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Abstract  16 

The use of antimicrobials in animal production has been shown to increase the abundance of 17 

antibiotic resistance genes (ARGs) in microbiomes and it is recommended by international health 18 

organizations that the use of antimicrobial growth promoters would be restricted. Consequently, 19 

the use alternative growth promoters is increasing, however, their influence on the collection of 20 

ARGs (the resistome) in the animal microbiome is understudied. We investigated the impact of 21 

different growth promoters on the pig fecal resistome and microbiome. The growth promoters 22 

were carbadox (antibiotic), copper sulfate and zinc oxide (metal) or mushroom powder (natural 23 

product). Six pens of seven weanling piglets per treatment were used in a growth trial and after 24 

33 days, fecal samples were taken from one median weight female and male pig per pen. 25 

Samples from the same pen were pooled, and DNA was isolated. The community composition 26 

was investigated by 16S rRNA gene sequencing and relative ARG and mobile genetic element 27 

(MGE) abundances were measured using qPCR array with 382 primers. Only modest shifts were 28 

observed in community structure and resistome in response to growth promoters, but more ARGs 29 

were co-occurring with MGEs in growth promoter group samples than in the control group 30 

samples. The taxonomic structure could not be linked to resistome structure in the growth 31 

promoter groups. The ARG–MGE co-occurrence patterns suggest that replacing the use of 32 

antibiotics with alternative growth promoters might be an insufficient antibiotic resistance 33 

mitigation strategy and active selection against ARGs will require a more comprehensive 34 

approach. 35 

Importance  36 

Due to increasing antimicrobial drug resistance of pathogenic bacteria, international 37 

organizations are advising livestock and poultry industries to limit the use of antimicrobials in 38 

growth promotion. Together with growing consumer concerns towards antimicrobials, the 39 
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markets are favorable to alternative growth promoters. Since the interest towards enhancing 40 

animal productivity and health through microbiomes is also increasing, it is important to study 41 

the linkages between the resistome and bacterial community structure to avoid enriching ARGs 42 

in animal microbiomes. Our study explores the influences of different growth promoters on the 43 

bacterial community and resistome compositions and we show that resistance gene mobility 44 

should be taken into account when considering the changes in agricultural antibiotic use policies.   45 

Introduction 46 

Antibiotics have been used in pork production to prevent diseases and to increase productivity 47 

since the 1940’s (1, 2). Due to the established connection of antibiotic use in animals and the 48 

emergence of antibiotic resistance in pathogenic bacteria (e.g. 3), in 2017, the use of medically 49 

important antibiotics as growth promoters was prohibited in the U.S. (4) Additionally, a report to 50 

the Secretary General of the United Nation suggests that antibiotic growth promoters should be 51 

completely phased out from livestock production (5). Currently, the livestock industry is 52 

adapting to reduced antibiotic use for growth promotion and because consumer concerns towards 53 

antibiotic use in animal agriculture are increasing, the markets are favorable to antibiotic 54 

alternatives (6, 7).  55 

 Despite the increasing restrictions, some antibiotics can still be used for growth 56 

promotion of animals, but interest towards antibiotic-alternative growth promoters is increasing 57 

rapidly. Among the antibiotics that are still allowed for growth promotion, carbadox is used in 58 

pigs mainly to control dysentery and bacterial enteritis. Carbadox can cause short-term but also 59 

long-lasting alterations in the microbiome (8) and can promote the mobility of antibiotic 60 

resistance genes (ARGs) through transduction (9). Numerous antibiotic alternatives are currently 61 

under study for their efficacy to promote animal growth and gastrointestinal health. Of special 62 

interest among natural products that can be used in growth promotion are medicinal mushrooms. 63 
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Cordyceps militaris and Ophiocordyceps sinensis (formerly C. sinensis) produce many bioactive 64 

compounds, such as Cordycepin and Beta-Glucan, which have antimicrobial effects and can 65 

enhance the immune system (10). Zinc (Zn) and copper (Cu) are important trace elements for all 66 

organisms and livestock animals commonly receive feed supplements that ensure their required 67 

concentration in the feed. Higher concentrations of Zn and Cu can be used for controlling various 68 

bacterial infections in livestock animals, such as diarrheal diseases (7) and also for growth 69 

promotion (7, 11, 12). However, use of Zn oxide has shown to select zoonotic methicillin 70 

resistant Staphylococcus aureus (MRSA) and multiresistant E. coli (13–16). In-feed 71 

supplemented Cu can increase the prevalence of erythromycin resistance in gram-positive 72 

bacteria (17) and various plasmid-mediated resistance genes in microbiomes (16, 18). Thus, it 73 

seems that alternative growth promoters may also select ARGs similarly as the antibiotics they 74 

are meant to replace. 75 

Several studies have found that metals and growth promotion antimicrobials can select 76 

for antibiotic resistance and promote horizontal gene transfer, but the capability of natural 77 

products to select resistance and increase resistance gene mobility is currently understudied. It 78 

has also shown that the taxonomic composition may explain resistance composition (19, 20). 79 

Since growth promoters alter the gut microbial community composition, it has been proposed 80 

that the microbiota composition could be manipulated to act as a “growth promoter” by inducing 81 

populations favorable to animal growth and gut health (21). Therefore, it would be important to 82 

determine if the populations linked to induced animal growth carry resistance genes and mobile 83 

genetic elements (MGEs). However, making connections between taxonomic data and resistance 84 

gene data can be challenging, since microbiome datasets are compositional and rarely meet 85 

assumptions of normality that many statistical tests require (22, 23). In addition, it has been 86 

pointed out that different normalization strategies could influence the results derived from 87 

sequence data (24, 25). 88 
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In order to examine the influence of carbadox, cordyceps mushroom powder and 89 

pharmacological concentrations of Zn and Cu on the community composition and resistome (26), 90 

we took fecal samples from pigs that were administered these growth promoters, extracted DNA, 91 

analyzed 16S rRNA gene sequences and quantified genes related to resistance and gene transfer 92 

with 382 primer pairs using high-throughput qPCR array (27, 28). We also compared two 16S 93 

rRNA gene sequence normalization strategies using statistical analyses that are suitable for 94 

compositional data. Our results suggest that inclusion of ARGs into MGEs led to uncoupling of 95 

bacterial community composition and resistome composition in response to growth promotion, 96 

highlighting the importance of MGEs in shaping the resistomes under the influence of 97 

antimicrobial agents.  98 

Results 99 

Samples and data quality control  100 

Samples were collected from pigs that had been assigned into non-treatment control 101 

group (NTC = no antibiotic or alternative growth promoters), or one of the growth promoter 102 

groups (AB = carbadox, M = mushroom powder mixture of C. militaris and O. sinesis, ZnCu = 103 

Zn oxide and Cu sulfate). Each treatment group consisted of six pens and each pen had seven 104 

pigs. The DNA for 16S rRNA gene sequencing was extracted from combined fecal samples of 105 

one medium weight female and male per pen. After quality filtering, a total of 741,785 sequences 106 

were obtained. For 22 samples sequences per sample ranged from 11,392 to 67,072. Two 107 

samples were discarded due to low number of sequences, resulting in five samples in the NTC 108 

and AB groups. The data analysis for 16S rRNA gene sequencing was completed using two 109 

different methods: rarefication and subsampling or total sum scaling (TSS). The TSS normalized 110 

16S rRNA gene sequence data had 132 observed taxonomical units (OTUs), while rarefied and 111 

subsampled 16S rRNA gene sequence data 127 OTUs. The same DNA samples were used for 112 
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qPCR array analysis to examine how the treatments altered the resistome. One hundred and 113 

thirty-six assays out of 382 assays (Table S1) targeting antibiotic resistance genes (ARGs) or 114 

mobile genetic elements (MGEs) were positive. See materials and methods for qPCR data 115 

processing and Ct value adjustment for four assays that had unspecific amplification. 116 

The profiles of most abundant genera and genes were similar in different treatment 117 

groups 118 

 To take into account the influence of normalization of 16S rRNA gene sequence reads on 119 

the results, we used two different normalization methods. Only small differences were 120 

discovered between TSS normalized and rarefied and subsampled OTUs among the most 121 

abundant genera (Fig. 1A and B). The TSS normalized OTUs and rarefied and subsampled 122 

OTUs correlated significantly ( = 0.97, p < 0.05) (Fig. S1), indicating the agreement of the 123 

overall community composition of the two normalization methods. Prevotella was the most 124 

abundant genera in all treatments and all samples had several short chain fatty acid producers 125 

(Fig. 1A and B). Very few OTUs were found only in one treatment group with both 126 

normalization methods and a majority of the OTUs were found in all treatment groups, however 127 

more OTUs were found in all treatment groups using TSS normalization than rarefied and 128 

subsampled normalization (Fig. 1D and E).  129 

The different treatment groups also had similar resistome profiles (Fig. 1C). The NTC 130 

had the highest number of positive assays (110), the AB group had 106 positive assays, The M 131 

group had 100 positive assays and the ZnCu group had 103 positive assays. Twenty-eight genes 132 

were detected in only one treatment group, but most genes were found in all treatment groups 133 

(Fig. 1F). Out of the positive assays, 108 targeted ARGs and 28 MGEs. Among the detected 134 

ARGs, altogether 63 conferred resistance to aminoglycosides, MLSBs or tetracyclines and the 135 

most common resistance mechanism was antibiotic deactivation (Fig. S2A and B). Among 136 

MGEs, most positive assays targeted insertion sequences (12) or transposases (7) (Fig. S2C). 137 
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Growth promoters favored different genera, ARGs and MGEs 138 

 Generalized linear models (GLMs) were used for testing which genera, ARGs and MGEs 139 

differed in abundance between treatments. Mostly only minor differences in abundance of 140 

different genera were found between treatment groups (Fig. S3A and B). Compared to all other 141 

growth promoters, carbadox favored unclassified Veillonellaceae in feces and decreased the 142 

abundance of Streptococcus, whereas Zn and Cu decreased the abundance of Bifidobacterium 143 

and Campylobacter (p < 0.05, gamma distribution GLMs [TSS OTUs] and negative binomial 144 

GLMs [rarefied and subsampled OTUs]) (Fig. 2A and B, Table S2 and S3). Mushroom powder 145 

decreased the abundance of fecal Roseburia and favored Campylobacter comparted to other 146 

treatments (p < 0.05, gamma distribution GLMs [TSS OTUs] and negative binomial GLMs 147 

[rarefied and subsampled OTUs]) (Fig. 2A and B, Table S2 and S3). Streptococcus were more 148 

abundant in M and ZnCu group samples compared to other groups (p < 0.05, gamma distribution 149 

GLMs [TSS OTUs] and negative binomial GLMs [rarefied and subsampled OTUs]) (Fig. 2A and 150 

B, Table S2 and S3). More ARGs and MGEs were differentially abundant in NTC group and M 151 

group compared to ZnCu and AB groups (Fig. S3C). Compared to other growth promoters, 152 

carbadox and Zn and Cu increased the relative abundance of vat(E), mushroom powder increased 153 

the relative abundance of tetW, and Zn and Cu favored tetM (p < 0.05, gamma distribution 154 

GLMs) (Fig. 2C, Table S4). Interestingly, carbadox treatment decreased the relative abundance 155 

of six antibiotic resistance genes of the most abundant and differentially abundant ARGs and 156 

MGEs compared to other treatments or to NTC group (p < 0.05, gamma distribution GLMs) (Fig. 157 

2C, Table S4).  158 

Both OTU normalization methods yielded similar results for differential OTU abundance 159 

in the treatment groups (Fig. 2A and B). The exceptions were that Phascolarctobacterium was 160 

among the differentially abundant genera when TSS normalization was used, whereas 161 

Faecalibacterium was differentially abundant when rarefying and subsampling was used (Fig. 162 
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2A and B) and that more genera were differentially abundant when TSS normalization was used 163 

(Table S2 and Table S3).  164 

Growth promoters had modest influences on overall bacterial community composition 165 

and resistome 166 

 With both TSS normalized OTUs and rarefied and subsampled OTUs, the treatment 167 

group explained 24% of the variability in community composition (PERMANOVA, R
2 

= 0.239, 168 

p < 0.05). With ARGs and MGEs, the treatment group explained 27% of the variability 169 

(PERMANOVA, R
2 

= 0.267, p < 0.05). The number of sequences per sample was also included 170 

as a variable in the PERMANOVA model with both normalization methods, but the library size 171 

did not have influence on the community variability in our samples (p > 0.05).  172 

The different growth promoters altered the community composition and resistome only 173 

slightly, since in all non-metric multidimensional scaling (NMDS) ordinations the samples 174 

belonging to different treatment groups clustered close to each other with mostly overlapping 175 

centroid confidence intervals (Fig. 3A, B and D). In ordinations of TSS normalized and rarefied 176 

and subsampled OTU-tables, the ZnCu group tended to cluster further away from the other 177 

samples indicating more dissimilar community composition (Fig. 3A and B), however there were 178 

no significant differences between treatment groups among pairwise PERMANOVA 179 

comparisons. In the ordination of the ARG and MGE data, there was no separation between 180 

ZnCu group and the other groups, instead the M group clustered slightly separately (Fig. 2D) and 181 

in the pairwise comparisons using the ARG and MGE data, M vs. AB group explained 32% of 182 

the variance (PERMANOVA, R
2 

= 0.321, p < 0.05), but in all the other pairwise comparisons the 183 

differences were nonsignificant (p > 0.05) 184 
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Taxonomic variation did not explain resistome variation in growth promoter group 185 

samples 186 

 The OTU ordinations were correlated against each other and against the ARG and MGE 187 

NMDS ordination using Procrustes analysis to determine if the taxonomic variation explains 188 

resistome variation. The two OTU NMDS ordinations had reasonably high (0.7) and significant 189 

(p < 0.05) correlation and the Procrustes residual error remained lower than 0.25 in all samples 190 

except one (Fig. 3C). The correlation between the rarefied and subsampled OTU ordination 191 

(which did not include all the data due to subsampling) and the ARG and MGE ordination was 192 

moderately high (0.6, p < 0.05) and there was no pattern in Procrustes residual errors across 193 

different samples (Fig. 3F). Contrariwise, the correlation between the TSS normalized OTU 194 

ordination (that included all quality filtered data) and the ARG and MGE ordination was 195 

nonsignificant (p > 0.05) and Procrustes residual errors were high in most samples not belonging 196 

to NTC group, in which the residual errors were mostly equal or less than the first quantile 197 

residual value (Fig. 3E). The Procrustes analyses performed on TSS normalized OTUs and 198 

resistome implies that taxonomic variation explained resistance variation in NTC samples with 199 

less error. However, growth promoters altered the resistome, resulting higher residual errors in 200 

samples belonging to AB, M and ZnCu groups and thus the overall correlation between TSS 201 

normalized OTU ordination and ARG and MGE ordination was not significant (Procrustes 202 

analysis, p > 0.05).  203 

The links between bacterial community structure and resistome were further examined 204 

with Mantel’s test using Spearman’s rank correlation. The correlation coefficients between 205 

distance matrix of TSS normalized OTUs and ARGs and MGEs distance matrix as well as the 206 

distance matrix of rarefied and subsampled OTUs and ARGs and MGEs distance matrix were 207 

low ( = 0.25 and  = 0.23, respectively, p < 0.05), which suggests that the phylogenetic 208 

composition did not govern the resistome composition when all samples were included in the 209 
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analysis. We also used Mantel’s test for all treatment groups individually. With NTC group and 210 

both OTU normalization methods, the bacterial community distance matrix correlated 211 

significantly with the distance matrix obtained from ARGs and MGEs ( = 0.66 [TSS OTUs] 212 

and  = 0.62 [rarefied and subsampled OTUs], p < 0.05). With all growth promoter groups and 213 

both OTU normalization methods, the correlations between OTU and ARG and MGE distance 214 

matrixes were nonsignificant, giving more evidence that the growth promoters shaped the 215 

resistance composition and thus taxonomic variation did not explain the resistance variation in 216 

the growth promoter group samples. It should be denoted that we had only five or six samples in 217 

each treatment group, however, the results were consistent, since the correlations between 218 

taxonomic structure and resistome were reasonably high and significant in NTC group and 219 

nonsignificant in all other groups.  220 

Growth promoters increased the co-occurrences of ARGs and MGEs 221 

 A correlation matrix between ARG and MGE relative abundances was visualized using 222 

network analysis to examinine if the growth promoters selected resistance genes into mobile 223 

genetic elements. The network of NTC group was simpler compared to growth promoter group 224 

networks as the number of correlating ARGs and MGEs increased in response to growth 225 

promotion (Fig. 4). There were no integrons co-occurring with resistance genes in the NTC 226 

group network, but integrons were present in all the growth promoter group networks (Fig. 4) 227 

and co-occurred with many ARGs. AB and M group networks had more aminoglycoside 228 

resistance genes than other networks and M group also had the most multidrug resistance genes, 229 

but the least tetracycline resistance genes, whereas AB group network had the most vancomycin 230 

resistance genes (Fig. 4). 231 
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Transposase gene for insertion sequence-like element IS1216 was the best predictor for 232 

resistance and community composition  233 

 We used machine learning approaches to identify drivers of change in community 234 

composition. First, a cluster analysis was performed on a combined data table of TSS normalized 235 

OTUs and ARGs and MGEs using t-distributed stochastic neighbor embedding (t-SNE) 236 

algorithm (29) and HDBSCAN algorithm (30). Then, a classification random forests model (31, 237 

32) was used for identifying the predictors for the clustering pattern. Three clusters were 238 

identified after dimension reduction. Most of the samples belonged to cluster 2, while cluster 1 239 

had two ZnCu samples, one M group sample and one AB group sample, and cluster 3 contained 240 

only three ZnCu samples (Fig. 5A). According to the partial dependence plot that shows the most 241 

important predictors found by the classification random forests model, clusters 1 and 3 were 242 

separated from cluster 2 due to higher abundance of transposase gene linked to IS1216 element 243 

and from each other because the abundance of tetO was lower in cluster 3 (Fig. 5B). Five of the 244 

nine best predictors for clustering pattern were MGEs and ARGs and four were bacterial genera 245 

(Fig. 5B). Interestingly, most of the samples belonging to clusters 1 and 3 originate from 246 

animals, which were kept in pens that were close to each other (five out of seven) (Fig. 5C). 247 

Unfortunately, we could not analyze the possible influence of the pen location, since we had only 248 

one sample from each pen and only 21 samples in the statistical analysis using both taxonomy 249 

and resistome data. In addition, only one of the ZnCu group samples belongs to the cluster 2 with 250 

most of the samples and since all the other ZnCu samples clustered to clusters 1 and 3. Thus, 251 

growth promotion with Zn and Cu might cause more alterations in the community composition 252 

and resistome than the other growth promoters examined in this study. 253 
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Discussion 254 

 Our study explores the influences of antibiotic and alternative growth promoters on the 255 

pig fecal resistome, resistome mobility, and bacterial community composition. We did not have 256 

an alternative growth promoter that would not have antimicrobial effects in our study; however, 257 

the abundances of ARGs and MGEs were on similar level in the non-treatment control group and 258 

the growth promoter groups. Our results indicate that it is unlikely that changing the substance 259 

that is used for growth promotion would reduce antimicrobial resistance in the pig fecal 260 

microbiome at least in a short period of time (33 days in this study). Gut bacteria, especially 261 

gram-negative species, are known to carry many ARGs and MGEs and the gastro-intestinal tract 262 

is suspected to be a major hotspot for horizontal gene transfer (33, 34). These observations have 263 

also been made with individuals without antibiotic exposure (35, 36).  264 

Interestingly, many ARGs were less abundant in the AB group than in the NTC group 265 

and alternative growth promotion groups. A potential explanation for this could be that carbadox 266 

is a broad acting antibiotic and effects most bacterial populations equally when carbadox 267 

resistance is not present (8). Overall, we did not observe large shifts among genera as a result of 268 

growth promotion feed additives. Bifidobacteria, which have been previously linked to lower 269 

antibiotic resistance level (37, 38), were somewhat more abundant in the NTC and M group 270 

samples; however, in this study the ARG abundances in samples belonging to different groups 271 

were similar. It is possible that the shifts in the community composition caused by growth 272 

promoters were small with high variability and thus the changes in the community structure are 273 

difficult to capture with community-wide molecular approaches. 274 

 We were able to link the resistome structure to taxonomic structure only in the NTC 275 

group samples. In all other samples we did not find the connection between resistome and 276 

community composition. Some have reported that community composition predicts resistance 277 

profile (19, 20, 39), while others have reported that under the presence of a selective pressure 278 
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phylogeny and resistance profile become uncoupled (40). Our network analysis revealed that 279 

growth promoters increased linkages between ARGs and MGEs. It seems possible that the 280 

growth promoters would have increased the horizontal gene transfer mechanisms in the pig gut 281 

microbiome and thus more ARGs were incorporated into MGEs in the resistome of growth 282 

promoter group pigs than in the resistome of NTC group pigs. Another possible scenario is that 283 

bacteria carrying more complex MGEs would have tolerated the growth promoters better than 284 

bacteria carrying simpler MGEs, possible due to more variability in stress response mechanisms 285 

(16, 41). Despite the mechanism, more ARGs co-occurring with MGEs in response to growth 286 

promotion could indicate more persistent resistance gene collection (42).  287 

 Taken alone, the rarefied and subsampled OTU data and TSS normalized OTU data 288 

mostly agreed; however, in Procrustes analysis, the rarefied and subsampled OTU data correlated 289 

significantly with the resistome data when all samples were used, although the same analysis 290 

using the TSS normalized data as input showed that the taxonomic data did not explain 291 

resistance. It is important to understand that rarefying and subsampling captures the most 292 

abundant OTUs for each sample (25) and discards rare OTUs. Additionally, OTU abundances in 293 

different samples are slightly adjusted. If the sample size and differences in OTU abundances are 294 

small before the procedure, the shifts might change the outcome if OTU data is used in 295 

comparison with data obtained using a different method. Thus, researchers making connections 296 

between taxonomic data and resistome observations should use multiple methods to confirm 297 

their findings.  298 

 Although the shifts in community composition and resistome were modest and mostly 299 

nonsignificant, we were able to find differences in community structures with machine learning 300 

methods. The differences we observed did not precisely follow the experimental grouping, and 301 

therefore they were not found with commonly used ordination methods or differential abundance 302 

analysis. The transposase gene linked to IS1216 element that was the driver for the clustering 303 
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result has been previously associated to Gram-positive bacteria (40, 43) and since this element 304 

was abundant in seven samples belonging to two smaller clusters in our analysis, it is tempting to 305 

speculate that the populations in the larger cluster were more dominated by Gram-negative 306 

bacteria, which are known to spread easily within pig herds. Since the clustering pattern 307 

somewhat followed the locations of experimental pens, it could indicate that spreading of 308 

bacteria between animals may be one of the factors shaping microbiomes and resistomes. 309 

However, evaluating the ARG disseminating potential of bacteria spreading between the animals 310 

is not possible with our experimental design and would require further studies.   311 

Conclusions  312 

 Under this experimental design, the withdrawal of antibiotics did not decrease antibiotic 313 

resistance, however, we did not observe enrichment of antimicrobial resistance in response to 314 

growth promotion either. Instead our results show that growth promoters increased the 315 

connections between ARGs and MGEs, which indicates that all tested growth promoters can 316 

increase and maintain resistance gene mobility. Only modest changes in the community 317 

composition and resistome and increased linkages between ARGs and MGEs suggests that 318 

MGEs may be even more important vehicles in dissemination of antimicrobial resistance under 319 

the influence of growth promoters than the selection pressure caused by used substances. 320 

Therefore, we suggest that more attention should be paid to resistance gene mobility potential in 321 

antimicrobial resistance surveillances.  322 
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Materials and methods 323 

Animal experiment statement 324 

 All procedures involving animal use were approved by the Purdue University Animal 325 

Care and Use Committee (protocol #1303000841), and animal care and use standards were based 326 

upon the Guide for the Care and Use of Agricultural Animals in Research and Teaching (44). 327 

Samples and DNA 328 

 The pig fecal samples were obtained from growth promoter experiment where 210 329 

weanling pigs ((Duroc × (York × Landrace)) avg. 19 d of age and 5.8 kg were used in a 33-day 330 

trial. The experiment had 7 pigs in each pen and 6 pens per each treatment. Feed amendment 331 

treatments were: 1) non-treatment control (NTC); 2) antibiotic growth promoter (carbadox, 55 332 

ppm) (AB); 3) mushroom powder (mixture of C. militaris and O. sinesis, 300 ppm) (M); 4) 333 

carbadox and mushroom powder mixture (results are not included in this study); 5) copper 334 

sulfate (125 ppm) and zinc oxide (3000 ppm d 0-7, 2000 ppm d 7-35) (ZnCu). After 33 days, 335 

fecal samples were taken from 1 median weight female and male per pen. Samples from the 336 

same pen were pooled, and DNA was extracted using the DNeasyPowerLyzer PowerSoil DNA 337 

Isolation Kit (Qiagen) according to the manufacturer’s protocol. Extracted DNA was stored at 338 

−20 °C before 16S sequencing and qPCR array. 339 

16S sequencing and quantitative PCR array  340 

The 16S rRNA gene library was constructed as described (45). Briefly, the V4 region of 341 

the bacterial 16S rRNA gene was amplified with the 515R (GTGCCAGCMGCCGCGGTAA) / 342 

806R (GGACTACHVGGGTWTCTAAT) primers. 16S rRNA gene libraries were also prepared 343 

for a known mock community (20 Strain Even Mix Genomic Material; ATCC® MSA–1002TM) 344 

and a no-template control (water). The amplified DNA from one 96-well plate was normalized 345 

using a SequalPrep Normalization Plate (Invitrogen), and pooled into a single library. Library 346 
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concentrations were determined using the KAPA Library Quantification Kit (Roche) and the 347 

average fragment length was determined using a high sensitivity kit with the Bioanalyzer 348 

(Agilent). The pooled samples, mock community, and water were sequenced with Illumina 349 

MiSeq v2 (500 cycles). Sequences were demultiplexed using oligonucleotide bar code sequences 350 

and Illumina software.  351 

Quantitative PCR reactions and raw data processing were conducted using WaferGen 352 

SmartChip Real- time PCR system as reported previously (46). The qPCR reactions were 353 

performed using 384 primer sets (assays) (Table S1) (27). One sample from M group (2_M) was 354 

not included in the qPCR array analysis due to technical error. Samples from pigs that received 355 

both mushroom powder and carbadox were also excluded and therefore the results from 16S 356 

rRNA amplicon sequencing are not presented in this study.  357 

16S sequence analysis and qPCR array data processing  358 

 The 16S rRNA amplicon sequences were analyzed using mothur (v 1.39.3) (45): contigs 359 

were made from paired forward and reverse raw reads, aligned to reference sequences (SILVA 360 

database release 132) (47), screened and filtered to remove low quality reads (ambiguous bases 361 

allowed = 0, maximum read length = 275, homopolymers allowed = 8), classified with reference 362 

to known taxonomic classifications (RDP training set 16) (48) and clustered into OTUs. The 363 

sequences clustered into 137 different OTUs at the 3% dissimilarity level. One NTC group 364 

sample (11_NTC) and one AB group sample (16_AB) were discarded due to low number of 365 

obtained sequences. 16S sequences were normalized using two different methods: total sum 366 

scaling (TSS) using R and rarefying and subsampling using mothur. To produce the rarefied and 367 

subsampled OTU table, the data were subsampled to 7,500 reads per sample according to 368 

rarefication curves (Fig. S6). The rarefied and subsampled OTU table and only quality filtered 369 

OTU table (for TSS) were imported into R. After removing the results of samples from animals 370 

that received both mushroom powder and carbadox, 132 different OTUs remained in the TSS 371 
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normalized OTU table and 127 different OTUs in the rarefied and subsampled OTU table. The 372 

TSS normalization was carried out in R by dividing each OTU read count by the total number of 373 

reads in that sample and all the NA observations (zero sequences) were replaced with 1.490935e-374 

07, which was 100-fold lower than the lowest observed relative abundance.   375 

In the qPCR array, assays “16S old 1_1”, “blaOXY-1_1118”, “cmlV_911”, 376 

“czcA_1536”, “fabK_1520”, “intI1F165_clinical_359” and “tetPA_1507” were positive in the 377 

negative control, however the Ct-values in the negative control were mostly higher than in 378 

experimental samples (Table S5). Assay “tetPA_1507” was detected only in the negative control 379 

and the Ct-values of assay “czcA_1536” were removed from the results since they were lower in 380 

the negative control than in samples. Assay “16S old 1_1” results were removed and not used in 381 

normalization since DNA amplification was more efficient in assay “16S new 2_2”. The Ct-382 

values of the remaining four assays that were positive in the negative control were adjusted as 383 

follows: The Ct values of each of these assays in each sample were subtracted from Ct value of 384 

the assay in the negative control. The resulting numbers were then subtracted from 27, which 385 

was the Ct value was used as the cutoff between true positive values and primer-dimer 386 

amplification. Next, all the Ct values that were higher than 27 were set to “NA”. After this, all 387 

the assays that were undetected in all the samples were removed, resulting in 136 assays out of 388 

382 targeting to AGRs or MGEs being included in the data table. The ΔCt values, ΔΔCt values 389 

and relative gene abundances were calculated from these Ct values as previously described (27). 390 

Genes under the detection limit were given a ΔCt value of 20, which was higher than any 391 

observed ΔCt (17.4).  392 

Statistical analyses 393 

 R version 3.5.1 (2018-07-02) was used for data exploration, visualization and for all 394 

statistical analyses. Analysis of differential abundances of taxa and ARGs and MGEs were 395 

carried out using gamma distribution GLMs with TSS normalized OTUs and ARGs and MGEs 396 
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(relative abundances) and negative binomial GLMs with rarefied and subsampled OTUs 397 

(abundance). Gamma distribution model was selected because the relative abundance values 398 

(TSS normalized OTUs and ARGs and MGEs) did not fit to normal distribution but followed the 399 

gamma distribution. Negative binomial models were selected for rarefied and subsampled OTUs 400 

because of the overdispersion in the abundance data. With both model types, p-values were 401 

obtained with Tukey’s post-hoc test and adjusted with False discovery rate control (49) using 402 

glht function in the multcomp package (50).  403 

The community and resistome compositions were analyzed using vegan package (51). 404 

PERMANOVA was used to examine the shifts in community composition and resistome 405 

between treatment groups with function adonis and 9,999 permutations. Nonmetric 406 

multidimensional scalings (NMDS) were completed using the Bray−Curtis dissimilarity index 407 

with function metaMDS. Procrustes analysis with the protest function was used to examine the 408 

agreement of ordinations of TSS normalized OTUs and rarefied and subsampled OTUs as well 409 

as ordination of ARGs and MGEs and both OTU ordinations separately. Mantel’s test and 410 

Spearman’s rank correlation was used to analyze the links between microbial community 411 

structure and resistome: first, Bray-Curtis dissimilarity indexes were calculated for TSS 412 

normalized OTUs, rarefied and subsampled OTUs and for ARGs and MGEs with function 413 

vegdist. Then the mantel function was applied for the dissimilarity indexes of TSS normalized 414 

OTUs and ARGs and MGEs as well as rarefied and subsampled OTUs and ARGs and MGEs. 415 

Mantel’s tests between both OTU dissimilarity matrices and dissimilarity matrix of ARGs and 416 

MGEs were also run for all the treatment groups separately.  417 

To examine if the treatments selected resistance genes into mobile genetic elements, a 418 

correlation matrix between ARG and MGE relative abundances was visualized using network 419 

analysis with Gephi (52). Spearman’s rank correlations between ARGs and MGEs within 420 

treatment groups and their p-values used in network analysis were obtained with package psych 421 
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(53) using False discovery rate control (49). Only ARG-MGE-pairs that were detected at least in 422 

three samples with a strong positive correlation ( > 0.8, p < 0.05) were included.  423 

The factors influencing the shifts in taxonomic structure and resistome were analyzed 424 

with machine learning algorithms as previously described (54). First, dimension reduction was 425 

executed on a combined data table of TSS normalized OTUs and ARGs and MGEs using t-SNE 426 

algorithm (29) and the R package Rtsne (55), with 50,000 iterations and “perplexity” set to 5. 427 

Then, clusters in the two-dimensional data were identified using HDBSCAN algorithm (30) in 428 

the package dbscan (56). The minimum number of members in clusters (“minPts”) was set to 3. 429 

Classification random forest model (31) was used with partial dependence plot function in edarf 430 

package (57) for identifying the most important predictors for the clustering pattern. The forests 431 

were grown to 10,000 trees using the ranger package (58) and the best predictors were screened 432 

using Gini index by adding predictors one at a time in the order of decreasing importance (59). 433 

The final model was then selected according to the highest Cohen's Kappa (comparison of 434 

observed accuracy and expected accuracy). 435 

Data availability 436 

Raw reads from 16S rRNA gene amplicon sequencing are deposited under BioProject 437 

accession number PRJNA605462 at NCBI. The R code, mothur commands and all datasets used 438 

in statistical analyses are available at https://github.com/sjmuurine/ZnCu. 439 
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Figures and figure legends 630 

 631 

Fig. 1. Comparison of most abundant genera, ARGs and MGEs in different treatment groups. 632 

Samples on x-axis are grouped according to the treatments and color-coded. Sample names are 633 

as follows: NTC= Non-treatment control, AB= Carbadox (antibiotic), M= Mushroom powder 634 

and ZnCu= zinc oxide and copper sulfate. The number in front of the group code denotes the 635 

number of the pen. (A) Stacked bar plot showing 16 most abundant genera in OTUs normalized 636 

using total sum scaling (TSS). (B) Stacked bar plot showing 16 most abundant genera in rarefied 637 

and subsampled OTUs. (C) Most abundant genes related to antibiotic resistance and mobile 638 
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genetic elements (n=27). Each row represents results of each primer set (assay) (Table S1) 639 

displayed on the y-axis. Assays are grouped according to the antibiotic group which the target 640 

genes confer resistance. MLSB is abbreviation for Macrolide−Lincosamide−Streptogramin B 641 

resistance and MGE for mobile genetic elements. One sample from mushroom powder group 642 

was left out from the qPCR array analysis due to a technical error. (D) Venn diagram showing 643 

the OTUs that are shared between samples belonging into different treatment groups when TSS 644 

normalization was used. (E) Venn diagram showing the OTUs that are shared between samples 645 

belonging into different treatment groups when Rarefying and subsampling was used. (F) Venn 646 

diagram showing the ARGs and MGEs that are shared between samples belonging into different 647 

treatment groups.  648 
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 649 
Fig. 2. Boxplots showing the most abundant genera, ARGs and MGEs with statistically 650 

significant differences between treatment groups labeled on right. NTC= Non-treatment control, 651 

AB= Carbadox (antibiotic), M= Mushroom powder and ZnCu= zinc oxide and copper sulfate. 652 
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The asterisks “*”, “**” and “***” denote statistical significance levels at p < 0.05, p < 0.01 and 653 

p < 0.001, respectively. (A) Most abundant genera in TSS normalized OTUs (n=14), (B) Most 654 

abundant genera in rarefied and subsampled OTUs (n=14), (C) Most abundant genes related to 655 

resistance and transfer (n=10). See Fig. S3A, B and C for all differentially abundant genera and 656 

ARGs and MGEs and Table S2, S3 and S4 for fold changes of the differently abundant genera 657 

and ARGs and MGEs. 658 

 659 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.957100doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.957100
http://creativecommons.org/licenses/by-nc-nd/4.0/


 660 

Fig. 3. NMDS ordinations of TSS normalized OTUs, rarefied and subsampled OTUs and ARGs 661 

& MGEs and Procrustes errors between them. Sample names are as follows: NTC= Non-662 
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treatment control, AB= Carbadox (antibiotic), M= Mushroom powder and ZnCu= zinc oxide and 663 

copper sulfate. The number in the sample name denotes the number of the pen. (A) NMDS 664 

ordination of TSS normalized OTUs. (B) NMDS ordination of rarefied and subsampled (RS) 665 

OTUs. (C) Procrustes errors between NMDS ordinations of TSS normalized OTUs and rarefied 666 

and subsampled OTUs. (D) NMDS ordination of ARGs and MGEs. (E) Procrustes errors 667 

between NMDS ordinations of TSS normalized OTUs and ARGs & MGEs. (F) Procrustes errors 668 

between NMDS ordinations of rarefied and subsampled OTUs and ARGs & MGEs. The 669 

Procrustes residual error line plots (C, E and F) allow residual error size comparisons. The bars 670 

show the difference in the community structures between the two normalization methods (C) as 671 

well as the differences in community structure and resistome structure in samples belonging to 672 

different treatment groups (E and F). Horizontal lines denote the median (solid), 25% and 75% 673 

quantiles (dashed). 674 
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 675 

Fig. 4. Network analysis showing co-occurrence patterns between ARGs and MGEs within the 676 

samples in different treatment groups. Nodes of the MGEs are triangles, and circle resistance 677 

gene nodes are colored according to the antibiotic they confer resistance. Edges between 678 

resistance gene nodes and mobile genetic element nodes have the color of the resistance gene 679 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.957100doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.957100
http://creativecommons.org/licenses/by-nc-nd/4.0/


node. Nodes have equal sizes, edges have equal weights, and distance between the nodes is 680 

irrelevant.  681 

 682 

Fig. 5. t-SNE analysis of a dataset containing ARGs, MGEs and TSS normalized OTUs (all 683 

relative abundances) and the distribution of the pens where experimental pigs were kept. (A) The 684 

clustering pattern of the samples. (B) Partial dependence plot of cluster numbers and the most 685 

important predictors in the order of decreasing importance. The partial dependence plot shows 686 

the effect of each predictor on the model outcome one by one, meanwhile the other predictors are 687 

fixed to their average value. (C) The physical distribution of the of the experiment pens. 688 

Supporting information legends 689 

 690 

Table S1. List of the used primer sets.   691 

 692 

Fig. S1. Correlation between rarefied and subsampled OTUs and TSS normalized OTUs. 693 

 694 
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Fig. S2 Composition of positive assays grouped by (A) antibiotic group the targeted gene confers 695 

resistance, (B) resistance mechanism and (C) mobile genetic element group. 696 

 697 

Fig. S3. Differentially abundant genera and genes. Samples on x-axis are grouped according to 698 

the treatments. Sample names are as follows: NTC= Non-treatment control, AB= Carbadox 699 

(antibiotic), M= Mushroom powder and ZnCu= zinc oxide and copper sulfate. The number in 700 

front of the group code denotes the number of the pen. Each row represents abundance of each 701 

genus or the results of each primer set (assay) (Table S1) displayed on the y-axis. Only genera 702 

and genes with statistically significant differences between treatment groups are shown (A) 703 

Differentially abundant genera with TSS normalization. See Table S2 for fold changes. (B) 704 

Differentially abundant genera with Rarefying and subsampling. See Table S3 for fold changes. 705 

(C) Differentially abundant ARGs and MGEs. See Table S4 for fold changes. 706 

 707 

Table S2. Pairwise comparisons of gamma distribution GLMs of relative abundances of each 708 

genera between treatment groups. TSS normalized OTU table was used as the input. 709 

 710 

Table S3. Pairwise comparisons of negative binomial GLMs of abundances of each genera 711 

between treatment groups. Rarefied and subsampled OTU table was used as the input. 712 

 713 

Table S4. Pairwise comparisons of gamma distribution GLMs of relative abundances of each 714 

ARG or MGE between treatment groups. 715 

 716 

Fig. S4. Rarefaction curves. OTU collection curves determined from sequence analysis. Each 717 

line represents one sample. Vertical line shows the subsampling cutoff: 7500 sequences 718 

 719 
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Table S5. Assays that had unspecific amplification. Ct values in the negative control and mean 720 

Ct-values in samples. 721 

 722 
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