests for access can be made to the Karolinska Institutet's Research Data Office at rdo@ki.se.

Results

		ICC		Pearson's r		Bias (%)	
Ligand	Model	Region 1	Region 2	Region 1	Region 2	Bias 1	Bias 2
Invasive							
	2TCM	0.99	1.00	1.00	1.00	2.01	1.19
[¹¹ C]PBR28	Logan	0.99	0.99	1.00	1.00	1.06	0.37
	MA1	0.95	0.97	1.00	1.00	10.53	10.06
	2TCM	1.00	0.98	1.00	0.98	1.16	0.69
[¹¹ C]PK11195	Logan	0.99	0.94	1.00	0.97	-3.26	-5.68
	MA1	0.97	0.89	0.99	0.95	5.07	9.63
Non-Invasive							
	SRTM	1.00	1.00	1.00	1.00	-0.17	0.13
[¹¹ C]AZ10419369	ref Logan	0.93	0.92	0.99	0.99	-2.93	-3.53
	MRTM2	0.87	0.81	0.97	0.96	-3.84	-5.24
	SRTM	1.00	1.00	1.00	1.00	0.24	0.53
[¹¹ C]SCH23390	ref Logan	0.90	0.97	0.99	0.99	-4.81	-4.02
	MRTM2	0.99	0.99	1.00	1.00	-1.27	-1.49

Table 1: Agreement between *kinfitr* and PMOD. Region 1 corresponds to the occipital cortex for the radioligand [¹¹C]AZ10419369, the striatum for [¹¹C]SCH23390 and the thalamus for both (R)- [¹¹C]PK11195 and [¹¹C]PBR28. Region 2 corresponds to the frontal cortex for all four radioligands which were used in this study. Abbreviations: "2TCM" = Twotissue compartmental model, "Logan" = Invasive Logan plot, "MA1" = Ichise's Multilinear Analysis 1, "SRTM" = simplified reference tissue model, "ref Logan" = reference tissue Logan plot, "MRTM2" = Ichise's Multilinear Reference Tissue Model 2 (MRTM2), "ICC" = intra-class correlation coefficient, "Pearson's r" = Pearson's correlation coefficient. We found excellent agreement between binding estimates computed using both tools, with a median ICC of 0.98 (range: 0.81-1.00) (Table 1, Supplementary Materials S3) [50]. Likewise, we found high correlations between *kinfitr* and PMOD, with a median correlation coefficient of 0.99 (range: 0.95-1.00) (Table 1). It was observed that the linearized methods (i.e. MA1, MRTM2 and both invasive and non-invasive Logan plots) generally exhibited lower agreement than the non-linear models.

We also found strong correlations between the binding estimates of the different kinetic models that were estimated using *kinfitr* and PMOD (Supplementary Materials S4). When comparing the binding estimates of the three reference tissue models within *kinfitr* and PMOD respectively, there was a median Pearson's correlation coefficient of 0.99 for both tools. For the invasive models, there was a median Pearson's correlation coefficient of 0.79 for PMOD and 0.99 for *kinfitr*.

Test-retest reliability

Ligand	Software	Model	Mean	CV (%)	ICC	WSCV (%)	AV (%)
Invasive							
	kinfitr	2TCM	0.76	27.1	0.75	13.9	18.9
[¹¹ C]PK11195	PMOD	2TCM	0.75	27.4	0.72	15.0	20.0
	kinfitr	Logan	0.76	27.2	0.79	12.9	17.2
	PMOD	Logan	0.79	26.2	0.80	12.2	16.2
	kinfitr	MA1	0.84	26.4	0.73	14.1	17.9
	PMOD	MA1	0.80	28.2	0.67	16.6	19.2
	kinfitr	2TCM	3.84	59.6	0.91	18.4	25.1
[¹¹ C]PBR28	PMOD	2TCM	3.73	57.3	0.89	19.1	26.7
	kinfitr	Logan	3.75	57.4	0.91	17.7	24.4
	PMOD	Logan	3.68	54.8	0.88	19.4	26.5
	kinfitr	MA1	4.00	58.4	0.91	18.0	24.0
	PMOD	MA1	3.54	53.1	0.91	16.7	23.7
Non-Invasive							
[¹¹ C]AZ10419369	kinfitr	SRTM	1.59	10.7	0.67	6.3	5.9
	PMOD	SRTM	1.60	11.0	0.67	6.5	5.9
	kinfitr	ref Logan	1.45	8.1	0.61	5.2	4.8
	PMOD	ref Logan	1.49	8.3	0.62	5.3	5.5
	kinfitr	MRTM2	1.42	8.2	0.52	5.9	4.7
	PMOD	MRTM2	1.48	8.0	0.59	5.2	5.5

Ligand	Software	Model	Mean	CV (%)	ICC	WSCV (%)	AV (%)
	kinfitr	SRTM	1.49	11.1	0.83	4.6	5.0
	PMOD	SRTM	1.49	11.2	0.83	4.6	5.0
[¹¹ C]SCH23390	kinfitr	ref Logan	1.48	11.3	0.82	4.8	5.3
	PMOD	ref Logan	1.56	12.3	0.80	5.6	7.0
	kinfitr	MRTM2	1.49	11.1	0.83	4.6	4.9
	PMOD	MRTM2	1.51	11.3	0.82	4.9	5.4

Table 2: Assessment of test-retest reliability of kinfitr and PMOD for a single high-binding ROI for each radioligand. The occipital cortex region was used for the radioligand [¹¹C]AZ10419369, the striatum for [¹¹C]SCH23390 and the thalamus for both (R)- [¹¹C]PK11195 and [¹¹C]PBR28. Abbreviations: "2TCM" = Two-tissue compartmental model, "Logan" = Invasive Logan plot, "MA1" = Ichise's Multilinear Analysis 1, "SRTM" = simplified reference tissue model, "ref Logan" = reference tissue Logan plot, "MRTM2" = Ichise's Multilinear Reference Tissue Model 2 (MRTM2), "ICC" = intra-class correlation coefficient, "CV" = Coefficient of variance, "WSCV" = within-subject coefficient of variance, "AV" = absolute variability.

In general, both tools performed similarly, with no substantial differences seen in the mean values, dispersion (CV), reliability (ICC), or variability (WSCV and AV) (Table 2; Figure 1).

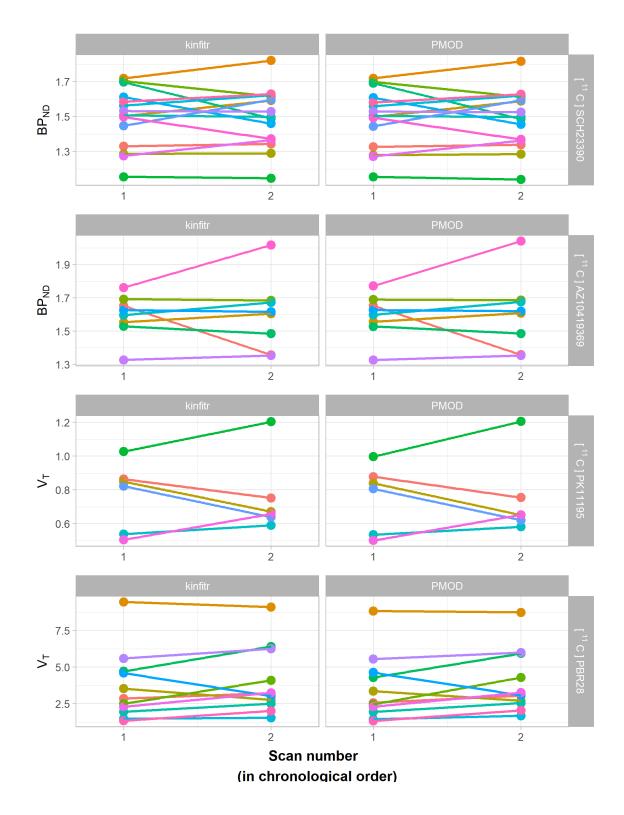


Figure 1: Binding estimate values comparing the first and second PET measurements. Each colour corresponds to a different individual, and the lines connect both of their two measurements. The ROI used in making this figure were the higher-binding regions for each radioligand in this study, i.e. the occipital cortex for [¹¹C]AZ10419369, the striatum for [¹¹C]SCH23390 and the thalamus for both TSPO ligands. The kinetic models represented here are SRTM for the estimation of BP_{ND} (above two rows), and the invasive model 2TCM for the estimation of V_T.

Microparameters

We also compared the values of microparameters (i.e. individual rate constants) estimated using the nonlinear methods. Figure 2 shows a comparison between the values of R1 and k_2 obtained using SRTM for [¹¹C]AZ10419369 and [¹¹C]SCH23390. We observed Pearson's correlation coefficients of >0.99 for both R1 and k_2 estimated by *kinfitr* and PMOD. Similarly, the relationships between the microparameter estimates obtained using 2TCM for [¹¹C]PBR28 and (R)- [¹¹C]PK11195 were assessed (Figure 3). We found high correlations between *kinfitr* and PMOD estimates of K₁, k₂, k₃ and k₄ (mean Pearson's correlation coefficients of >0.99, 0.81, 0.80 and 0.88 respectively).

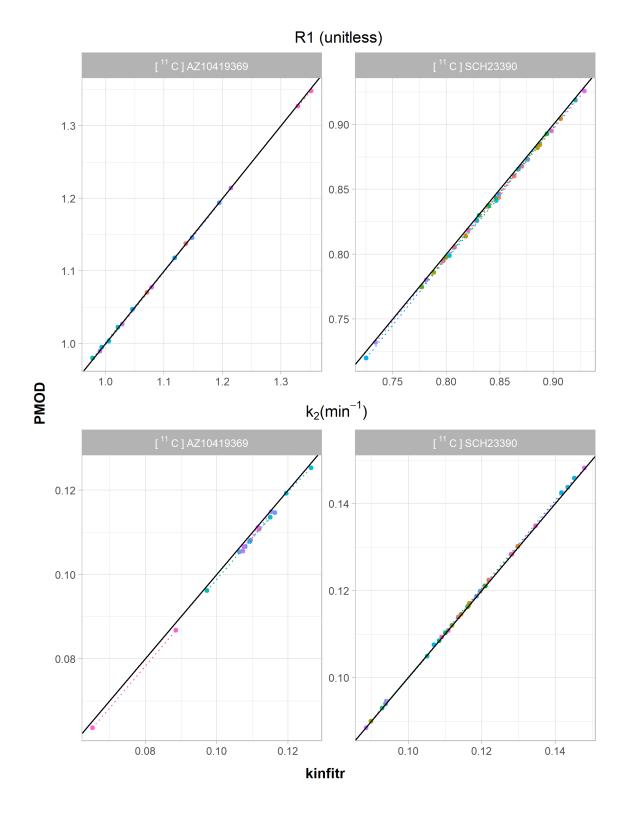


Figure 2: Microparameter comparison for the simplified reference tissue model (SRTM). The relationship between the values of individual rate constants calculated by either kinfitr or PMOD. The results for the radioligand [¹¹C]AZ10419369 are derived from the occipital cortex ROI, whereas the results for [¹¹C]SCH23390 correspond to the striatum. The diagonal line represents the line of identity. Each colour corresponds to a different subject, and the dotted lines connect both measurements from the same subject.

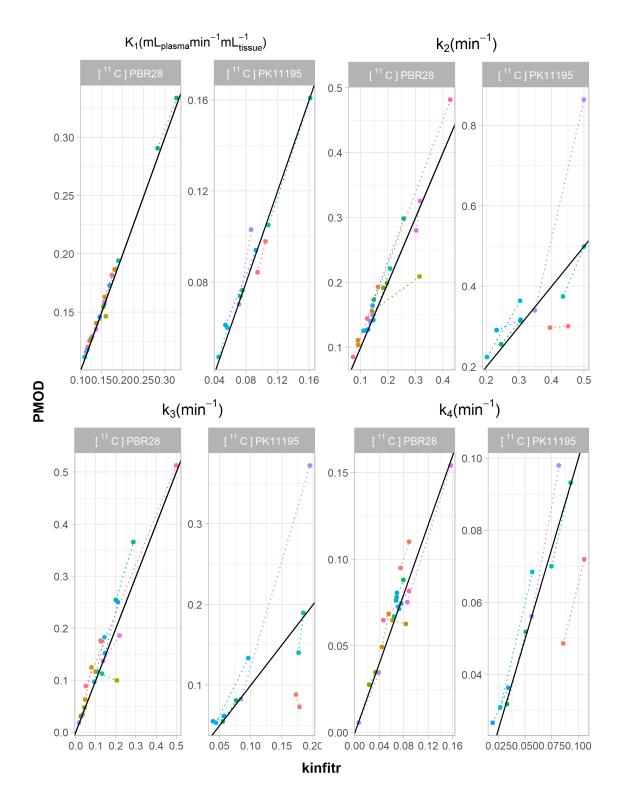


Figure 3: Microparameter comparison for the two-tissue compartment model (2TCM). The relationship between the values of individual rate constants calculated by either kinfitr or PMOD. All results were derived from the thalamus region.

The diagonal line represents the line of identity. Each colour corresponds to a different subject, and the dotted lines connect both measurements from the same subject.

Discussion

In this study, we evaluated the performance of *kinfitr* by comparing radioligand binding estimates to those obtained with the established commercial software PMOD. We assessed the similarity between these tools using four datasets, each encompassing a different radioligand, and employed three kinetic models for invasive and non-invasive applications. Mean regional BP_{ND} and V_T values computed by both tools were similar to those reported in previous literature on the same radioligands [32–34, 52]. We observed high agreement between estimates of BP_{ND} and V_T using *kinfitr* and PMOD. Furthermore, there were no substantial differences between the tools in terms of test-retest reliability for these measures. We further found that both tools exhibited a high degree of agreement in estimates of the microparameters, as well as high agreement between the estimates of the different models assessed using each tool separately. While the bias between some outcome measures estimated with the two tools was non-negligible (Table 1), the high correlations for all outcomes mean that this would not present an issue when using one or the other tool within a given dataset.

Despite the overall high similarity with regard to binding estimates, the linearized models (i.e. MA1, MRTM2 and both invasive and non-invasive Logan plots) exhibited a slightly lower degree of agreement the nonlinear models (2TCM and SRTM). This observation is most likely explained by the fact that the linearized models require the selection of a t* value, which was performed differently using the two tools. As described in more detail in the Supplementary Material S1, PMOD fits a t* value for the user, whereas *kinfitr* requires the user to specify a t* based on several plots as visual aids with which to select an appropriate

19

value. As such, the PMOD interface makes it more convenient to fit t* values independently for each individual, while the *kinfitr* interface encourages selecting a t* value which is generally applicable across all study participants.

With regard to the user interface of the two tools, the most important difference is that *kinfitr* requires the user to interact with the data using code, while PMOD makes use of a graphical user interface (GUI), i.e. the user clicks buttons and selects items from drop-down menus. As such, *kinfitr* requires learning basic R programming before it can be used effectively, while PMOD can essentially be used immediately. Therefore, *kinfitr* may be perceived as having a steeper learning curve than PMOD. However, in our experience, kinfitr provides the user with greater efficiency once a moderate degree of proficiency has been gained. For instance, as a result of the code interface, re-running an analysis using *kinfitr* on all study participants using different parameters (e.g. altering a fixed v_B or t* value) or a different model, can be performed by modifying only the relevant lines of code. In contrast, performing re-analyses using PMOD can require a great deal of manual effort, as all tasks must essentially be repeated. This exemplifies the fundamental benefit of computational reproducibility: by crystallising all steps in computer code, the results can easily be generated anew from the raw input data. This has additional benefits, such as making the detection of potential errors substantially easier as all user actions are recorded transparently in the analysis code, and allowing others to more quickly and easily adapt, modify or build upon previous work.

It is important to note that the kinetic modelling was not performed in an identical manner between the two tools; rather we performed the modelling in a manner as consistent with the way users might actually use the software as possible. This was done in order to emphasize ecological validity. While this diminishes the extent to which we can specifically compare the outcomes using both of the two tools, our intention was instead to compare how both tools would be expected to perform independently in practice. This approach focuses on the extent to which outcomes might potentially differ between these tools, rather than the extent to which they can be made similar. It is thus reasonable to assume that even higher agreement could be achieved if additional measures were taken to make each analytic step identical.

In summary, we showed excellent agreement between the open source R package *kinfitr*, and the widely-used commercial application PMOD, which we have treated as a gold standard for the purpose of this analysis. We therefore conclude that *kinfitr* is a valid and reliable tool for kinetic modelling of PET data.

Declarations

Ethics approval and consent to participate

In all studies, the data collection was approved by the Regional Ethics and Radiation Safety Committee of the Karolinska Hospital, and all subjects had provided written informed consent prior to their participation.

Consent for publication

Not applicable

Availability of data and material

All analysis code is available at https://github.com/tjerkaskij/agreement_kinfitr_pmod. The data are pseudonymized according to national (Swedish) and EU legislation and cannot be fully anonymized, and therefore cannot be shared openly within this repository due to current institutional restrictions. Metadata can be openly published, and the underlying data can instead be made available upon request on a case by case basis as allowed by the legislation and ethical permits. Requests for access can be made to the Karolinska Institutet's Research Data Office at rdo@ki.se.

Competing interests

No conflict of interest relevant to the present work.

Funding

S.C. was supported by the Swedish Research Council (Grant No. 523-2014-3467). J.T. was supported by the Swedish Society of Medicine (Svenska Läkaresällskapet).

Authors' contributions

GJM conceived of the study. LF was involved in planning and supervision of data collection. GJM and JT designed the study. JT and GJM analysed the data and interpreted the results. JT, GJM and SC drafted the article. All authors critically revised the article and approved of the final version for publication.

Acknowledgements

The authors would like to express their gratitude to the members of the PET group at the Karolinska Institutet, for assistance over the course of the investigation, and all who participated in collecting the data which was used in the present study, in particular the first authors: Per Stenkrona, Magdalena Nord, Karin Collste and Aurelija Jučaite. In addition, we would like to thank Dr. Ryosuke Arakawa for his assistance in the use of PMOD and the interpretation of its manual.

References

- Donnelly DJ (2017) Small Molecule PET Tracers in Drug Discovery. Semin Nucl Med 47:454–460
- Cervenka S (2019) PET radioligands for the dopamine D1-receptor: Application in psychiatric disorders. Neurosci Lett 691:26–34
- Hall B, Mak E, Cervenka S, Aigbirhio FI, Rowe JB, O'Brien JT (2017) In vivo tau PET imaging in dementia: Pathophysiology, radiotracer quantification, and a systematic review of clinical findings. Ageing Res Rev 36:50–63
- Fazio P, Paucar M, Svenningsson P, Varrone A (2018) Novel Imaging Biomarkers for Huntington's Disease and Other Hereditary Choreas. Curr Neurol Neurosci Rep 18:85
- Heurling K, Leuzy A, Jonasson M, Frick A, Zimmer ER, Nordberg A, Lubberink M (2017) Quantitative positron emission tomography in brain research. Brain Res 1670:220–234
- Lammertsma AA (2002) Radioligand studies: imaging and quantitative analysis. Eur Neuropsychopharmacol 12:513–6
- Gunn RN, Gunn SR, Cunningham VJ (2001) Positron Emission Tomography Compartmental Models. J Cereb Blood Flow Metab 21:635–652
- Carson RE Tracer Kinetic Modeling in PET. In: Positron Emiss. Tomogr. Springer-Verlag, London, pp 127–159
- Nørgaard M, Ganz M, Svarer C, et al (2019) Cerebral serotonin transporter measurements with [11C]DASB: A review on acquisition and preprocessing across 21 PET centres. J Cereb Blood Flow Metab 39:210–222

- Tonietto M, Rizzo G, Veronese M, Borgan F, Bloomfield PS, Howes O, Bertoldo A (2019) A Unified Framework for Plasma Data Modeling in Dynamic Positron Emission Tomography Studies. IEEE Trans Biomed Eng 66:1447–1455
- Tonietto M, Rizzo G, Veronese M, Fujita M, Zoghbi SS, Zanotti-Fregonara P, Bertoldo A (2016) Plasma radiometabolite correction in dynamic PET studies: Insights on the available modeling approaches. J Cereb Blood Flow Metab 36:326–339
- Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013) Ten Simple Rules for Reproducible Computational Research. PLoS Comput Biol 9:e1003285
- Peng RD (2011) Reproducible research in computational science. Science (80-)
 334:1226–1227
- Matheson GJ, Plavén-Sigray P, Tuisku J, Rinne J, Matuskey D, Cervenka S (2020)
 Clinical brain PET research must embrace multi-centre collaboration and data sharing or risk its demise. Eur J Nucl Med Mol Imaging 47:502–504
- Funck T, Larcher K, Toussaint PJ, Evans AC, Thiel A (2018) APPIAN: Automated Pipeline for PET Image Analysis. Front Neuroinform. https://doi.org/10.3389/fninf.2018.00064
- Karjalainen T, Santavirta S, Kantonen T, Tuisku J, Tuominen L, Hirvonen J, Hietala J, Rinne J, Nummenmaa L (2019) Magia: Robust automated modeling and image processing toolbox for PET neuroinformatics. bioRxiv 604835
- Mikolajczyk K, Szabatin M, Rudnicki P, Grodzki M, Burger C A JAVA environment for medical image data analysis: initial application for brain PET quantitation. Med Inform (Lond) 23:207–14

- Markiewicz PJ, Ehrhardt MJ, Erlandsson K, Noonan PJ, Barnes A, Schott JM, Atkinson D, Arridge SR, Hutton BF, Ourselin S (2018) NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis. Neuroinformatics 16:95–115
- 19. R Core Team (2014) R: A Language and Environment for Statistical Computing.
- Matheson GJ (2019) kinfitr: Reproducible PET Pharmacokinetic Modelling in R.
 bioRxiv 755751
- Plavén-Sigray P, Matheson GJ, Cselényi Z, Jucaite A, Farde L, Cervenka S (2018)
 Test-retest reliability and convergent validity of (R)-[11C]PK11195 outcome measures
 without arterial input function. EJNMMI Res 8:102
- Stenkrona P, Matheson GJ, Halldin C, Cervenka S, Farde L (2019) D1-Dopamine Receptor Availability in First-Episode Neuroleptic Naive Psychosis Patients. Int J Neuropsychopharmacol 22:415–425
- 23. Chen Y, Goldsmith J, Ogden RT (2019) Nonlinear Mixed-Effects Models for PETData. IEEE Trans Biomed Eng 66:881–891
- 24. Matheson GJ, Plavén-Sigray P, Forsberg A, Varrone A, Farde L, Cervenka S (2017)
 Assessment of simplified ratio-based approaches for quantification of PET
 [11C]PBR28 data. EJNMMI Res 7:58
- 25. Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A 113:7900–7905
- 26. Halldin C, Stone-Elander S, Farde L, Ehrin E, Fasth KJ, Långström B, Sedvall G

(1986) Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D-1 receptors using positron emission tomography. Int J Rad Appl Instrum A 37:1039–43

- 27. Pierson ME, Andersson J, Nyberg S, et al (2008) [11C]AZ10419369: A selective 5-HT1B receptor radioligand suitable for positron emission tomography (PET).
 Characterization in the primate brain. Neuroimage 41:1075–1085
- 28. Briard E, Hong J, Musachio JL, Zoghbi SS, Fujita M, Imaizumi M, Cropley V, Innis RB PV (2005) Synthesis and evaluation of two candidate 11C-labeled radioligands for brain peripheral benzodiazepine receptors. J Label Compd Radiopharm 48:S71
- 29. Hashimoto K, Inoue O, Suzuki K, Yamasaki T, Kojima M (1989) Synthesis and evaluation of 11C-PK 11195 for in vivo study of peripheral-type benzodiazepine receptors using positron emission tomography. Ann Nucl Med 3:63–71
- 30. Stenkrona P, Matheson GJ, Cervenka S, Sigray PP, Halldin C, Farde L (2018)
 [11C]SCH23390 binding to the D1-dopamine receptor in the human brain-a
 comparison of manual and automated methods for image analysis. EJNMMI Res 8:74
- Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L (1994) Distribution of
 D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain.
 Neuropsychopharmacology 11:245–56
- 32. Nord M, Finnema SJ, Schain M, Halldin C, Farde L (2014) Test–retest reliability of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. Eur J Nucl Med Mol Imaging 41:301–307
- 33. Collste K, Forsberg A, Varrone A, Amini N, Aeinehband S, Yakushev I, Halldin C, Farde L, Cervenka S (2016) Test-retest reproducibility of [(11)C]PBR28 binding to TSPO in healthy control subjects. Eur J Nucl Med Mol Imaging 43:173–183

- 34. Jučaite A, Cselényi Z, Arvidsson A, Ahlberg G, Julin P, Varnäs K, Stenkrona P, Andersson J, Halldin C, Farde L (2012) Kinetic analysis and test-retest variability of the radioligand [11C](R)-PK11195 binding to TSPO in the human brain - a PET study in control subjects. EJNMMI Res 2:15
- 35. Vas Á, Shchukin Y, Karrenbauer VD, Cselényi Z, Kostulas K, Hillert J, Savic I, Takano A, Halldin C, Gulyás B (2008) Functional neuroimaging in multiple sclerosis with radiolabelled glia markers: Preliminary comparative PET studies with [11C]vinpocetine and [11C]PK11195 in patients. J Neurol Sci 264:9–17
- 36. Cosenza-Nashat M, Zhao M-L, Suh H-S, Morgan J, Natividad R, Morgello S, Lee SC (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35:306–328
- 37. Zanotti-Fregonara P, Pascual B, Veronese M, Yu M, Beers D, Appel SH, Masdeu JC (2019) Head-to-head comparison of 11C-PBR28 and 11C-ER176 for quantification of the translocator protein in the human brain. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-019-04349-w
- 38. Doble A, Malgouris C, Daniel M, Daniel N, Imbault F, Basbaum A, Uzan A, Guérémy C, Le Fur G (1987) Labelling of peripheral-type benzodiazepine binding sites in human brain with [3H]PK 11195: anatomical and subcellular distribution. Brain Res Bull 18:49–61
- Lammertsma AA, Hume SP (1996) Simplified Reference Tissue Model for PET Receptor Studies. Neuroimage 4:153–158
- 40. Ichise M, Liow J-S, Lu J-Q, Takano A, Model K, Toyama H, Suhara T, Suzuki K,

Innis RB, Carson RE (2003) Linearized Reference Tissue Parametric Imaging Methods: Application to [¹¹ C]DASB Positron Emission Tomography Studies of the Serotonin Transporter in Human Brain. J Cereb Blood Flow Metab 23:1096–1112

- 41. Logan J, Fowler JS, Volkow ND, Wang G-J, Ding Y-S, Alexoff DL (1996)
 Distribution Volume Ratios without Blood Sampling from Graphical Analysis of PET
 Data. J Cereb Blood Flow Metab 16:834–840
- 42. Farde L, Ito H, Swahn CG, Pike VW, Halldin C (1998) Quantitative analyses of carbonyl-carbon-11-WAY-100635 binding to central 5-hydroxytryptamine-1A receptors in man. J Nucl Med 39:1965–71
- 43. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15:217–227
- 44. Farde L, Eriksson L, Blomquist G, Halldin C (1989) Kinetic Analysis of Central [¹¹
 C]Raclopride Binding to D₂ -Dopamine Receptors Studied by PET—A Comparison to the Equilibrium Analysis. J Cereb Blood Flow Metab 9:696–708
- 45. Logan J, Fowler JS, Volkow ND, et al (1990) Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N - ¹¹ C-Methyl]-(-)-Cocaine PET Studies in Human Subjects. J Cereb Blood Flow Metab 10:740–747
- 46. Ichise M, Toyama H, Innis RB, Carson RE (2002) Strategies to Improve Neuroreceptor Parameter Estimation by Linear Regression Analysis. J Cereb Blood Flow Metab 22:1271–1281
- 47. McGraw KO, Wong SP (1996) Forming Inferences about Some Intraclass Correlation

Coefficients. Psychol Methods. https://doi.org/10.1037/1082-989X.1.1.30

- 48. Matheson GJ (2019) We need to talk about reliability: making better use of test-retest studies for study design and interpretation. PeerJ 7:e6918
- 49. Koo TK, Li MY (2016) A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. https://doi.org/10.1016/j.jcm.2016.02.012
- 50. Baumgartner R, Joshi A, Feng D, Zanderigo F, Ogden RT (2018) Statistical evaluation of test-retest studies in PET brain imaging. EJNMMI Res 8:13
- 51. Padfield D, Matheson G (2018) nls.multstart: Robust Non-Linear Regression using AIC Scores.
- 52. Matheson GJ, Stenkrona P, Cselényi Z, Plavén-Sigray P, Halldin C, Farde L, Cervenka S (2017) Reliability of volumetric and surface-based normalisation and smoothing techniques for PET analysis of the cortex: A test-retest analysis using [11C]SCH-23390. Neuroimage 155:344–353