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ABSTRACT 
Few existing methods enable the visualization of relationships between regulatory genomic 

activities and genome organization as captured by Hi-C experimental data. Genome-wide Hi-C 

datasets are often displayed using "heatmap" matrices, but it is difficult to intuit from these 

heatmaps which biochemical activities are compartmentalized together. High-dimensional Hi-C 

data vectors can alternatively be projected onto three-dimensional space using dimensionality 

reduction techniques. The resulting three-dimensional structures can serve as scaffolds for 

projecting other forms of genomic information, thereby enabling the exploration of relationships 

between genome organization and various genome annotations. However, while three-

dimensional models are contextually appropriate for chromatin interaction data, some analyses 

and visualizations may be more intuitively and conveniently performed in two-dimensional 

space. 

We present a novel approach to the visualization and analysis of chromatin organization 

based on the Self-Organizing Map (SOM). The SOM algorithm provides a two-dimensional 

manifold which adapts to represent the high dimensional chromatin interaction space. The 

resulting data structure can then be used to assess the relationships between regulatory 

genomic activities and chromatin interactions. For example, given a set of genomic coordinates 

corresponding to a given biochemical activity, the degree to which this activity is segregated or 

compartmentalized in chromatin interaction space can be intuitively visualized on the 2D SOM 

grid and quantified using Lorenz curve analysis. We demonstrate our approach for exploratory 

analysis of genome compartmentalization in a high-resolution Hi-C dataset from the human 

GM12878 cell line. Our SOM-based approach provides an intuitive visualization of the large-

scale structure of Hi-C data and serves as a platform for integrative analyses of the 

relationships between various genomic activities and genome organization. 
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INTRODUCTION 

The Hi-C assay captures pairwise interactions between loci across the entire genome [1]. The 

procedure begins with the isolation of intact nuclei and crosslinking via formaldehyde. 

Crosslinked chromatin is then fragmented, and the ends of the resulting fragments are biotin 

labeled. A random ligation step joins the ends of DNA fragments that are in close physical 

proximity, typically because they are crosslinked in the same complex. After reversing 

crosslinks, purifying DNA, and further DNA shearing, the fragments that contain ligation 

products are immunopurified via the biotin tag. The resulting DNA fragments will contain 

instances where the two ends of the same DNA molecule were ligated together (“self-ligations”) 

and instances where longer range interactions resulted in intermolecular ligations. Fragments 

are subjected to paired-end sequencing, and aligned to the genome, resulting in data 

representing tens to hundreds of millions of pairwise interaction “contacts”.  

Hi-C data is processed by binning the genome (where the bin size is dependent on 

sequencing depth and molecular complexity) and counting the interaction contacts between 

each pair of bins. The contact frequencies recorded in the resulting interaction matrix are 

inversely proportional to the average 3D distance between loci in the cell population [1]. 

Interaction matrices are typically visualized using a heatmap (Figure 1a). While the matrices are 

visually dominated by the products of self-ligations along the matrix diagonal, non-uniform 

interaction frequencies between loci can also be seen off-diagonal. The patterns of preferential 

interactions can be more clearly visualized by normalizing the observed interaction frequencies 

using frequencies expected at each linear genomic distance, which produces an 

observed/expected (O/E) matrix (Figure 1b).  

In the interaction and O/E matrices, each row represents an N-dimensional interaction 

vector for a given bin on the genome. Several dimensionality reduction approaches have been 

applied to reduce the complexity of these high-dimensional vectors. For example, Principal 

Component Analysis (PCA) is often applied to a correlation matrix derived from the O/E matrix 

[1,2]. The first principal component typically corresponds to a broad division between two major 

compartments within the nucleus, one containing active genomic processes (compartment A) 

and one containing repressed chromatin (compartment B). PCA-derived compartment analysis 

can thus be thought of as reducing the complexity of Hi-C data onto a single dimension. We and 

others have also generated methods that convert Hi-C interaction matrices into 3-dimensional 

structures, which represent the average conformation of chromosomes in a given cell population 

[3–13]. While the methodologies vary from modeling-based approaches using Markov Chain 

Monte Carlo [3–7] to optimization-based approaches using multidimensional scaling [8–13], the 
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effect of all such approaches is an embedding of the N-dimensional interaction information into 

3D space.  

Once chromatin interactions have been characterized in a given cell type, it is natural to ask 

whether they are associated with regulatory activities such as transcription, chromatin 

accessibility, histone modifications, and protein-DNA interactions [1]. However, few existing 

approaches enable an intuitive visualization and quantification of relationships between 

chromatin interactions and regulatory signals. The locations of regulatory signals can be 

correlated with compartment annotations, but this may miss more subtle relationships between 

regulatory activities and sub-compartment level chromatin interactions. Regulatory signals can 

also be painted onto a 3D genome structure [9,13,14], analogous to how signal tracks can be 

presented along the linear genome in a 1D genome browser. While genome structures can 

provide an intuitive framework for visualizing the 3D context of specific regulatory activities, it is 

difficult to visualize overall trends as the entire 3D structure cannot be seen in a single static 

image. Likewise, it is also difficult to quantify the overall associations between a given regulatory 

activity and the 3D structure.  

Here, we present a new approach to visualizing and quantifying relationships between 

chromatin interaction space and regulatory genomic activities using the Self-Organizing Map 

(SOM) [15,16]. The SOM is a popular machine learning approach to non-linear dimensionality 

reduction. The SOM’s training procedure iteratively fits a 2-dimensional output lattice of nodes 

(or “neurons”) to the N-dimensional input space. The nodes encapsulate N-dimensional feature 

vectors that adapt to represent some component of the input space. However, relationships 

between neighboring nodes on the 2D lattice are constrained such that the output lattice 

preserves the topology of the input space. The SOM has been extensively used in biological 

applications, for example to provide dimensionality reduction of high-dimensional gene 

expression patterns [17,18], regulatory DNA motif features [19,20], genomic and metagenomic 

sequence k-mer frequency profiles [21–25], and regulatory genomic signal profiles [26].  

In our application to the analysis of chromatin interaction vectors, we define each SOM node 

as containing a feature vector of the same dimensionality as chromatin interaction vectors in the 

training set. During training, each node adapts to represent some set of similar training vectors, 

in effect clustering the underlying genomic loci “within” the node. Because of the SOM’s 

topology preserving properties, nearby nodes on the SOM’s 2D lattice will end up representing 

similar chromatin interaction vectors, and thus will contain sets of genomic loci that are nearby 

each other in the nucleus. Therefore, SOM training should have the effect of projecting genomic 
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loci onto the 2D SOM lattice, where the distribution of loci within that lattice should reflect their 

relative spatial organization within the nucleus.  

We demonstrate that SOMs trained with chromatin interaction vectors have two advantages 

for characterizing the relationships between chromatin organization and regulatory activities. 

Firstly, the trained SOM’s output lattice is an easy-to-visualize 2D grid that represents the 

distribution of genomic loci in chromatin interaction space. The locations of regulatory events 

(e.g. protein-DNA binding events or histone modifications) can be highlighted on that grid, thus 

visualizing the distribution of the regulatory activity with respect to chromatin interaction space. 

Secondly, because each of the SOM’s output lattice nodes represent a fixed set of genomic loci, 

we can easily count the number of regulatory events that are “clustered” in each node. We show 

that a modified Lorenz curve analysis can be used to quantify the non-uniformity of a given 

regulatory activity over the nodes. Since the lattice represents chromatin interaction space, a 

non-uniform distribution of regulatory events on the SOM can be interpreted as an association 

between the regulatory activity and some aspect of genome organization.  

As a proof of principle, we demonstrate our approach by training a SOM using Hi-C 

interaction data from the GM12878 cell line. This SOM is then used to assess the distribution of 

numerous chromatin activities, including histone modifications, chromatin accessibility, and 

protein-DNA interactions.  
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Figure 1: Overview of ChromoSOM, a Self-Organizing Map for visualizing chromatin organization. A) 
Chromatin interaction frequencies in 250kbp intervals are calculated genome-wide from GM12878 Hi-C 

data, and B) transformed into normalized observed/expected values. C) A 50x50 hexagonal grid Self-
Organizing Map is trained using the rows of the observed/expected matrix. Training datapoints are 

distributed somewhat uniformly over the trained lattice. D) The lattice is defined to have a toroidal 

structure, in which the opposing edges and corners are connected.   
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METHODS 
Data 
Hi-C data for GM12878 was sourced from [27]. Intra-chromosomal and inter-chromosomal 

contact frequency matrices from this study were downloaded from the GEO archive (accession 

GSE63525). While the contact frequency matrices are provided at several resolutions, we chose 

to focus on a bin size of 250kbp so that inter-chromosomal interaction frequencies were not too 

sparse. Contact frequency matrices were normalized using Knight & Ruiz matrix balancing 

factors [28], also downloaded from GSE63525. Rows/columns with zero interactions were 

removed. Normalized contact frequencies were then converted into observed/expected values, 

where expected values are calculated as the average interaction frequencies observed at a 

given genomic distance (calculated separately per chromosome) for intrachromosomal 

interactions, and the average interaction frequency between all bins in a given pair of 

chromosomes for interchromosomal interactions. Finally, a single whole genome interaction 

matrix was constructed using log-transformed observed/expected values. Since the original 

contact frequency matrices were generated using Hi-C data that was mapped to hg19, all data 

presented in this study was mapped to that version of the genome.   

Regulatory activities were sourced from the ENCODE project portal [29] 

(https://www.encodeproject.org). We downloaded narrowPeak BED files for all available histone 

ChIP-seq, TF ChIP-seq, and DNase-seq experiments in GM12878 (hg19). We removed ChIP-

seq datasets that contained fewer than 1,000 peaks, and also removed one DNase-seq dataset 

that contained over 400,000 peaks. This left 3 DNase-seq datasets, 13 histone modification 

ChIP-seq datasets, and 150 transcription factor ChIP-seq datasets. Finally, we downloaded 

IDEAS genome segmentation results for 127 human cell types [30], and extracted the 

annotations corresponding to GM12878.  

 

Self-Organizing Map 
Our SOM implementation, named ChromoSOM, defines the output lattice as a grid of hexagonal 

nodes (Figure 1c). While visualized as a 2D grid, the structure of the output lattice is defined to 

be toroidal (i.e. opposing edges and all corners are defined to be adjacent) (Figure 1d). Each 

node contains an N-dimensional weight vector, where N is the number of bins on the genome 

(i.e. the number of columns in the chromatin interaction matrix). Weight vectors are initialized as 

being equal to a randomly chosen data point.  

Training proceeds using the batch SOM training algorithm. Each training iteration consists of 

an assignment step and an update step. During the assignment step, each training data point is 
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assigned to the SOM node whose weight vector is most similar according to Pearson 

correlation. During the update step, the weight vector of each node is updated to reflect the 

assignment of the data points. Every data point is considered during the updating of each node. 

The weight vectors of each node are updated by: 

𝑊"(𝑠 + 1) =
∑ ℎ",,,-𝑥/0
/12

∑ ℎ",,,-0
/12

 

Where: s is the current iteration; Wi is the weight vector of node i; N is the number of data points 

in the set; xj is the data vector of data point j; and hi,u,s is the neighborhood function. The 

neighborhood function is in turn defined as follows: 

ℎ",,,- = 𝛼(𝑠)𝑒
567
897  

Where: u is the SOM node that contains the data point j under consideration; o is the hexagonal 

distance on the SOM grid between nodes i and u; σ is the variance of the Gaussian kernel for 

the current iteration; and α(s) is the learning rate of the current for the current iteration. 

The learning rate shrinks linearly during training from 1.0 to 0.01. The variance parameter 

also shrinks linearly from 1.2 to 0.2. The SOM is trained for 1,000 iterations. Training is 

repeated with random initializations 10 times. We save the SOM that has the highest quality, 

where quality is defined as the average similarity between data points and their assigned nodes 

[26].  

 

Analyzing sets of genomic loci using a trained SOM 
At the end of the training process, each training point is associated with its best matching node. 

Since each training data point represents the chromatin interaction profile for a given 250kbp 

genomic locus, we can think of the nodes as containing a set of zero to many genomic loci. We 

can thus easily map any set of genomic coordinates to the trained SOM by assigning them to 

the node that contains an overlapping training data point locus. Mapping a given regulatory 

activity to the SOM thus consists of taking all loci displaying that activity (e.g. a set of ChIP-seq 

peaks) and finding the frequencies that they overlap the loci in each SOM node.  

To compare the SOM mapping distributions of two genomic activities, we treat the relative 

mapping frequencies of each dataset to the SOM as a pair of 1D vectors, and perform Pearson 

correlation between them. To assess the degree to which a given genomic activity is non-

uniformly distributed over the SOM, we first order the SOM nodes from lowest to highest overlap 

with the coordinates defining the activity. We then produce a Lorenz curve [31] (which we term 

the observed Lorenz curve) that defines the cumulative fraction of query coordinates that are 
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assigned to a cumulative fraction of SOM nodes. Next, we generate 1,000 randomly sampled 

(with replacement) sets of training data points, where each set contains the same number of 

training data points as the number of coordinates in the genomic activity under examination. For 

each set of random training points, we build a Lorenz curve using their node assignments as 

defined during the SOM training process. The average Lorenz curve over this set of 1,000 is 

termed the comparison curve. This comparison curve accounts for non-uniformity in the SOM 

assignment distribution that is merely due to some nodes containing more data points than 

others at the end of training. We then calculate the area under the observed Lorenz curve (B), 

and the difference between the area under the comparison curve and the observed curve (A). 

Our modified Gini coefficient is defined as the ratio: A/(A+B). 

 

RESULTS 
Self-Organizing Maps can encapsulate chromatin interaction information 
We trained a Self-Organizing Map using genome-wide observed/expected Hi-C interaction 

vectors from the GM12878 human cell line (Figure 1B) [27]. A bin size of 250kbp was chosen to 

enable quantification of inter-chromosomal interactions with sufficient coverage. The SOM’s 

output lattice was chosen to be a 50x50 hexagonal grid with a toroidal topology, which has been 

shown to improve the stability of SOM training [16] (Figure 1C,D). Since each Hi-C interaction 

vector represents a 250kbp genomic locus, the SOM training procedure has the effect of 

clustering zero to many loci in each node on the output lattice. As can be seen in Figure 1C, our 

training procedure results in a relatively smooth distribution of genomic loci across the SOM 

nodes.  

In order to demonstrate that the SOM has appropriately encapsulated chromatin interaction 

information, we compare the loci clustering represented by the SOM output lattice with previous 

chromatin compartment annotations produced using the same dataset  [27] (Figure 2A). 

Specifically, we map loci that were annotated as occurring in compartment A (active) or 

compartment B (repressed) to SOM nodes that contain overlapping genomic bins. As shown in 

Figure 2A, compartments A and B loci are well-separated on the 2D SOM lattice. We further 

map the locations of a finer-grained 6-level sub-compartment annotation [27] to the SOM, and 

again find that these loci are separated from one another on the SOM lattice. These results 

suggest that the arrangement of the SOM nodes encodes aspects of chromatin organization 

within the nucleus.  
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Figure 2: A) Comparison of the locations of compartment A (red) and compartment B (blue) loci on the 

trained SOM. B) Projections of the locations of six previously defined sub-compartments on the trained 

SOM [27].  

 

We further mapped the locations of SOM nodes that contain each individual chromosome’s 

loci (Figure 3). Each chromosome’s loci are somewhat separated from other chromosomes on 

the SOM lattice, although most chromosomes are mapped in several disjointed clusters. The 
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separation between chromosomes may reflect the existence of distinct chromosome territories 

within the nucleus [32], while the fragmentation into several clusters per chromosome reflects 

degrees of (sub-)compartmentalization.  

 

 
Figure 3: Projection of loci from each individual chromosome on the trained SOM.  

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.951616doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.951616
http://creativecommons.org/licenses/by/4.0/


 11 

The SOM enables visualization of the spatial distribution of genomic regulatory activities 
As demonstrated above, the organization of nodes in a trained SOM encapsulates aspects of 

genomic spatial organization within the nucleus. Any genomic activity that can be mapped to the 

genome can be projected onto a trained SOM by assigning loci displaying the activity to nodes 

that encapsulate overlapping training loci. Doing so implicitly allows us to assess the spatial 

distribution of the genomic activity within the nucleus, but visualized on the two-dimensional 

manifold formed by the SOM’s output lattice.  

We demonstrate our approach by mapping 16 DNase-seq and histone modification ChIP-

seq experiments performed in GM12878 cells to the SOM trained using GM12878 Hi-C data 

(Figure 4). It is apparent from Figure 4 that the distribution of several histone modification 

ChIP-seq signals on the SOM is visually similar to the distribution of A compartment loci. For 

example, histone modifications associated with transcriptional elongation (H3K36me3), 

transcriptional initiation (H3K4me3), and enhancer activities (H3K4me1 & H3K27ac) all map to 

the SOM in a manner similar to A compartment annotations. These similar SOM enrichment 

patterns are unsurprising, as transcription and active regulatory processes are expected to be 

enriched in the A compartment [1]. However, these comparisons suggest an approach for 

assessing whether sets of genomic activities are correlated in their spatial distribution within the 

nucleus.  

We can quantify the degree to which sets of genomic annotations or activities are similarly 

spatially distributed by taking advantage of the discretized nature of the SOM lattice. A dataset’s 

enrichment pattern over the SOM’s nodes can be treated as a vector, and thus the relationship 

between two dataset’s enrichment patterns can be assessed by correlation. Comparing the 

distributions of DNase-seq and histone modification ChIP-seq datasets to A and B 

compartments confirms that the spatial distributions of most assessed histone modifications are 

highly correlated with that of the A compartment, and lowly or negatively correlated with that of 

the B compartment (Table 1). An exception is H3K27me3, a histone modification associated 

with Polycomb repression, which is positively correlated with both A and B compartments.  
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Figure 4: SOM projections of peaks from a selection of 11 DNase-seq and histone mark ChIP-seq 

experiments performed in the GM12878 cell line. 
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Table 1: Correlations between SOM projections of selected DNase-seq and histone mark ChIP-seq 

datasets and the SOM projections of compartment A & B loci.  

Dataset 
SOM corr. with 
A compartment 

SOM corr. with 
B compartment 

H3K4me1 ENCFF921LKB 0.85 -0.06 
H3K27ac ENCFF816AHV 0.82 -0.08 
H3K4me2 ENCFF983SMS 0.86 -0.03 
H3K4me3 ENCFF795URC 0.82 -0.06 
H3K9ac ENCFF052MHA 0.78 -0.10 
H3K4me3 ENCFF295GNH 0.81 -0.07 
H3K79me2 ENCFF357HZM 0.77 -0.11 
H2A.Z ENCFF584NAD 0.85 0.00 
H3K4me3 ENCFF354MGT 0.78 -0.07 
DNase-seq ENCFF097LEF 0.85 0.04 
H3K36me3 ENCFF479XLN 0.68 -0.12 
DNase-seq ENCFF273MVV 0.87 0.13 
DNase-seq ENCFF804BNU 0.71 0.03 
H4K20me1 ENCFF308WNH 0.58 -0.07 
H3K27me3 ENCFF851UKZ 0.43 0.20 
H3K27me3 ENCFF247VUO 0.47 0.27 

 

 

SOM-based Lorenz curve analysis allows quantification of unequal spatial distribution 
If a genomic activity is spatially constrained within the nucleus (e.g. it appears only in a 

particular compartment), the loci displaying that activity should be non-uniformly distributed on 

the trained SOM lattice. We can quantify the degree of non-uniformity in SOM distribution by 

performing Lorenz curve analysis. Lorenz curves represent the cumulative proportional 

distributions of a resource over a population [31]; they are often used to represent income or 

wealth inequality over a population. A Lorenz curve displays the cumulative proportion of the 

population that has a given cumulative share of the resource, after ordering the population from 

lowest share to highest. Statistics such as the Gini coefficient quantify the degree of resource-

sharing inequality in a given population by comparing the area under the observed Lorenz curve 

to a distribution representing equal resource distribution (i.e. defined by the diagonal) [33]. In 

our usage, we make Lorenz curves based on the distribution of a given genomic activity over 

the SOM lattice. Since genomic loci are not equally distributed on the lattice, we compare the 

area under the observed Lorenz curve to a curve defined by the distribution of random loci 

assignment (Figure 5A). The resulting modified Gini coefficient measures the degree to which a 
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given activity is non-uniformly distributed over the SOM, and ranges from zero (representing a 

uniform distribution) to one (representing a highly non-uniform distribution).   

We used our trained GM12878 SOM and Lorenz curve analysis to assess the spatial 

distributions of peaks from 150 transcription factor ChIP-seq experiments performed by the 

ENCODE consortium. Our results show that most of the experiments display intermediate range 

Gini coefficients, with a median score of 0.49 (Figure 5B, Supp. Table 1). Most such 

intermediate scores can be explained by a general association between the relevant 

transcription factor’s peaks and the A compartment. For example, the distribution of MYB’s 

peaks on the SOM are highly correlated with the distribution of A compartment loci on the SOM 

(Figure 5C). Interestingly, peaks from PolII ChIP-seq experiments have higher than average 

Gini coefficients, suggesting a more constrained spatial localization, and their SOM distribution 

is more tightly correlated with that of the A1 sub-compartment (Figure 5C). This result is 

consistent with previous observations that A1 represents a sub-compartment with higher 

regulatory activity within the nucleus [27].  

Conversely, peaks from CTCF and cohesin (SMC3 & RAD21) display lower Gini 

coefficients, reflecting their more uniform spread throughout the SOM (Figure 5C). These 

results are consistent with the appearance of CTCF and cohesin peaks at the boundaries 

between A and B compartment TADs, which would therefore appear to have no spatial 

localization within the SOM (at least at the 250kbp resolution used in this study). Finally, outlier 

high Gini scores can sometimes be explained by high association with a particular chromosome, 

as opposed to more general forms of compartmentalization. For example, some ETV6 ChIP-seq 

experiments display high Gini scores, but this is explained by highly disproportionate numbers 

of peaks appearing on certain chromosomes (chr3, chr17, and chr20). While this would be a 

valid form of spatial localization within the nucleus, it may also be due to technical artefacts in 

the ChIP-seq experiments or peak-finding analyses. We note that other ETV6 experiments 

display intermediate Gini scores (Supp. Table 1) and do not display disproportionate 

associations with specific chromosomes.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.951616doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.951616
http://creativecommons.org/licenses/by/4.0/


 15 

 
Figure 5: A) Illustration of Lorenz curves for the SOM projections of H3K36me3 peaks (orange curve) 

and random loci (blue curve). The modified Gini coefficient is calculated as A/(A+B), where the areas A & 

B are calculated as displayed on the graph. B) Distribution of modified Gini coefficients calculated by 

projecting peaks from 150 transcription factor ChIP-seq experiments onto the trained GM12878 SOM. 

See Supp. Table 1 for values. C) Projections of selected transcription factor ChIP-seq experiments onto 
the SOM, and comparison with relevant projections of compartments or chromosomes.  
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We also performed Lorenz curve analysis on the 16 DNase-seq and histone modification 

ChIP-seq experiments (Supp. Table 2), and on annotations for 41 chromatin states produced 

by the IDEAS platform [30] (Supp. Table 3, Figure S1). The results of these analyses are 

consistent with the discussion of the transcription factor ChIP-seq experiments; higher Gini 

scores generally correspond to more specific localization in the A compartments.  

 

DISCUSSION 
We have introduced a new SOM-based approach for visualizing chromatin organization in 2D. 

Since the trained SOM lattice contains discrete entities (nodes) that each encapsulate a set of 

genomic loci, it is straightforward to project any genomic activity onto the SOM, even if the loci 

displaying that activity are measured at a different resolution to the SOM training set. We can 

thereby easily visualize how genomic activities are distributed over the 2D space defined by the 

SOM lattice, which is implicitly related to the distribution of that activity within the nucleus. We 

have demonstrated that it is easy to measure relationships between the SOM distributions 

defined by distinct genomic activities. We have also shown that the degree of non-uniformity 

displayed by a genomic activity on the SOM (and hence within the nucleus) can be conveniently 

measured using Lorenz curve analyses.  

One disadvantage of our approach is that the time taken to train a SOM becomes 

computationally prohibitive with large numbers of genomic loci (i.e. smaller genomic intervals 

produced from higher resolution Hi-C data). However, SOM training only has to be performed 

once per Hi-C dataset. Projecting a genomic activity onto a trained SOM is not a costly 

operation, as it consists of merely comparing the genomic coordinates that display the activity to 

the genomic loci encapsulated in each of the SOM’s nodes.  

In summary, we have demonstrated that our approach to dimensionality reduction of 

chromatin interaction data enables a unique way to integrate large numbers of epigenomic 

datasets in the context of chromatin organization.  

 

ACKNOWLEDGEMENTS 
This material is based upon work supported by the National Science Foundation under ABI 

Innovation Grant No. DBI1564466 (to SM).  Any opinions, findings, and conclusions or 

recommendations expressed in this material are those of the author(s) and do not necessarily 

reflect the views of the National Science Foundation. TK was also supported by an Erikson 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.951616doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.951616
http://creativecommons.org/licenses/by/4.0/


 17 

Discover Grant and the Edward B Nelson Undergraduate Research Fund, both from Penn State 

University.  

 

AVAILABILITY 
Open source Java code (MIT license), an executable JAR file, and scripts for reproducing this 

manuscript’s analyses are available from https://github.com/seqcode/chromosom.  

 

CONTRIBUTIONS 
SM designed and oversaw the study. TK wrote the ChromoSOM code and performed analyses 

of data projected to the SOM, with contributions from SM. LR wrote scripts for Hi-C data 

processing and performed Hi-C normalization. SM and TK wrote the manuscript. All authors 

approved the final manuscript.  

 

REFERENCES 
1.  Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. 

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the 
Human Genome. Science. 2009;326: 289–293. doi:10.1126/science.1181369 

2.  Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, et al. 
Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat 
Methods. 2012;9: 999–1003. doi:10.1038/nmeth.2148 

3.  Hu M, Deng K, Qin Z, Dixon J, Selvaraj S, Fang J, et al. Bayesian Inference of Spatial 
Organizations of Chromosomes. PLOS Comput Biol. 2013;9: e1002893. 
doi:10.1371/journal.pcbi.1002893 

4.  Park J, Lin S. Impact of data resolution on three-dimensional structure inference methods. 
BMC Bioinformatics. 2016;17: 70. doi:10.1186/s12859-016-0894-z 

5.  Rousseau M, Fraser J, Ferraiuolo MA, Dostie J, Blanchette M. Three-dimensional modeling 
of chromatin structure from interaction frequency data using Markov chain Monte Carlo 
sampling. BMC Bioinformatics. 2011;12: 414. doi:10.1186/1471-2105-12-414 

6.  Varoquaux N, Ay F, Noble WS, Vert J-P. A statistical approach for inferring the 3D structure 
of the genome. Bioinformatics. 2014;30: i26-33. doi:10.1093/bioinformatics/btu268 

7.  Zou C, Zhang Y, Ouyang Z. HSA: integrating multi-track Hi-C data for genome-scale 
reconstruction of 3D chromatin structure. Genome Biol. 2016;17: 40. doi:10.1186/s13059-
016-0896-1 

8.  Adhikari B, Trieu T, Cheng J. Chromosome3D: reconstructing three-dimensional 
chromosomal structures from Hi-C interaction frequency data using distance geometry 
simulated annealing. BMC Genomics. 2016;17: 886. doi:10.1186/s12864-016-3210-4 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.951616doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.951616
http://creativecommons.org/licenses/by/4.0/


 18 

9.  Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, et al. A three-dimensional 
model of the yeast genome. Nature. 2010;465: 363–367. doi:10.1038/nature08973 

10.  Lesne A, Riposo J, Roger P, Cournac A, Mozziconacci J. 3D genome reconstruction from 
chromosomal contacts. Nat Methods. 2014;11: 1141–1143. doi:10.1038/nmeth.3104 

11.  Zhang Z, Li G, Toh K-C, Sung W-K. 3D chromosome modeling with semi-definite 
programming and Hi-C data. J Comput Biol. 2013;20: 831–846. doi:10.1089/cmb.2013.0076 

12.  Rieber L, Mahony S. miniMDS: 3D structural inference from high-resolution Hi-C data. 
Bioinformatics. 2017;33: i261–i266. doi:10.1093/bioinformatics/btx271 

13.  Rieber L, Mahony S. Joint inference and alignment of genome structures enables 
characterization of compartment-independent reorganization across cell types. Epigenetics 
Chromatin. 2019;12: 61. doi:10.1186/s13072-019-0308-3 

14.  Butyaev A, Mavlyutov R, Blanchette M, Cudré-Mauroux P, Waldispühl J. A low-latency, big 
database system and browser for storage, querying and visualization of 3D genomic data. 
Nucleic Acids Res. 2015;43: e103–e103. doi:10.1093/nar/gkv476 

15.  Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 
1982;43: 59–69. doi:10.1007/BF00337288 

16.  Kohonen T. Self-Organizing Maps. Springer Berlin / Heidelberg; 1995.  

17.  Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, et al. Interpreting 
patterns of gene expression with self-organizing maps: Methods and application to 
hematopoietic differentiation. Proc Natl Acad Sci. 1999;96: 2907–2912. 
doi:10.1073/pnas.96.6.2907 

18.  Nikkilä J, Törönen P, Kaski S, Venna J, Castrén E, Wong G. Analysis and visualization of 
gene expression data using self-organizing maps. Neural Netw Off J Int Neural Netw Soc. 
2002;15: 953–966. doi:10.1016/s0893-6080(02)00070-9 

19.  Mahony S, Hendrix D, Golden A, Smith TJ, Rokhsar DS. Transcription factor binding site 
identification using the self-organizing map. Bioinformatics. 2005;21: 1807–14. 
doi:10.1093/bioinformatics/bti256 

20.  Mahony S, Golden A, Smith TJ, Benos PV. Improved detection of DNA motifs using a self-
organized clustering of familial binding profiles. Bioinformatics. 2005;21 Suppl 1: i283–91. 
doi:10.1093/bioinformatics/bti1025 

21.  Kanaya S, Kinouchi M, Abe T, Kudo Y, Yamada Y, Nishi T, et al. Analysis of codon usage 
diversity of bacterial genes with a self-organizing map (SOM): characterization of 
horizontally transferred genes with emphasis on the E. coli O157 genome. Gene. 2001;276: 
89–99. doi:10.1016/s0378-1119(01)00673-4 

22.  Mahony S, McInerney JO, Smith TJ, Golden A. Gene prediction using the Self-Organizing 
Map: automatic generation of multiple gene models. BMC Bioinformatics. 2004;5: 23. 
doi:10.1186/1471-2105-5-23 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.951616doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.951616
http://creativecommons.org/licenses/by/4.0/


 19 

23.  McCoy N, Mahony S, Golden A. Gene Prediction in Metagenomic Libraries Using the Self 
Organising Map and High Performance Computing Techniques. In: Dubitzky W, Schuster A, 
Sloot PMA, Schroeder M, Romberg M, editors. Distributed, High-Performance and Grid 
Computing in Computational Biology. Berlin, Heidelberg: Springer; 2007. pp. 99–109. 
doi:10.1007/978-3-540-69968-2_8 

24.  Weber M, Teeling H, Huang S, Waldmann J, Kassabgy M, Fuchs BM, et al. Practical 
application of self-organizing maps to interrelate biodiversity and functional data in NGS-
based metagenomics. ISME J. 2011;5: 918–928. doi:10.1038/ismej.2010.180 

25.  Iwasaki Y, Abe T, Wada K, Wada Y, Ikemura T. A Novel Bioinformatics Strategy to Analyze 
Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-
Organizing Map (BLSOM). Microorganisms. 2013;1: 137–157. 
doi:10.3390/microorganisms1010137 

26.  Mortazavi A, Pepke S, Jansen C, Marinov GK, Ernst J, Kellis M, et al. Integrating and 
mining the chromatin landscape of cell-type specificity using self-organizing maps. Genome 
Res. 2013;23: 2136–2148. doi:10.1101/gr.158261.113 

27.  Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D 
Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin 
Looping. Cell. 2014;159: 1665–80. doi:10.1016/j.cell.2014.11.021 

28.  Knight P, Ruiz D. A fast algorithm for matrix balancing. IMA J Numer Anal. 33: 1029–1047.  

29.  ENCODE Project Consortium, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. 
An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489: 57–
74. doi:10.1038/nature11247 

30.  Zhang Y, Mahony S. Direct prediction of regulatory elements from partial data without 
imputation. PLoS Comput Biol. 2019;15: e1007399. doi:10.1371/journal.pcbi.1007399 

31.  Lorenz MO. Methods of Measuring the Concentration of Wealth. Publ Am Stat Assoc. 
1905;9: 209–219. doi:10.2307/2276207 

32.  Meaburn KJ, Misteli T. Cell biology: chromosome territories. Nature. 2007;445: 379–781. 
doi:10.1038/445379a 

33.  Gini C. Measurement of Inequality of Incomes. Econ J. 1921;31: 124–126. 
doi:10.2307/2223319 

 

 

 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.951616doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.951616
http://creativecommons.org/licenses/by/4.0/


 20 

SUPPLEMENTAL MATERIALS 
 
 
 

 
Figure S1: Chromatin mark enrichment patterns for IDEAS states. Reproduced from  [30], which is the 

source of the state annotations used in this study. Numbers in brackets represent the percentage of the 
genome covered by each state. This figure should be used as a guide to interpret the state numbers 

defined in Supp. Table 3.  
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Supplemental Table 1: Modified Gini coefficients (giniW) calculated for the SOM projections of 

peaks from 150 GM12878 transcription factor ChIP-seq experiments.  

 

Dataset giniW Zscore 
ETV6 ENCFF356UKE 0.96 -65.9 
ETV6 ENCFF578GCS 0.96 -64.9 
NFXL1 ENCFF593EHO 0.82 -66.1 
POLR2A ENCFF587YZD 0.63 -173.5 
POLR2AphosphoS2 
ENCFF838MWP 0.63 -86.8 
POLR2AphosphoS5 
ENCFF663DKN 0.62 -148.1 
CHD1 ENCFF924GMH 0.61 -58.3 
HDGF ENCFF991QKE 0.61 -109.7 
SMAD5 ENCFF015IVD 0.60 -74.5 
SMAD5 ENCFF194YJY 0.60 -74.6 
SMAD1 ENCFF082DHF 0.59 -60.4 
TARDBP ENCFF922UWO 0.58 -57.0 
SIN3A ENCFF604JBA 0.58 -85.6 
FOXK2 ENCFF291AYM 0.57 -53.6 
LARP7 ENCFF602KMQ 0.57 -105.6 
NKRF ENCFF269VEH 0.57 -107.1 
ZNF207 ENCFF163DWT 0.57 -76.7 
WRNIP1 ENCFF528EPB 0.57 -63.6 
MAX ENCFF407JNK 0.56 -95.4 
STAT1 ENCFF680DVR 0.56 -50.6 
STAT1 ENCFF568FPC 0.56 -48.0 
TAF1 ENCFF325FCK 0.56 -88.4 
BACH1 ENCFF748WOQ 0.56 -89.6 
E2F8 ENCFF113VFJ 0.56 -49.6 
RB1 ENCFF593XIS 0.56 -73.7 
KLF5 ENCFF762AZG 0.56 -62.1 
MAZ ENCFF288RYL 0.56 -109.5 
SMARCA5 ENCFF340WUW 0.55 -101.2 
PAX8 ENCFF890HDX 0.55 -34.2 
ZNF687 ENCFF263YTU 0.55 -120.5 
TBP ENCFF327NLV 0.55 -92.3 
ZBED1 ENCFF266JBU 0.55 -70.4 
MTA3 ENCFF611WSJ 0.55 -80.9 
MXI1 ENCFF861YUL 0.55 -94.9 
ZNF592 ENCFF233OLS 0.55 -54.7 
IRF3 ENCFF742LLN 0.55 -38.9 
IRF3 ENCFF880CYV 0.55 -36.9 
KDM1A ENCFF948QKK 0.54 -16.3 
E4F1 ENCFF273GJL 0.54 -49.4 
MLLT1 ENCFF173KPE 0.54 -147.5 
ETS1 ENCFF565SXH 0.54 -72.9 
STAT5A ENCFF752VNM 0.54 -70.9 
HCFC1 ENCFF226KLT 0.54 -62.7 
HCFC1 ENCFF062INM 0.54 -63.8 
BCLAF1 ENCFF125YZO 0.53 -100.1 
GATAD2B ENCFF444FZU 0.53 -122.7 
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ZEB1 ENCFF621OAS 0.53 -42.2 
ELK1 ENCFF434DKI 0.52 -52.3 
E2F4 ENCFF850MAC 0.52 -42.5 
ESRRA ENCFF077VXQ 0.52 -43.1 
STAT3 ENCFF494DOZ 0.52 -44.9 
TBL1XR1 ENCFF029IZU 0.52 -76.8 
SKIL ENCFF723HNB 0.51 -97.3 
ZBTB33 ENCFF431XRU 0.51 -42.1 
IKZF1 ENCFF872DIW 0.51 -74.1 
CBFB ENCFF773EXP 0.51 -95.0 
RCOR1 ENCFF356JLK 0.51 -63.9 
IRF3 ENCFF169DMC 0.51 -26.2 
NBN ENCFF257OPZ 0.51 -129.8 
ASH2L ENCFF527XHG 0.51 -48.5 
TRIM22 ENCFF169ZWD 0.50 -86.9 
TRIM22 ENCFF159CAD 0.50 -80.7 
RXRA ENCFF299YDM 0.50 -21.7 
SIX5 ENCFF163EZT 0.50 -42.3 
EED ENCFF393KDR 0.50 -120.2 
MYB ENCFF173YZN 0.50 -33.6 
NFATC1 ENCFF359EFT 0.50 -77.1 
MYB ENCFF299VKC 0.50 -33.2 
TCF12 ENCFF759PVA 0.49 -99.1 
ETV6 ENCFF742XOI 0.49 -78.5 
ZSCAN29 ENCFF567ENM 0.49 -40.3 
ETV6 ENCFF972SOG 0.49 -83.0 
CEBPZ ENCFF235AEB 0.49 -20.7 
ARID3A  ENCFF415CYX 0.49 -79.1 
ARNT ENCFF794KET 0.49 -70.4 
TARDBP ENCFF360OXD 0.49 -85.6 
ZNF143 ENCFF369JYP 0.49 -94.9 
ZBTB33 ENCFF648COV 0.48 -29.8 
ZNF217 ENCFF165XUL 0.48 -72.5 
CUX1 ENCFF803SFG 0.48 -21.0 
HSF1 ENCFF662JYS 0.48 -27.5 
HDAC2 ENCFF645CEC 0.48 -23.1 
EP300 ENCFF216WND 0.48 -26.8 
BCLAF1 ENCFF747IZZ 0.48 -21.3 
RFX5 ENCFF968KDX 0.48 -40.8 
PBX3 ENCFF511YXY 0.47 -33.9 
EP300 ENCFF476RII 0.47 -72.6 
NFIC ENCFF269LZJ 0.47 -113.5 
NR2C1 ENCFF538XDH 0.47 -58.9 
USF1 ENCFF859GUL 0.47 -49.0 
ATF2 ENCFF133GHG 0.47 -104.9 
ZFP36  ENCFF005LCQ 0.47 -54.5 
EBF1 ENCFF736ACY 0.47 -105.4 
RBBP5 ENCFF608GYJ 0.47 -24.5 
CREM ENCFF642JEY 0.46 -104.8 
IKZF2 ENCFF337XDI 0.46 -120.5 
PAX5 ENCFF969EMZ 0.46 -90.6 
PAX5 ENCFF309VXL 0.46 -87.4 
RELB ENCFF739VBA 0.46 -120.6 
ELF1 ENCFF880NTF 0.46 -107.2 
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IKZF1 ENCFF343VAG 0.46 -139.0 
NFATC3 ENCFF498BHJ 0.46 -85.0 
SRF ENCFF703TFD 0.45 -57.4 
IKZF2 ENCFF489GBB 0.45 -115.5 
BHLHE40 ENCFF006MIL 0.45 -107.2 
YY1 ENCFF294BZJ 0.45 -107.3 
CBX5 ENCFF031TYY 0.45 -54.2 
EZH2 ENCFF437BUE 0.45 -24.0 
MEF2A ENCFF811FYS 0.45 -79.7 
BCL3 ENCFF082EYY 0.45 -61.6 
MEF2C ENCFF138CXP 0.45 -36.5 
NR2F1 ENCFF255HIR 0.44 -109.6 
DPF2 ENCFF112HEG 0.44 -109.7 
ZNF384 ENCFF229WZB 0.44 -58.6 
TCF12 ENCFF237IPT 0.44 -61.1 
ZBTB40 ENCFF501JIG 0.44 -59.2 
JUND ENCFF321KTX 0.43 -48.2 
SRF ENCFF593FGJ 0.43 -30.1 
TCF7 ENCFF817AOQ 0.43 -50.4 
RAD51 ENCFF388DPA 0.42 -65.8 
BCL11A ENCFF220QMP 0.42 -70.6 
IRF4 ENCFF708VKT 0.42 -77.2 
MEF2B ENCFF006MAM 0.42 -103.9 
RUNX3 ENCFF147DQK 0.41 -135.5 
ZNF24 ENCFF657GJK 0.41 -57.4 
IRF5 ENCFF127WGD 0.41 -20.8 
PKNOX1 ENCFF618KHI 0.40 -89.1 
TBX21 ENCFF515HWO 0.40 -90.0 
ZNF143 ENCFF631JFD 0.39 -56.3 
NFYB ENCFF363BLT 0.39 -44.9 
ATF7 ENCFF969FVF 0.39 -96.7 
BMI1 ENCFF626WXN 0.38 -49.4 
JUNB ENCFF784PEF 0.38 -90.3 
CEBPB ENCFF701HMB 0.37 -18.4 
MTA2 ENCFF197TYK 0.37 -93.0 
EBF1 ENCFF382VEJ 0.36 -90.4 
ZNF622 ENCFF744AFG 0.36 -10.5 
GABPA ENCFF627POZ 0.35 -36.3 
TRIM22 ENCFF426XYB 0.35 -84.7 
SRF ENCFF069KRU 0.34 -54.2 
BATF ENCFF482FJT 0.34 -74.2 
SPI1 ENCFF040ZUY 0.31 -74.2 
REST ENCFF936XYD 0.26 -25.1 
REST ENCFF841AZX 0.25 -19.8 
SMC3 ENCFF496PLN 0.25 -45.5 
CTCF ENCFF963PJY 0.20 -51.3 
CTCF ENCFF096AKZ 0.20 -50.3 
RAD21 ENCFF756HRE 0.19 -48.2 
MAFK ENCFF112CKJ 0.11 -9.4 
ATF2 ENCFF049KAI 0.07 -11.4 
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Supplemental Table 2: Modified Gini coefficients (giniW) calculated for the SOM projections of 

peaks from 16 GM12878 DNase-seq and histone mark ChIP-seq experiments.  

 

Dataset giniW Zscore 
H3K36me3 ENCFF479XLN 0.65 -262.9 
H4K20me1 ENCFF308WNH 0.62 -68.9 
H3K79me2 ENCFF357HZM 0.62 -265.9 
H3K9ac ENCFF052MHA 0.55 -143.9 
H3K27ac ENCFF816AHV 0.52 -166.3 
H3K27me3 ENCFF851UKZ 0.51 -108.4 
H3K4me3 ENCFF354MGT 0.51 -128.4 
H3K4me3 ENCFF795URC 0.50 -151.7 
H3K4me1 ENCFF921LKB 0.50 -194.7 
H3K4me3 ENCFF295GNH 0.49 -129.4 
H3K4me2 ENCFF983SMS 0.45 -177.4 
H3K27me3 ENCFF247VUO 0.43 -91.2 
H2A.Z ENCFF584NAD 0.43 -144.1 
DNase-seq ENCFF804BNU 0.37 -320.8 
DNase-seq ENCFF097LEF 0.33 -100.5 
DNase-seq ENCFF273MVV 0.25 -90.5 
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Supplemental Table 3: Modified Gini coefficients (giniW) calculated for the SOM projections of 

peaks from IDEAS chromatin state annotation of the genome using GM12878 chromatin 

modifications.  

Dataset giniW Zscore 
state41 0.91 -118.8 
state25 0.90 -173.3 
state29 0.87 -38.4 
state40 0.81 -102.5 
state19 0.80 -68.7 
state5 0.78 -226.7 
state21 0.70 -94.0 
state20 0.70 -69.0 
state9 0.69 -181.6 
state37 0.66 -92.4 
state30 0.64 -145.1 
state36 0.62 -60.3 
state17 0.62 -48.5 
state27 0.61 -39.5 
state32 0.60 -150.6 
state8 0.59 -236.3 
state16 0.58 -129.7 
state6 0.58 -148.7 
state34 0.57 -74.3 
state3 0.55 -370.0 
state33 0.53 -170.7 
state38 0.53 -45.0 
state1 0.50 -202.4 
state39 0.48 -91.8 
state28 0.48 -194.7 
state4 0.46 -93.0 
state26 0.44 -62.8 
state35 0.42 -84.6 
state22 0.42 -31.7 
state13 0.41 -89.0 
state7 0.39 -42.5 
state31 0.32 -14.9 
state12 0.27 -67.9 
state15 0.23 -30.1 
state2 0.18 -134.8 
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