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Identification of novel protein binding sites expands «druggable genome» and opens new op-
portunities for drug discovery. Generally, presence or absence of a binding site depends on the
three-dimensional conformation of a protein, making binding site identification resemble to object
detection problem in computer vision. Here we introduce a computational approach for the large-
scale detection of protein binding sites, named BiteNet, that considers protein conformations as the
3D-images, binding sites as the objects on these images to detect, and conformational ensembles of
proteins as the 3D-videos to analyze. BiteNet is suitable for spatiotemporal detection of hard-to-
spot allosteric binding sites, as we showed for conformation-specific binding site of the epidermal
growth factor receptor, oligomer-specific binding site of the ion channel, and binding sites in G
protein-coupled receptors. BiteNet outperforms state-of-the-art methods both in terms of accuracy
and speed, taking about 1.5 minute to analyze 1000 conformations of a protein with ∼ 2000 atoms.
BiteNet is available at https://github.com/i-Molecule/bitenet.

I. INTRODUCTION

Proteins serve biological functionality of a cell via lo-
cal intermolecular interactions that take place in spatial
regions, called binding sites. Binding sites are one of
the key elements in drug discovery, being «hot spots» in
the pharmacological targets, where the designed drug-like
molecule should bind. Identification of novel binding sites
expands «druggable genome» and opens new strategies
for therapy and drug discovery [1]. Typically drug-like
molecules target either orthosteric binding site, where
protein interacts with endogenous molecules, or topolog-
ically distinct allosteric binding sites [2]. The latter is of
a special interest, because allosteric binding sites exhibit
higher degree of sequence diversity between protein sub-
types, thus, allowing to design more selective ligands, in
contrast to the orthosteric ligands [3–5].

Proteins are flexible molecules, that adopt various con-
formations during their life cycle; and a binding site is
a dynamic property of a protein mediated by its confor-
mational changes [6, 7]. Single protein structure repre-
sents only minor part of the entire conformational ensem-
ble, hence, binding sites might be easy to overlook from
the experimentally determined three-dimensional protein
structures [8, 9]. Moreover, many proteins perform their
function assembling to oligomeric structure and can form
binding sites by means of oligomer’s subunits [10, 11].

Experimental identification of binding sites, such as
fragment screening and site-directed tethering [12, 13] ,
using antibodies [14], small molecule microarrays [15] ,
hydrogen-deuterium exchange [16] or site-directed mu-
tagenesis [17] are resource-consuming and may result
in negative outcome. On the other hand, computa-
tional methods allow to perform large scale binding site
identification, investigate protein flexibility via molecu-
lar dynamics simulation, and probe to fit chemical com-
pounds using virtual ligand or fragment-based screening.
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The classical approaches typically employ empirical scor-
ing functions based on the structural information about
known binding sites, or use this information as features
for the machine learning algorithms [18–28]. The suc-
cess rate of these approaches critically depends on the
designed features, and may result in false positive predic-
tions, that is identification of «undruggable» regions [29].
Most recently, deep learning approaches, that do not
require hand-crafted feature engineering, demonstrated
feasibility to predict protein binding sites [30]. In spite
of present progress, large-scale binding site detection re-
mains to be a challenge, let alone that there is still a big
room for improvement in terms of the method’s accuracy
[28].

In this study, we present rapid and accurate deep learn-
ing approach, dubbed BiteNet (Binding site neural Net
work), suitable for the large-scale and spatiotemporal
identification of protein binding sites. Inspired by the
computer vision problems, such as object detection in
images and videos, we consider protein conformations as
the 3D images, binding sites as the objects on these im-
ages to detect, and conformational ensembles of proteins
as the 3D videos to analyze. We showed that BiteNet
is capable to solve the most difficult binding site de-
tection challenges, by applying it to three-dimensional
structures of pharmacological targets, including ATP-
gated cation channel, epidermal growth factor recep-
tor, and G protein-coupled receptor. Namely, BiteNet
correctly identified i) oligomer-specific allosteric binding
site formed by the subunits of the trimeric P2X3 recep-
tor complex; ii) conformation-specific allosteric binding
site of the epidermal growth factor receptor kinase do-
main. BiteNet can be used for spatiotemporal investi-
gation of novel binding sites, as we showed by the ex-
ample of molecular dynamics simulation trajectory for
the adenosine A2A receptor. BiteNet outperforms state-
of-the-art methods both in terms of accuracy and speed
as demonstrated on several benchmarks. It takes ap-
proximately 0.1 seconds to analyze single conformation
and 1.5 minutes for BiteNet to analyze molecular dynam-
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ics trajectory with 1000 frames for protein with ∼ 2000
atoms, making it suitable for large-scale spatiotemporal
analysis of protein structures. BiteNet is available at
https://github.com/i-Molecule/bitenet.

II. RESULTS

A. BiteNet architecture

To develop BiteNet we trained 3D convolutional neural
network using manually curated protein structures from
the Protein Data Bank as the training set (see Section
IV). Figure 1 presents the BiteNet workflow. Similarly to
2D images, that have two dimensions (width and height)
and three channels for each pixel (red, green, and blue),
we represent proteins as 3D images with three dimen-
sions (width, height, and length) and 11 channels for each
voxel, where channels correspond to the atomic densities
of a certain type (see Section IV) (Figure 1A). As neural
networks typically take fixed size tensors for the input,
we used voxel grid of 64 × 64 × 64 voxels and voxels of
1Å × 1Å × 1Å size. If protein exceeds 64Å in any of
the dimensions, we used several voxel grids to represent
it (Figure 1B). The obtained voxel grids are processed
with the 3D convolutional neural network (Figure 1C)
to output 8 × 8 × 8 × 4 tensor, where the first three di-
mensions correspond to the cell coordinates relatively to
the voxel grid (region of 8 × 8 × 8 voxels), and the four
scalars of the last dimension correspond to the proba-
bility score of the binding site being in the cell and its
Cartesian coordinates. This is followed by the process-
ing of the obtained tensors to output the most relevant
predictions of the binding sites (Figure 1D). Thus, the
input to the BiteNet is the spatial structure of a protein
and the output is the centers of the predicted binding
sites along with the probability scores. Finally, BiteNet
identifies the amino acid residues of a binding site within
6Å neighbourhood with respect to the predicted center.
Additionally, when applied to the conformational ensem-
ble of a protein, the obtained predictions and identified
amino acid residues are grouped using clustering algo-
rithms (see Section IVA).

B. Spatiotemporal prediction of binding sites in
pharmacological targets

To demonstrate applicability of BiteNet we considered
one of the most difficult binding site detection challenges,
comprising three pharmacological targets: the P2X3 re-
ceptor of the ATP-gated cation channel family, the epi-
dermal growth factor receptor of the kinase family, and
the adenosine A2A receptor of the G-protein coupled re-
ceptor family.

1. ATP-gated cation channel

The ATP-gated cation channel, formed by the P2X3
receptor, mediates various physiological processes and
represents pharmacological target for hypertension, in-
flammation, pain perception and others [31]. The chan-
nel consists of three identical monomers traversing the
membrane, and the orthosteric ATP-binding site com-
prises amino acid residues of two monomers (see Figure
2C). [32]. Drug design targeting the orthosteric bind-
ing site is difficult due to highly polarized ATP-specific
interface, on the other hand, allosteric ligands target-
ing protein-protein interactions form promising avenue
for drug discovery [11]. Recently allosteric binding site
formed by two monomers of a channel was discovered
for the P2X3 and P2X7 receptors [11, 33]. We ap-
plied BiteNet to the ATP-bound and (AF-219)-bound
structures of the trimer complex formed by the P2X3
monomers (PDB IDs : 5SVK, 5YVE), as well as to the
single monomer structures. BiteNet correctly identified
the orthosteric binding site in the ATP-bound structure
and the allosteric binding site in the (AF-219)-bound
structure of the trimer, and not in the monomer struc-
tures (see Figure 2). Interestingly, BiteNet also predicted
center for the ATP-binding site located on the opposite
end of the ATP molecule with lower probability score
(see Supplementary Figure 1). To ensure, that this is
not an artefact of the rotational variance of the model,
we generate 50 replicas by rotating the monomer about
10 axes by π/3, 2π/3, π, 4π/3, and 5π/3 angles and av-
eraged the obtained predictions. As one can see from
Figure 2 D, although the absolute values of the proba-
bility scores vary with respect to the monomers, in all
the cases BiteNet correctly identifies the allosteric bind-
ing site for the trimer complex and not for the monomer.
Note, that ATP is endogenous agonist, while AF-219 is
antagonist for the P2X trimer. The agonist-bound and
the antagonist-bound conformations are different, par-
ticularly, in the regions of the orthosteric and allosteric
binding sites (Figure 2 C,D). Therefore, BiteNet is sensi-
tive to the conformational changes, as it does not predict
the ATP-binding site in the (AF-219)-bound structure
and vice versa. Interestingly, despite absence of bind-
ing site in the monomer structure, BiteNet predicted
different binding sites with relatively high score in the
monomer structures. Closer look into available three-
dimensional structures of the P2X3 receptors revealed
cation ions (Mg, Na, Ca) and ethylene glycol molecules
corresponding to these predictions (PDB IDs: 5YVE,
5SVS, 5SVT, 5SVJ, 5SVR, 5SVQ, 5SVP, 5SVM, 5SVL,
6AH4, 6AH5).

2. Epidermal growth factor receptor

The epidermal growth factor receptor (EGFR) is a
transmembrane protein from the tyrosine kinase family.
Over-expression of EGFR is associated with various types
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FIG. 1. Schematic representation of the BiteNet workflow. (A) The input three-dimensional structure of a protein is
represented with voxel grid, where channels correspond to the atomic densities. (B) The voxel grid is split into fixed-size cubic
grids to be fed a neural network. (C) Each cubic grid is processed with the 3D convolutional neural network to predict binding
sites in fixed-size cells. Cells in cubic grids are colored according to the probability score confidence, from blue to red. (D)
Predictions obtained for each cubic grid and then processed to output center of the binding site (red sphere), its probability
score, and amino acid residues within 6Å of the predicted center (blue sticks). Co-crystallized ligand is shown with gray sticks.

of tumors. Although there are EGFR inhibitors target-
ing the orthosteric binding site of the kinase domain, pro-
teins found in cancer cells often have amino acid substi-
tutions making it insensitive to such inhibitors. There
are also mutant-selective irreversible inhibitors that co-
valently bind to the Cys797 amino acid residue, however,
some mutant type receptors possess different amino acid
residue at 797 position as well [34]. Recently, three-
dimensional structure of L858R/T790M EGFR kinase
domain variant bound to the mutant-selective allosteric
inhibitor EAI001 was discovered (PDB ID : 5d41) [35].
It was shown, that EAI001 binds to only one monomer,
leading to incomplete inhibition, but decreasing cell au-
tophosphorylation. Accordingly, the three-dimensional
structure is asymmetric dimer with one monomer bound
to both orthosteric and allosteric ligands (the ATP-
analogue adenylyl-imidodiphosphate (AMP-PNP) and
EAI001, respectively), while the other monomer bound
to AMP-PNP only. BiteNet successfully identified both
orthosteric and allosteric binding sites in one monomer
(chain A) and only former in the other monomer (chain

B). We would like to note, that another EGFR kinase
domain structure (PDB ID : 5UG9) was in the training
set, however, it contains only orthosteric ligand aloof the
allosteric binding site.

Although this and previous examples clearly demon-
strate BiteNet’s capability to detect binding sites in holo
conformations, on practice, such conformations can be
unknown, especially, when one wants to discover novel
binding sites. To evaluate BiteNet’s ability to detect
binding sites starting from the unbound conformation,
we emulated unbound-to-bound conformational transi-
tion as it follows. First, we modelled missing residues in
chain B and placed EAI001, as it is observed in chain A.
Then, we prepared molecular dynamics system contain-
ing chain B, AMP-PNP and EAI001, embedded into the
water box with ions using the CHARMM-GUI web server
[36]. Next, we run full atom energy minimization of the
prepared system until convergence using Gromacs [37],
resulting in minimization trajectory consisting of ∼ 900
conformations. Finally, we removed ligands, ions, and
water and applied BiteNet to each frame of the mini-
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FIG. 2. BiteNet predictions for the monomer and oligomer structure of the P2X3 receptor. (A) Monomer structure with the
orthosteric ligand and cation ion (left), and BiteNet predictions for the monomer structure (right). (B) Monomer structure
with the allosteric ligand, cation ion and ethylene glycole (left), and BiteNet predictions for this structure (right). (C) Agonist-
bound (left) and antagonist-bound (right) structures of the P2X3 trimer. (D) BiteNet predictions for the agonist-bound (left)
and antagonist-bound (right) structures of the P2X3 trimer. Orthosteric and allosteric ligands are shown with red and magenta
sticks, respectively. cation ions are shown as dark green spheres and ethylene glycol molecules are shown with violet sticks.
BiteNet predictions for these molecules are shown as spheres with the corresponding color.

mization trajectory along with its 50 replicas. Figure 3
shows, that the probability score for the allosteric bind-
ing site steadily increases, while the energy of the sys-
tem is decreasing and the root mean square deviation
(RMSD) with respect to the allosteric binding site in the
starting (unbound) conformation is increasing. Video 1
demonstrates BiteNet predictions along with the mini-
mization trajectory. Note, that the probability score for
the orthosteric binding site remains high during the min-
imization. Also note, that we used 4Å for the non max
suppression distance threshold in order to avoid merging
of the predictions for orthosteric and allosteric binding
sites during post-processing stage of BiteNet. Therefore,
BiteNet can be applied for the large-scale spatiotemporal
trajectories in order to detect protein conformations that
possess binding sites unseen in the original structure.

Video 1. BiteNet applied to the minimization trajectory
of EGFR kinase domain starting from the unbound state.
Predictions corresponding to the orthosteric and allosteric
sites are shown as yellow and magenta spheres, respectively.
Frames 1 (left) and 894 (right) are shown.
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FIG. 3. (A) Assymetric dimer structure of the EGFR kinase domain. Orthosteric and allosteric ligands are shown with
yellow and magenta sticks, respectively, Mg ion is shown as green sphere. (B) BiteNet predictions for the assymetric dimer,
the predicted centers for the ligands are shown as spheres with the corresponding color. (C) BiteNet predictions obtained for
the energy minimization trajectory. The normalized energy is shown with blue dash-dotted line, the RMSD with respect to the
unbound conformation of the alloteric binding site is shown with violet dotted line, BiteNet probability score for the orthosteric
and allosteric binding sites are shown with dashed orange and magenta solid lines, respectively. The normalized energy of 1
and 0 corresponds to −7.76969e+5kJ/mol and −8.80655e+5kJ/mol, respectively. (D) The starting and the final conformations
of the minimization trajectory along with BiteNet predictions.

3. G protein-coupled receptor

G protein-coupled receptors (GPCRs) mediate numer-
ous physiological processes in the body, making them
important targets for modern drug discovery. Most of
FDA-approved drugs bind to orthosteric binding sites
of GPCRs. However, such drugs may be non-selective
with respect to the highly homologous receptor sub-
types. In such cases, there is need in drug design tar-
geting allosteric binding sites, that are less conserved
than orthosteric one [38]. Three-dimensional structures
of GPCRs reveal allosteric binding sites spanning extra-
cellular, transmembrane, and intracellular regions; iden-
tification of novel allosteric sites in GPCRs can provide
alternative options for drug discovery [39]. To demon-
strate the use of BiteNet in spatiotemporal identification

of GPCR binding sites we analyzed molecular dynamics
trajectories of the human adenosine A2A receptor (A2A)
retrieved from the GPCRmd repository [40].

Namely, we considered trajectories of A2A embedded
into the POPC lipid bilayer surrounded by water, sodium
and chloride ion molecules starting from the active-like
conformation (PDB ID : 5G53) in complex with agonist
NECA and with no ligand (GPCRMD IDs: 48:10498 and
47:10488, respectively). In total each simulation lasted
for 500ns with the time step of 4.0fs and interval be-
tween frames of 2.0ns, resulting in 2500 conformations of
A2A. We consequently applied BiteNet for each frame of
the trajectory. As expected, in both simulation trajec-
tories we observed a cluster of predictions corresponding
to the canonical orthosteric binding site in GPCRs. The
cluster is more dense and with higher averaged score in
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Video 2. BiteNet applied to the ligand-free A2A simulation
trajectory. BiteNet predictions for the orthosteric and hypo-
thethical binding sites are colored with yellow and magenta,
respectively. Frames 1489 (left) and 2055 (right) are shown.

the ligand-bound simulation trajectory, which could be
explained by lower flexibility of the protein due to the
protein-ligand interactions. Surprisingly, in both simula-
tion trajectories we also observed cluster of predictions
in the neighbourhood of the end of TM1, TM7 and helix
8 starting from ∼300ns in the ligand-free simulation and
from ∼150 to ∼200 ns and from ∼320 to 370 ns in the
ligand-bound simulation. Closer look to the conforma-
tions with the highest probability scores corresponding to
this cluster revealed lipid tail buried to the cavity formed
by hydrophobic amino acid residues. It is important to
note, that although GPCRs are tightly surrounded by
lipids, BiteNet did not produced predictions all over the
region exposed to a membrane, as it was explicitly trained
on druggable binding sites. To investigate if the lipid tail
binds to the cavity, for each frame f we calculated its
mobility in terms of RMSD between the conformation of
the lipid tail in this frame and the conformation of the
lipid tail averaged over [f − 100, f +100] frames. As one
can see from Figure 4, the calculated RMSD is lower for
the frames with high probability scores corresponding to
the predicted binding site. Videos 2 and 3 demonstrates
BiteNet predictions and binding of the POPC molecule
during these simulations. To the best of our knowledge
there is no available structures for any GPCR with ligand
bound to this region. When applied BiteNet to molecular
dynamics trajectories obtained for other receptors from
GPCRmd, we also observed similar cluster in the mus-
carinic M2 receptor, again, starting from active-like con-
formation (data not shown). Thus, the predicted region
may be worth paying attention to, as it may correspond
to the novel allosteric binding site in GPCRs.

To summarize, we showed applicability of BiteNet for
binding site detection for three different pharmacolog-
ical targets and challenging binding sites observed in
soluble as well as in transmembrane protein domains.
BiteNet was capable to detect conformation-specific and
oligomer-specific allosteric binding sites and can be ap-
plied for large-scale spatiotemporal analysis of protein
structures. Using the example of A2A we demonstrated
how BiteNet can be used on practice to investigate novel
binding sites. We also would like to note, that used three-
dimensional structures were not exposed to BiteNet dur-

Video 3. BiteNet applied to the ligand-bound A2A simulation
trajectory. BiteNet predictions for the orthosteric and hypo-
thethical binding sites are colored with yellow and magenta,
respectively. Frames 835 (left) and 1806 (right) are shown.

ing the training process. In the next section we demon-
strate computational efficiency of BiteNet in terms of ac-
curacy and speed by comparing it against the existing
computational methods on binding site prediction bench-
marks.

C. Computational efficiency of BiteNet

To compare BiteNet with the other approaches we
evaluated its performance on the COACH420 [41] and
HOLO4K [42] datasets, that contain 420 and 4542 pro-
teins, respectively. Note, that for fair comparison we
considered only proteins not presented in the method’s
train sets, and for which all methods successfully pre-
dict true binding sites according to the P2Rank criterion
[28], resulting in the 230 and 2305 protein subsets from
COACH420 and HOLO4K, respectively.

As the performance metric we calculated the average
precision (AP), that is the area below precision-recall
curve, for All and TopN predictions, where N is the
number of the true binding sites present in a protein
structure. As one can see from Figure 5 BiteNet out-
performs classical binding site prediction methods, such
as fpocket [23], SiteHound [21], MetaPocket [24], as well
as the state-of-the-art machine learning methods, such
as DeepSite [30] and P2Rank [28] (Supplementary Table
1 lists more detailed comparison including precision and
recall metrics).

BiteNet is also computationally efficient, Figure 5B
shows elapsed time spent by BiteNet along with fpocket
and P2Rank, which are one of the fastest methods, with
respect to the number of the processed protein confor-
mations. BiteNet, that runs on a single GPU (GeForce
GTX 1080 Ti), outperforms P2Rank that runs on several
CPUs (Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz).
On average, BiteNet takes approximately 0.1 seconds to
process single protein conformation. Further optimiza-
tion of CPU-GPU interconnection and multiple GPUs
implementation of BiteNet will result in even faster per-
formance.
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FIG. 4. BiteNet predictions for molecular dynamics simulation of the adenosine A2A receptor. (A, D) Starting ligand-free and
agonist-bound conformations of A2A, respectively. Orange point clouds corresponds to the BiteNet predictions of the canonical
orthosteric binding site in A2A, while magenta point cloud corresponds to the BiteNet predictions of the hypothetical binding
site, observed during the simulation. (B, E) BiteNet probability scores for the orthosteric binding site (dashed orange line),
allosteric binding site (magenta solid line), and RMSD with respect to the window-based mean lipid tail conformation (dotted
violet line), computed for the molecular dynamics trajectories. (C, F) A2A conformations corresponding to the highest BiteNet
probability scores for the hypothetical binding site. Lipid tail binding to the hypothetical binding site is shown with green
sticks.

III. DISCUSSION

In this study we introduced BiteNet, a deep learn-
ing approach for spatiotemporal identification of bind-
ing sites. BiteNet takes advantages of the computer vi-
sion methods for object detection, by representing three-
dimensional structure of a protein as a 3D image with
channels corresponding to the atomic densities. BiteNet
goes beyond classical problem of binding site prediction
in holo protein structures, exploring protein dynamics
and flexibility by means of large-scale analysis of confor-
mational ensembles. The detected conformations with
observed binding site of interest, then can be used for
structure-based drug design approaches, such molecular
docking and virtual ligand screening, as well as structure-
based de novo drug design.

We believe superior performance of BiteNet with re-
spect to the other machine learning methods for binding
site prediction was achieved due to careful preparation of

the training set and training process; below we address
several important issues related to these procedures.

A. Training set

Curated and well-balanced training set is of crucial
importance for derivation of machine learning models
and its applicability domain. Experimentally determined
protein structures often contain detergent and buffer
molecules, that reveal electron density. This should be
considered carefully and not mixed up with the true
binding sites. To avoid potential bias related to this
problem we filtered out typical detergent and buffer
molecules (see Supplementary Table 2). Note, however,
this procedure likely resulted in removing both false and
true positives binding sites. For example, we discarded
lipid molecules surrounding membrane proteins, includ-
ing functional lipid molecules, such as cholesterol. Ad-
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FIG. 5. (A) Performance of the binding site prediction methods on the COACH420 and HOLO4K benchmarks. All and
Top − N correspond to the average precision calculated taking into account all and the top N predictions, where N is the
number of true binding sites in a protein. Pale bars correspond to the BiteNet performance, when the true positive binding
site is defined as in the training. Black lines correspond to the BiteNet performance on the whole benchmarks. (B) Elapsed
time for fpocket, P2Rank, and BiteNet to analyze 1, 10, 1000 and 10000 conformations of a protein with ∼ 2000 atoms. The
computed elapsed time is the average of 10 independent runs.

ditionally, training set inevitably contains false negative
binding sites, because protein structures may also contain
empty binding sites. Another source for false positive
binding sites come from symmetrical oligomer structures,
as for example the P2X3 trimer. Indeed, the asymmetric
unit does contain the ligand, however the binding site
is formed not only by the asymmetric unit, but also by
symmetry mates, which are usually omitted in the analy-
sis. We also observed structures with missing atoms and
residues in the binding sites; we believe such structures
should be either properly refined or discarded from the
training set. In addition, the definition of the true posi-
tive prediction and binding site itself may vary. Binding
site is typically defined with respect to the cutoff dis-
tance between the protein and ligand atoms (4.0Å in this
study), center of the binding site can be defined as the
center of mass of the ligand or the binding site residues
(in this study), and the true positive prediction can be
defined with respect to the cutoff distance between the
ligand or center of the binding site (4.0Å in this study).
We choose the later definition of the true positive pre-
diction because it is invariant with respect to the type of
the ligand and its binding pose.

Training-test split is another important issue, that af-
fects performance of the derived model. First of all struc-
tural similarity should be taken into account, as it is
known that proteins with low sequence similarity may
still share highly similar protein fold. We observed that
the largest cluster contains 4044 protein chains of similar
structures. Splitting this cluster into the train and test
sets would likely result in the bias and overfit with respect
to the corresponding protein fold. To circumvent this is-
sue we carefully distributed protein structures, such that
there is no highly similar structures in the training and

test sets in terms of the TM-score structural similarity
[43].

Data augmentation techniques can be also helpful to
derive more robust predictive models. For protein bind-
ing site prediction problem, computational methods to
generate conformational ensembles can be used in order
to represent binding site with multiple orientations or
even small perturbations. In this study, due to compu-
tational limitations, we used implicit data augmentation
and provided random orientation of proteins to the neu-
ral network each epoch.

B. Training model

Hyperparameters, such as neural network architecture,
type of the activation functions, the learning rate, and
many others, influences the model performance. Thus,
fine-tuning is needed in order to find optimal set of the
hyperparameters. We trained several models and found
the following hyperparameters to be optimal : 64 voxels
for the cubic grid size, 1.0Å for the voxel size, 4.0Å for
the density cutoff, 48 for the stride parameter, 16 for the
minibatch size, 1e−5 and 10.0 for the γ and λ parameters,
respectively (see Supplementary Table 3 for evaluation of
models corresponding to different parameters). Among
these parameters, the voxel size has dramatic influence
on the computational speed, it takes ∼ 2 times more to
train and apply the model with the voxel size of 0.8Å, as
compared to the voxel size of 1.0Å. On the other hand,
we observed model corresponding to the voxel size of 2.0Å
to be faster, though less accurate. Although we achieved
satisfied performance of the resulting model (the average
precision was improved from 0.4 to 0.53), our parameter
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screen is not meticulous. The auto-ml approaches would
be useful to find optimal model through extensive search
of neural network architecture and parameters [44, 45].

Note, that the obtained model is not rotation-
translation invariant by construction; it could be easily
seen from the different binding site scores assigned to
identical subunits of oligomer (see Supplementary Fig-
ure 2). To make sure this does not significantly affect
BiteNet’s performance, we re-evaluate the average pre-
cision on the augmented test set, that contains addi-
tional 50 replicas of each protein obtained with rotation
by π/3, 2π/3, π, 4π/3, and 5π/3 angles about 10 different
axes corresponding to the centroids of the icosahedron
facets [46]. Indeed, we observed that the average preci-
sion computed for the TopN predictions almost did not
change, and became slightly higher when considering All
predictions. This is because for some replicas BiteNet
produced additional binding site predictions with very
low scores. Thus, it might be useful to apply BiteNet
for different orientations of the structure and average the
obtained results.

IV. METHODS

Training dataset

To compose the training set we retrieved atomic struc-
tures of protein-ligand complexes with resolution better
than 3.0Å, that contain less than 4 protein chains, and
the sequence identity threshold of 90% from Protein Data
Bank (PDB)[47]. Then we refined each protein struc-
ture by replacing non-standard amino acid residues with
the standard ones, modelling missing residues and short
loops (less than 10 amino acid residues) using the ICM-
Pro software (molsoft.com). Note, that we did not model
N- and C-terminus, as well as long missing loops of more
than 10 amino acid residues. Then we discarded proteins,
if refinement affects 3 or more atoms of its binding sites,
because such conformational changes could be incompati-
ble with the ligand binding pose. We also discarded water
molecules, ions, protein chains with length less than 50
amino acid residues, and considered only non-detergent
molecules (see Supplementary Table 2) with more than
14 heavy atoms as the ligands. We further disregarded
protein complexes with less than 20 protein heavy atoms
in the binding site, that is protein atoms within 4Å dis-
tance from the ligand. Finally, we manually filtered out
"long" proteins, which length across at least one of the
principal axis was more than 250Å (see Supplementary
Figure 3). This procedure yielded the final set of 5946
atomic structures of protein-ligand complexes comprising
11301 polypeptide chains and 11949 binding sites.

We considered each protein of a protein complex as a
voxel grid, with voxel size of 1.0Å with no spacing be-
tween the voxels. We represented each voxel by 11 chan-
nels corresponding to the atomic density function of a

certain atom type, similarly to [48]:

ρ(r) =

{
e−r2/2, ifr ≤ rcutoff
0, otherwise

(1)

where rcutoff is the distance threshold of 4Å.
For rigorous validation of the prediction model it is

important to carefully split the training and the test
datasets. Given that proteins with low sequence simi-
larity may still have high structural similarity, the stan-
dard random split would likely lead to the biased train-
ing and test sets. To reduce possible bias, we calculated
structural similarity for each pair of protein chains in
the dataset using the TMalign software [43], resulting
in 11301 × 11301 structural similarity matrix (see Sup-
plementary Figure 4). Then we grouped protein chains
using the hierarchical clustering algorithm implemented
in sklearn [49, 50], such that structural similarity of any
two protein chains from different clusters is less than 0.5.
Finally, we split the dataset in a way that the training
and the test sets do not share protein chains from the
same clusters, comprising 9844 and 1457 protein chains,
respectively.

Neural network architecture

Given Nx × Ny × Nz × Nc voxel grid representation
of a protein, we first divided it into the cubic grids of
the fixed shape of 64 × 64 × 64 voxels with stride of 48
voxels, in order to get constant size input for the neu-
ral network. We considered cubic grids with the aver-
age atom density less than 1e−4 as empty cubic grids,
and discarded it from the training and test sets. Follow-
ing the Yolo approach for the object detection problem
in images [51], we constructed neural network that con-
verts 64 × 64 × 64 cubic grid into 8 × 8 × 8 cubic cells
of size 8 × 8 × 8 voxels each, and aims to identify tar-
get cells, that contain centers of the binding sites, along
with the center’s coordinates. Thus, the output of the
prediction model is 8 × 8 × 8 × 4 tensor, where the first
three dimensions are the cell coordinates with respect to
the cubic grid (icell, jcell, kcell), and the four scalars of the
fourth dimension are the probability score ŝ, that the cor-
responding cell contains center of a binding site, and the
coordinates of this center with respect to the cell x̂, ŷ, ẑ.
The core of the neural network comprises ten 3D convolu-
tional layers : Conv3D32 ⇒ Conv3Dpool

32 ⇒ Conv3D32 ⇒
Conv3D32 ⇒ Conv3Dpool

32 ⇒ Conv3D64 ⇒ Conv3D64 ⇒
Conv3Dpool

64 ⇒ Conv3D128 ⇒ Conv3D4, where the sub-
script number denotes the number of filters. We used
kernels of size (3, 3, 3) for each layer, stride of 2 for the
pooling layers, and the batch normalization and the rec-
tified linear unit (ReLu) activation function for all layers,
except for the last one. Finally, we use the sigmoid acti-
vation function to obtain probability score ŝ in the range
of (0, 1) and relative coordinates x̂, ŷ, ẑ of the predicted
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center of the binding site with respect to the cell. The
Cartesian coordinates are then calculated according to 2:

X̂ = cxsize · vxsize · (icell + x̂) +Ox

Ŷ = cysize · v
y
size · (jcell + ŷ) +Oy

Ẑ = czsize · vzsize · (kcell + ẑ) +Oz

(2)

where csize and vsize corresponds to the size of a cell and
voxel, respectively, and Ox,Oy,Oz are the Cartesian co-
ordinates of the origin of the cubic grid.

We used custom loss function for training, that con-
tains three terms:

Loss =

Ncells∑
i=1

(si − ŝi)2 + λ

Ncells∑
i=1

si · ((xi − x̂i)2 +

(yi − ŷi)2 + (zi − ẑi)2) + γL2 (3)

, where Ncells is the number of cells in the single cubic
grid, si and ŝi are the true (0 or 1) and predicted prob-
ability scores of the cell, xi, yi, zi and x̂i, ŷi, ẑi are the
true and predicted coordinates for i-th cell, respectively,
and L2 correspond to the regularization term. Therefore,
the first and the second terms aim to penalize incorrect
prediction of the probability score and the center of the
binding site, respectively. Note, that we multiply the sec-
ond term by the true probability score (0 or 1) to take
into account only relevant predictions. The third term
is the L2 regularization term for the neural network pa-
rameters. The coefficients λ = 5 and γ = 1e−5 are the
weights of the penalty terms.

We trained the network in Tensorflow v1.14 [52] for 400
epochs using the Adam optimizer with the default param-
eters, minibatch size of 16 cubic grids, and the learning
rate of 1e−3 gradually decreasing to 1e−5 during the
training. We would like to note, that presented archi-
tecture is not invariant to rotations of a protein. Data
augmentation, i.e. considering different orientations of a
protein within a single epoch, may circumvent this prob-
lem to some extent. Because of GPUmemory limitations,
in this study we used implicit data augmentation by con-
sidering random orientation of a protein each epoch.

To obtain the final predictions we applied the post-
processing procedure, as it follows. First, we discarded all
the predictions with the probability score ŝ < sthreshold.
The remaining predictions are then processed by means
of the non-maximum suppression. More precisely, we se-
lect the best prediction in terms of the probability score,
as the seed of a cluster, and put all the predictions with
the centers of the binding site closer than dthreshold = 8Å
to the center of the best prediction. Then we select the
second best prediction, as the seed of the next cluster,
and repeat the above procedure until all the predictions
are clustered. Finally, we keep only Ntop seeds in terms
of the probability scores, as the final predictions. For
the training we used sthreshold = 0.1 and Ntop = 5, for
benchmarking sthreshold = 0.01 (in order to calculate AP
for all predictions), and for the case study sthreshold = 0.1
and all predictions. To evaluate the performance of the

prediction model we define the true positive (TP ) pre-
diction of the binding site, as the top-scored correct
prediction, that is prediction with the probability score
ŝ ≥ sthreshold and the predicted center of the binding site
within dthreshold from the true center of the binding site.
The rest of the predictions are considered as false posi-
tives (FP ). Given this, we calculate precision and recall
metrics according to:

Precision =
NTP

NTP +NFP
(4)

Recall =
NTP

NTP +NFN
(5)

where NFN is the number of false negative predictions,
that is the number of binding sites with no correct pre-
diction. As the main metric we calculate the average
precision metric AP , which is the area under precision
recall curve.

Note, that we define correct prediction with respect
to the center of the binding site, rather than binding
pose of a ligand. We believe this is more rigorous metric,
because it does not depend neither on the binding pose
of a ligand, nor on the ligand itself. However, for fair
comparison with the existing methods, we also computed
the metrics, where the prediction is considered to be true
positive prediction, if the minimal distance to the ligand
is less than dthreshold = 4Å.

A. Clusterization

Given conformational ensemble of a protein, as for ex-
ample, molecular dynamics trajectory, we firstly applied
BiteNet to each conformation. Then we grouped the ob-
tained predictions using clustering algorithms. In this
study we used three different clustering approaches im-
plemented in the sklearn python library [50] : the mean
shift clustering algorithm (MSCA) [53], the density-based
clustering algorithm (DBSCAN) [54, 55], and the ag-
glomerative hierachical clustering algorithm [49]. While
the first two approaches are mainly applied for the set
of points in Euclidean space, the latter approach can be
applied also for set of amino acid residues forming the
predicted binding site. Finally we assigned two scores
for each cluster. The first score is the sum of maxi-
mal probability score of a cluster in each frame aver-
aged over the total number of frames. For the sec-
ond score, the mean sum of probabilities scores (larger
than cluster_score_threshold_step = 0.1) of a cluster
is computed for each frame; these sums are then aver-
aged over the total number of the corresponding frames.
We implement several clustering approaches, because it is
known that clustering results may strongly vary depend-
ing on clustering algorithm and different parameters for
them, also affecting the cluster scores.
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V. CONCLUSIONS

In this study we introduced BiteNet, a deep learn-
ing approach for spatiotemporal identification of bind-
ing sites. BiteNet takes advantages of the computer vi-
sion methods for object detection, by representing three-
dimensional structure of a protein as a 3D image with
channels corresponding to the atomic densities. BiteNet
goes beyond classical problem of binding site prediction
in holo protein structures, exploring protein dynamics
and flexibility by means of large-scale analysis of con-
formational ensembles. It is able to detect allosteric
binding sites for both soluble and transmembrane pro-

tein domains and outperforms state-of-the-art methods
both in terms of accuracy and speed. BiteNet takes
approximately 0.1 seconds to analyze single conforma-
tion and 1.5 minutes to analyze molecular dynamics
trajectory with 1000 frames for protein with ∼ 2000
atoms. BiteNet is available at https://github.com/
i-Molecule/bitenet.
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