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Abstract 

Metallo-β-lactamases (MBLs) degrade a broad spectrum of β-lactam antibiotics, and are a major 

disseminating source for multidrug resistant bacteria. Despite many biochemical studies in diverse 

MBLs, molecular understanding of the roles of residues in the enzyme’s stability and function, 

and especially substrate specificity, is lacking. Here, we employ deep mutational scanning (DMS) 

to generate comprehensive single amino acid variant data on a major clinical MBL, VIM-2, by 

measuring the effect of thousands of VIM-2 mutants on the degradation of three representative 

classes of β-lactams (ampicillin, cefotaxime, and meropenem) and at two different temperatures 

(25°C and 37°C). We revealed residues responsible for expression and translocation, and 

mutations that increase resistance and/or alter substrate specificity. The distribution of specificity-

altering mutations unveiled distinct molecular recognition of the three substrates. Moreover, these 

function-altering mutations are frequently observed among naturally occurring variants, 

suggesting that the enzymes has continuously evolved to become more potent resistance genes.  
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Introduction 

The rise of drug-resistant bacterial pathogens has been rapid and inevitable following the 

introduction of novel antibiotics to the clinic. Pathogens often acquired resistances through 

horizontal gene transfer (HGT) using mobile genetic elements carrying antibiotic resistance genes, 

such as plasmids or transposable elements1–3. Under constant selection pressure from antibiotic 

use, these resistance genes continuously evolve to improve their efficacy and alter and broaden 

their specificity to other classes of antibiotics2,4. Understanding the molecular mechanisms and 

evolutionary dynamics of antibiotic resistance genes is crucial to finding sustainable solutions 

against the future dissemination and evolution of antibiotic resistance, such as through predicting 

future evolution and aiding in antibiotic and inhibitor design5,6.  

 Metallo-β-lactamases (MBL), or class B β-lactamases, are one of the major sources for the 

spread of multi-drug resistance bacteria. MBLs are metal dependent hydrolytic enzymes that 

degrade a broad spectrum of the widely used β-lactam antibiotics, including “last resort” 

antibiotics such as carbapenems7. Plasmid borne MBLs, such as VIM, NDM, IMP, and SPM-

types, have been particularly problematic as they can spread to different bacterial pathogens and 

have no clinically effective inhibitors8. All major MBLs have also been undergoing continual 

evolution; VIM-type MBLs have diversified  up to 70 amino acid mutations (26% sequence 

difference) into over 50 isolated variants, and some variants seem to have developed new substrate 

specificity9–13. Much effort has been made to characterize the molecular mechanisms and identify 

key residues in several major MBLs using diverse biochemical and structural approaches14–24. 

However, the contributions of the majority of residues in these enzymes remains unexplored, and 

little is known of the molecular mechanisms governing substrate recognition.  
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One way to resolve these questions is through comprehensive, large-scale characterizations 

of mutations affecting the MBLs’ efficacy and specificity. Deep mutational scanning (DMS) is a 

recently developed method for the characterization of thousands of mutations within a protein 

using deep sequencing25–27. The resulting high-resolution and comprehensive mutational datasets 

provide invaluable information for deciphering a subset of mutations related to monogenetic 

disease28–30, understanding evolutionary dynamics of proteins—including viral coat, antibiotic 

resistance genes and hormone receptors31–34— as well as elucidating protein sequence-structure-

function relationships35–41. In particular, conducting DMS on a protein of interest under varying 

conditions—e.g. against different substrates or in different environments—has further unveiled in-

depth molecular details of a protein, such as residues contributing substrate specificity42,43 and 

protein–environment interactions44–46.  

In this work, we use DMS to characterize the functional behavior of all ~5600 single amino 

acid variants of VIM-2 against three classes of β-lactam antibiotics(ampicillin, cefotaxime, and 

meropenem) and at two different temperatures (25°C and 37°C), and gain deep insights into the 

molecular and evolutionary determinants of VIM-2’s behavior. We generate a series of 

comprehensive and high-quality datasets, and develop a global understanding of VIM-2 by 

identifying residues that are critical for its function, stability and/or substrate specificity. We also 

examine VIM-2’s signal peptide—an often overlooked feature despite its importance in expression 

and transport. Moreover, we use the data to assess their resistance characteristics and rationalize 

evolutionary outcomes of the clinically isolated natural variants of VIM-type genes, revealing that 

several mutations in the natural variants are functionally beneficial and lead to changes in substrate 

specificity.  
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Results and Discussion 

Deep mutational scanning of VIM-2 metallo-β-lactamase  

DMS was conducted on a library of VIM-2 variants, each encoding a single amino acid 

substitution. The wild-type (wt) VIM-2 (UniProt ID:  A4GRB6) was sub-cloned into a custom 

pIDR2 vector with a chloramphenicol resistance marker, where VIM-2 expression is controlled by 

the constitutive ampR promoter (Supplementary File 1). We constructed the library of all possible 

single amino acid variants of wtVIM-2 through PCR based saturation mutagenesis, where each 

codon position is mutated to an ‘NNN’ codon using restriction-free (RF) cloning (Fig. 1a)47; there 

are 5607  possible variants in the library ((20 a.a. + stop codons) × 267 positions). The plasmids 

of mutagenized codon libraries were pooled into seven groups—six groups of 39 codons (117 bp, 

819 variants in each group) and 1 group of 33 (99 bp, 693 variants)—so the mutagenized region 

of each group can be covered by Illumina NextSeq deep sequencing. We estimated the mutation 

rate of our library construction by determining the full sequence of 87 variants by Sanger 

sequencing: only one nucleotide substitution was found outside the intended codon—which 

corresponds to a mutation rate of 1.4 × 10-5—while two other variants had an insertion/deletion. 

Thus, we constructed a high quality variant library, comparable to other libraries constructed and 

deep sequenced in a similar manner42. 

Cultures of E. coli cells transformed with VIM-2 libraries (each group was treated 

separately) were subjected to antibiotic selection by incubating the culture at 37°C with LB media 

in the presence (selected) and the absence (non-selected) of three different classes of β-lactam 

antibiotics—ampicillin (AMP), a 3rd generation penicillin, cefotaxime (CTX), a 3rd generation 

cephalosporin and meropenem (MEM), a carbapenem (Fig. 1b). To determine the selection 

conditions, the growth of E. coli cells harboring the plasmid encoding wtVIM-2 was examined at 
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a range of antibiotic concentrations (1.0-1024 µg/mL AMP, 0.625-64 µg/mL CTX, 0.002-2.0 

µg/mL MEM) (Fig. 1c and Supplementary Fig. 1). We chose to test the highest antibiotic 

concentration where wtVIM-2 can grow almost 100% relative to growth in media without β-lactam 

antibiotics, and at successive lower concentrations at 8-fold decrements where the range permits; 

selected conditions are 128, 16 and 2.0 µg/mL of AMP, 4.0 and 0.5 µg/mL CTX, and 0.031 µg/mL 

MEM (Fig. 1c). The selection process for each antibiotic was conducted in duplicate on separate 

days. After selection, the plasmids were isolated, the mutagenized region of each group was 

amplified by PCR, and the amplicons were sequenced by the Illumina NextSeq 550 platform. The 

sequencing reads were error filtered, and the fitness score of each variant relative to wtVIM-2 was 

calculated using equation (1). (see methods for “deep sequencing and quality control”).  

  ������� ��	
� = Log2 � ��������� �� �������������� ��������� �� �������!��"#������ ��������� �� $�������� ��������� �� $�!��"#������ 
%   (1) 

Where the frequency of a variant (or wt) is the deep sequencing read count of the variant divided 

by the total reads in the corresponding sample. Variants with frequencies below the threshold of 

deep sequencing errors that was estimated from the deep sequencing of wtVIM2 (see methods for 

“Variant identification and noise filtering”) were excluded during scoring. The non-selected 

library shows excellent coverage, with 5535 of 5607 (98.7%) variants present after filtering in at 

least one replicate while 97.8% are observed in both replicates (Supplementary Table 1). For 

selected libraries, we calculate the fitness score for any variants present in at least one non-selected 

replicate then average the fitness scores between the two selection replicates (see Supplementary 

Data 1 for all fitness scores). 

Our DMS experiments show high replicability in all conditions tested. The R2 of a linear 

regression between variants observed in both replicates is 0.94 for selection with 128 µg/mL AMP, 
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0.91 for 4.0 µg/mL CTX and 0.85 for 0.031 µg/mL MEM (Fig. 2 and Supplementary Fig. 2). As 

expected, variants with synonymous mutations have near neutral fitness and variants with 

nonsense mutations (stop codons) have the lowest fitness scores. At the highest concentration of 

each antibiotic, variants with stop codons have fitness scores centered around -4 and lower, thus a 

fitness score of -4 is considered the lowest score cut-off for downstream analyses (Fig. 2). Like 

previous DMS studies with other proteins, the overall fitness distribution of all variants exhibit a 

bi-modal distribution with a peak at neutral fitness and a long tail stretching toward negative fitness 

to another peak at the cutoff of -4 (Fig. 2)32,36,39,48. 

 We confirmed the DMS fitness scores reflect the actual resistance level of variants (Fig. 2 

and Supplementary Data 2). We isolated 45 unique variants (61 unique codons), and determined 

the half maximal effective concentration (EC50) of E. coli culture harboring each variant for three 

antibiotics by measuring antibiotic dose-response curves. We fit the relationship using a sigmoidal 

function and identify a linear range of correlation for fitness scores within -3.1 to 0.3 for AMP 

(EC50 27–78µg/mL), -2.8 to 0.6 for CTX (EC50 1.4–4.1µg/mL) and -2.6 to 1.8 for MEM (EC50 

0.011–0.058µg/mL), which correspond to a 2.8, 2.9 and 5.0-fold range of EC50 values for AMP, 

CTX and MEM, respectively49. All fitness scores outside the linear range are still qualitatively 

consistent with EC50, where higher fitness scores correspond to higher EC50 values and lower 

fitness scores correspond to lower EC50 values. 

Global view of VIM-2 enzyme characteristics 

The fitness scores for variants selected at 128 µg/mL AMP are shown in Fig. 3 (See 

Supplementary Fig. 3-4 for CTX and MEM). At a glance, there are several interesting trends in 

the DMS data of VIM-2. Variants with Cys mutations are highly deleterious throughout the 

catalytic domain (positions 27-266). As wtVIM-2 possesses only one Cys for metal binding, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.956706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956706
http://creativecommons.org/licenses/by-nc-nd/4.0/


additional Cys may cause the formation of undesired disulfide bonds, leading to misfolding. Pro 

variants are also often deleterious, as this residue disrupts secondary structures32,36,41. We found 

112 positions (42% of all residues) are highly sensitive to mutations, where over 75% of missense 

variants (excluding synonymous and nonsense mutations) display a fitness score < -2.0. These 

positions are likely key requirements for catalytic activity or protein stability and folding in the 

wtVIM-2. Indeed, these positions include all six active-site metal coordinating residues (His114, 

His116, Asp118, His179, Cys198, His240), as well as 3-4 residues adjacent to each metal binding 

residue in the amino acid sequence that are likely to play important roles in the metal configuration 

and enzymatic function. Additionally, 92% of positions with high mutational sensitivity—

including all metal binding residues—are located in the core of the protein (accessible surface area, 

ASA, of residue < 30%) and 63% are almost completely buried (ASA < 5%), congruent with 

previous findings25,32,37,42,46,50 (Fig. 4a).  

To examine the distribution of fitness effects (DFE) of VIM-2 variants, we classified the 

5291 nonsynonymous variants as having negative (<-0.7), neutral (-0.7 to 0.7) or positive (>0.7) 

fitness by performing Z-tests of each variant’s fitness scores against the fitness distribution of 244 

synonymous variants (the null model distribution), adjusting for 5% false discovery rate using the 

Benjamini-Hochberg procedure. The DFE of VIM-2 variants is similar across all selection 

antibiotics at the highest screening concentration (128 µg/mL AMP, 4.0 µg/mL CTX, 0.31 µg/mL 

MEM), with ~65% of variants being negative, ~30% being neutral and ~5% being positive 

(Supplementary Fig. 5). The overall DFE also agrees with observations found in DMS of other 

enzymes, such as E. coli amidase, TEM-1 β-lactamase and levoglucosan kinase32,36,38,43.  

Next, in order to determine biophysical properties that explain the fitness scores, a linear 

model was constructed using the fitness score of variants as the response factor and various 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.956706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956706
http://creativecommons.org/licenses/by-nc-nd/4.0/


parameters such as ASA, ΔΔG predicted by Rosetta, change in amino acid volume and polarity, 

and the wt and variant amino acid states as predictors (Table 1, Supplementary Tables 2 and 3 

for CTX and MEM models, Supplementary Data 3 for data used in models). We first modeled 

each predictor alone with the response, then selected predictors that account for at least 10% of 

variance in the response (R2>0.10) and modeled them in combinations of 2 or more as individual 

terms and as interacting terms. The final model accounted for the greatest amount of variance using 

the fewest predictors—i.e. optimized for adjusted R2—and combined four predictors (ASA, ΔΔG, 

wt and variant amino acid) capable of explaining 55% of the variation in fitness scores (adjusted 

R2 = 0.55). The ASA alone can explain 21% of fitness score variation (Table 1) and ASA of the 

wt amino acid alone show a significant correlation (R2=0.50) to the average fitness scores of the 

position, with mutations at exposed residues having less deleterious fitness effects on average (Fig. 

4b). The ΔΔG explains an additional 18% (Table 1) and there is overall correlation between ΔΔG 

and fitness score while individual predictions are relatively scattered, similar to previous findings 

that compared fitness to Rosetta folding energies or solubility scores (Fig. 4c)36,38. Knowing the 

wt and variant amino acid can further explain another 10% and 5% of variation respectively41,51. 

Thus, the results indicate structure and biophysical factors can explain the majority of fitness score 

tendencies. 

Codon and amino acid optimization in the signal peptide 

The first 26 residues of VIM-2 has been identified as the signal peptide14,15,52, which is a sequence 

used to translocate the enzyme to the periplasm, then cleaved after transport53–56. Our DMS data 

supports the known length of the signal peptide as mutations to Cys are much less deleterious 

before residue 26, suggesting these positions are not incorporated into the mature enzyme in the 

periplasm. In general, the signal peptide sequence has an amino terminal (N) region (residues 1-7) 
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with 1 or more positive residues, a hydrophobic (H) region (residues 8-21) and a carboxy terminal 

(C) region (residues 22-26) that precedes the cleavage site containing a PXAXS motif (Fig. 5a)53–

56. The signal peptide is conserved at 17 of 25 positions across all VIM variants, and the remaining 

are binary differences between the conserved sequences of the VIM-1 and VIM-2 clades (Fig. 5a, 

clades are defined by Supplementary Fig. 6).  

Mutations in the signal peptide are generally tolerated (64% of nonsynonymous mutations 

are neutral with 128 µg/mL of AMP) and even beneficial (9.5% of mutations are positive, Fig. 

5b), which is consistent with a previous DMS study with TEM-136. In the N-terminal region, 

mutations to Lys3 are especially deleterious, likely due to the importance of a net positive charge 

in the N-region for efficient translocation53,57,58. In contrast, Lys7 is tolerant to substitution—in 

fact, half of the natural VIM variants have a Ser at this position—suggesting that Lys3, rather than 

Lys7, is critical for translocation. In the H-region, residues Val10 through Ile16 are the most 

sensitive to mutation, especially when changed to a charged amino acid36,53. The C-region is only 

strongly affected by the mutation of Leu23 to Cys or Trp, while variants at other positions are 

neutral, including the PXAXS motif.  

Interestingly, variants with evolutionarily conserved residues in the signal peptide often do 

not have the highest fitness, and we note both residue level and codon level dependencies in fitness 

(Fig. 5c). At most positions, a number of variants with nonsynonymous mutations produce higher 

fitness than wtVIM-2. Furthermore, at some positions, variants with synonymous mutations have 

significantly higher (Ile16, Ala18, and Ala20) or lower fitness (Lue5 and Thr13) (Supplementary 

Fig. 7b, Supplementary Data 4). Overall, it appears the signal peptide is less than optimal. In 

terms of codon level fitness among synonymous variants, we find a significant association between 

a mutated codon’s change in mRNA folding energy and fitness within mutants close to the start 
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codon, supporting previous findings that avoidance of secondary structure near the start codon is 

favored (Supplementary Fig. 7c, Supplementary Data 5, see methods for ‘RNA folding energy 

calculation’)59,60. We also found that 73 of 143 ‘codon dependent variants’—where any pair of 

synonymous codon scores differ by more than 2.0—are within the signal peptide, further 

supporting the importance of codon choice near the start of the coding region61. The less than 

optimal residue level fitness of wtVIM-2 may be because we employ E. coli as a host while natural 

VIM variants are often found in Pseudomonas62, and/or the signal peptide is not selected to 

produce maximum expression in natural environments. It has been shown that different signal 

peptides produce variable expression levels and translocation rates for a given protein, both of 

which affect the final resistance, especially in different host organisms23,57,58,63–65. Furthermore, 

the signal peptide is frequently mutated in naturally occurring VIM-type variants (see section on 

‘Natural VIM variation’ below), suggesting changes in the signal peptide sequences may have 

played significant roles in dissemination of MBL genes to different hosts and adaptation to higher 

antibiotic concentrations. 

Elucidation of the role of residues in the catalytic domain 

We sought to further examine the functional and structural roles of residues in the catalytic domain 

(positions 27-266) of wtVIM-2. We compare fitness scores between selection in 128 µg/mL and 

16 µg/mL AMP, as fitness at different AMP concentrations reflect a residue’s degree of 

involvement in the enzyme’s stability, expression and/or catalytic activity. Selection was also 

performed at 25°C in addition to 37°C to examine temperature dependent mutational effects, 

highlighting residues involved in protein folding and stability; in general, lower temperatures are 

permissive to variants with poor folding and high aggregation propensity while having a uniform 

effect on catalytic rate. To assess the role of each residue, we classified all positions in the catalytic 
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domain into four types: i) ‘tolerant’, if 75% of variants are neutral even in the most stringent 

condition with 128 µg/mL AMP at 37°C, ii) ‘essential’, if 75% of variants are highly deleterious 

even in the least stringent condition with 16 µg/mL AMP at 25°C, iii) ‘temperature dependent’, if 

the difference in the fitness score between 25°C and 37°C is more than 2.0 in either 128 or 16 

µg/mL AMP, and iv) ‘residue dependent’, if variants are temperature independent (similar scores 

at the two temperature) and exhibit a range of fitness rather than being mostly neutral or negative 

(Fig. 6a-b, Supplementary Data 6 for all classifications ).  

As expected, the 55 ‘tolerant’ positions are scattered around the surface of the protein and 

are mostly solvent exposed (80% of positions have greater than 30% ASA) (Fig. 6d). The 20 

‘essential’ residues includes all six metal binding residues and deeply buried residues (70% have 

less than 5% ASA), which form the central core of the protein (Fig. 6c). This core is further 

expanded into a larger scaffold by the 93 ‘temperature dependent’ positions that are mostly buried 

in the structure (76% have less than 30% ASA) and largely hydrophobic—75% of the temperature 

dependent residues are non-polar (A, G, I, L, P, V) or aromatic residues (F, W, Y) compared to 

58% for the entire catalytic domain. The 72 ‘residue dependent’ positions tend to be near the 

surface or at packing interfaces between α-helices and β-sheets (Fig. 6d).  

The fitness of variants at temperature and residue dependent positions show equally strong 

association with the Rosetta predicted ΔΔG, indicating both classes of residues have contributions 

to structural packing (Supplementary Fig. 8a). However, the location and hydrogen bonding 

behavior of each class of residues suggest different functional roles. Essential and temperature 

dependent residues display an enrichment of sidechain-backbone h-bonding relative to the 

proportion of h-bonding residues in each class (Supplementary Fig. 8b, Supplementary Data 

7), suggesting—when combined with the formation of a hydrophobic core—these residues are 
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largely involved in protein folding and stability39,46,66. In contrast, ‘residue dependent’ positions 

are prominent in the two major active site loops (14/23 positions from 60-68 and 201-214) and on 

packing interfaces on these loops’ distal faces from the active site. The loop holding metal-binding 

residues His114, His116 and Asp118, and the helix positioning the loop into the active-site 

(positions 112-129) are also enriched in residue dependent positions (10/15 non-metal-binding 

positions), suggesting possible effects on metal and substrate positioning. Thus, many of the 

‘residue dependent’ positions are likely to be involved in catalysis through direct or indirect 

substrate interactions, and also affect the overall shape of the active site.  

Distinct recognition for different classes of β-lactam substrates 

VIM-2 is known for its broad spectrum activity against all classes of β-lactam antibiotics except 

monobactams, but how residues achieve substrate recognition remains unknown. We examined 

mutations that alter substrate specificity to identify wt residues responsible for substrate 

recognition by comparing fitness scores between the three antibiotics (128 µg/mL AMP, 4.0 

µg/mL CTX, 0.031 µg/mL MEM). First, we identified 29 ‘globally adaptive’ variants across 10 

positions in the catalytic domain that increase resistance (fitness score >1) to all antibiotics 

(Supplementary Data 8). Residues at positions 47, 55, 66, 68 and 205 each give rise to at least 

three globally adaptive variants (24 total) while 57, 65, 115, 180 and 201 each give rise to one; 

9/10 positions with globally adaptive variants are near the active site, having at least one atom 

within 15 Å of the active site zinc ions (Fig. 7a). Next, we compare fitness scores of different 

antibiotics in pairs, and identified variants with a change in fitness effect classifications (negative, 

neutral or positive) combined with a 2.0 fitness score difference between antibiotics. We identified 

78 specificity altering variants across 25 positions, with 23/25 positions near the active site (Fig. 

7b, Supplementary Table 4 and Supplementary Data 9 for individual specificity variants). We 
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confirm the specificity by comparing the fitness scores with the log2(EC50 var / EC50 wt) of the variant 

in the three antibiotics (Supplementary Fig. 9). Of the 25 positions, five are shared by both 

specificity and globally adaptive variants, and specificity changes are enhanced by the positive 

fitness at three of these positions (68, 201 and 205). However, most changes in specificity are due 

to decreases of fitness in one or two substrates, and only 3 variants (R205H/I/V) maintain neutral 

or higher fitness in all antibiotics42,43. When examining the roles of these positions, we find nine 

‘residue dependent’ and one ‘tolerant’ position, as expected for positions that interact with 

substrate rather than folding67. However, the other 15 positions are ‘temperature dependent’ 

positions, suggesting residues that are involved in substrate specificity are also embedded in the 

protein core. 

Interestingly, there is a strong bias in specificity changes depending on mutations and their 

positions in the active site. In 21 of 25 positions, specificity variants decrease AMP fitness, while 

in 10 positions variants decrease CTX fitness and variants decrease MEM fitness at only one 

position (Fig. 7b). This bias is maintained at the level of individual specificity variants, where 96% 

decrease the fitness in either AMP and/or CTX—29 only decrease AMP, 33 only decrease CTX 

and 10 decrease both—while only 3 variants decrease MEM. The residues specific to AMP—

where mutations to the residue decrease AMP fitness, but are neutral for CTX and/or MEM—are 

spread around the active site, including the two active site loops (60-68 and 201-214) as well as 

residues in the protein scaffold. In contrast, the residues specific for CTX are restricted to the two 

active site loops12,13,68–71; mutations in positions 62, 67 and 68 are fully specific to CTX, while 

positions 202, 205, 210 and 211 all have mixed specificity for CTX and AMP. To visualize 

residue-substrate interactions, we overlaid AMP, cefuroxime and MEM substrates in the active 

site of VIM-2 through alignment with VIM-1 and NDM-1 structures crystallized in complex with 
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these substrates. Some substrate interactions are apparent from proximity, such as the packing of 

hydrophobic residues in loop 60-68 to the non-polar, aromatic substituents on the AMP (C6) and 

cefuroxime (C7) that is missing in most carbapenems (Fig. 7c-d). However, Glu202 and Arg205 

seem to be in better position to interact with the C2 substituent of MEM and are further from AMP 

or cefuroxime, yet both residues are specific for AMP and CTX. Moreover, many residues in the 

protein scaffold that are affecting AMP specificity do not directly interact with the substrates. We 

hypothesize that these distant residues may contribute to solvent related phenomenon—such as 

displacement of solvent and/or bridging solvent with ligand to affect substrate binding 

energy72,73—or alter protein dynamics to affect substrate specificity22,74–77.  

Although wtVIM-2 degrades all three β-lactams, our observations suggest that the enzyme 

interacts with each substrate in a different manner. AMP interacts with many residues around the 

active site and is the most sensitive to mutations, while CTX specificity relies exclusively on 

interactions with residues in the active site loops. Interestingly, MEM seems to rely on contacts 

shared with other antibiotics, which suggest that carbapenem resistance of VIM variants may have 

coevolved with other antibiotics. 

Natural VIM variation favors neutral, adaptive and specificity mutations 

Currently, 56 unique VIM-type MBL sequences (including wtVIM-2) have been found on 

plasmids in β-lactam resistant clinical isolates (Supplementary Table 5)13,62. The DMS data of 

VIM-2 enable us to characterize these naturally occurring mutations comprehensively. We 

classified these sequences into four clades, represented by VIM-1 (between 25-29 mutations from 

VIM-2 each, 45 unique mutations total), VIM-2 (1-6 mutations, 31 total), VIM-7 (70 mutations), 

and VIM-13 (32-33 mutations, 34 total) (Fig. 8a, Supplementary Fig. 6), with 131 unique point 
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mutations relative to VIM-2 across 99 positions (Supplementary Fig. 10, Supplementary Data 

10).  

As expected, the fitness distribution of naturally occurring mutations in the VIM-type MBL 

for all antibiotics (128 µg/mL AMP, 4.0 µg/mL CTX, 0.031 µg/mL MEM) shows enrichment for 

neutral and positive mutations (Fig. 8b). The trend suggests that natural variants have adapted to 

higher resistance as 31% of all ‘globally adaptive’ catalytic domain variants in the DMS are also 

naturally occurring mutations, and 17% of all natural mutations have positive fitness effects for at 

least one antibiotic. At least 66% of variants have neutral fitness effects within each antibiotic. 

Natural mutations are disfavored in residues crucial for activity or stability (Fig. 8c): Of the 99 

mutated positions, only a small proportion of ‘essential’ (1/20 positions) and ‘temperature 

dependent’ (21/93) positions have been mutated while large proportions of the signal peptide 

(20/26) and ‘tolerant’ positions (32/55) have been mutated. Interestingly, 44% (11/25) of 

specificity altering positions have been mutated, which suggests that VIM variants may have 

changed their substrate specificity during evolution (Fig. 8d).  

However, 10% of mutations are still highly deleterious (fitness score < -2.0) in 128 µg/mL 

AMP (6.9% for 4.0 µg/mL CTX, 6.1% for 0.031 µg/mL MEM), indicating other factors that affect 

natural variation (Fig. 8b). These 13 deleterious mutations are spread over 11 positions, where one 

position is in the signal peptide, and 10 are in the catalytic domain. The signal peptide mutation 

(K3Q) occurs only in VIM-7 and eliminates the Lys3 critical to translocation, but this is likely 

neutral as VIM-7 has a S6R mutation that replaces the positive charge. Two mutations are only 

deleterious to AMP (Q60H, A143T), thus altering substrate specificity. Furthermore, we suspect 

the neutral I185V mutation (all 55 natural variants have Val185 while our wtVIM-2 has Ile185) 

acts as a global suppressor78,79, and permit the accumulation of four mutations that are deleterious 
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in all antibiotics (T139A, T139I, V236G and V255A) as I185V is the only other mutation in these 

natural variants. The remaining 6 deleterious mutations are likely neutralized by specific 

intramolecular epistasis, or the background dependence of mutational effects80–84, as these 

mutations occur in natural variants with at least 25 mutations relative to VIM-2. While such 

epistasis will hamper our ability to perfectly predict the effect of mutations, the VIM-2 dataset 

presented in this study contributes to further our understanding of MBL evolution, and can help 

orient our predictions concerning the emergence of future resistance. 

Conclusion 

In this work, we report the first comprehensive mutational analysis of an enzyme in the MBL, 

class B β-lactamase family, one of the most important enzyme family underlying the dissemination 

of multi-drug resistance to pathogens. We uncover a lack of optimization in the signal peptide of 

VIM-2, that may be due to codon dependent RNA folding or incompatibility with the host 

translocation system. Such findings highlight the importance of genome and host context in 

resistance gene compatibility23,60,65. By performing DMS at various conditions, three different 

antibiotics, and two temperatures, we enhance the understanding of sequence-structure-function 

relationships by unveiling a set of mutations for protein stability, catalysis and substrate specificity 

of VIM-2. We find VIM-2’s substrate specificity altering residues to be enriched near the active 

site, which enables us to elucidate the molecular basis of enzyme-substrate interactions. This 

finding is in contrast to a previous DMS study that tested multiple substrates: specificity-altering 

mutations of E. coli amidase (amiE) were distributed across the entire structure in a global mode 

of specificity determination43. Thus, it is likely that each enzyme takes different mechanisms for 

recognizing diverse substrates. The monomeric MBLs have large, solvent-exposed active site 

clefts to recognize a wide range of substrates, while amiE which has a small, occluded active site 
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and a hexameric quaternary structure that potentially favors controlling specificity through packing 

and subunit interactions43. However, determinants of reaction enantioselectivity in 4-OT—another 

enzyme active as a hexamer—are concentrated in the active site, which further highlights unique 

behaviors in different enzymes85. Regardless, understanding distinct mode of enzyme-substrate 

interactions will lead to design and development of new antibiotics and inhibitors to re-sensitize 

these enzymes. Finally, we demonstrated that VIM-type variants have been continuously evolving 

by enhancing their resistance as well as altering their substrate specificity in nature. The study of 

natural variation also reinforces the observation that mutations found to be neutral or beneficial in 

an experimental setting tend to be enriched in nature as well 34,66. It is likely that many new VIM 

variants will emerge in the future, and our results will provide a valuable basis to predict likely 

mutations and estimate the resistance of newly found variants.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.956706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956706
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Methods 

Materials 

LB Broth, Miller (BP1426), ampicillin sodium salt (BP1760) and cefotaxime sodium salt 

(BP29511) were purchased from Fisher Scientific. Meropenem trihydrate (M2574) was purchased 

from Sigma-Aldrich (Millipore sigma). E. cloni® 10G electrocompetent cells (60061) and E. 

cloni® 10G chemically competent cells (60107) were purchased from Lucigen Corp. The KAPA 

HiFi PCR Kit (KK2102) was purchased from KAPA Biosystems Inc., the E.Z.N.A.® Cycle Pure 

Kit was purchased from OMEGA Bio-tek Inc. and the QIAprep Spin Miniprep Kit was purchased 

from Qiagen. The NextSeq 500/550 High Output Kit (300 cycles) (20024908) was purchased from 

Illumina Inc. 

Generation of a VIM-2 mutagenized library with all possible single amino acid substitutions 

The wild-type (wt) VIM-2 gene including its signal peptide sequence from Pseudomonas 

aeruginosa was synthesized (Bio Basic Inc.) and subcloned into an in-house plasmid, pIDR2 

(chloramphenicol resistance) (Supplementary File 1), under a constitutive AmpR promoter using 

Nco I and Xho I restriction enzymes (Fisher Scientific). The ATG codon in the Nco I site was used 

as the start codon. However, the cut site requires an extra G nucleotide to follow the start codon 

and an additional Gly (GGA codon) residue was inserted into the second position of the VIM-2 

sequence; this extra Gly relative to wtVIM-2 will be labelled as G2 to distinguish it from position 

2 in the wt sequence. The pIDR2 plasmid containing the wtVIM-2 gene will be referred to as 

pIDR2-wtVIM-2. 
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To generate all single amino acid variants, a library of codon mutants was made for each codon 

(267 positions) in the wtVIM-2 gene using restriction-free cloning (RFC)47 (Supplementary Fig. 

11). We designed a forward primer for each codon position that contains a degenerate ‘NNN’ 

codon—using a script used to design primers for the PFunkel method86—and a single reverse 

primer, allowing a PCR to amplify part of the wtVIM-2 gene while incorporating the mutation. 

The PCR reaction to amplify part of the gene was done using a KAPA HiFi PCR Kit (Kapa 

Biosystems, Inc.) for 30 cycles of amplification each with denaturation at 98°C for 20 s, annealing 

at 62°C for 15 s and extension at 72°C for 15 s; 1 ng of pIDR2-wtVIM-2 was used as template in 

a 20 µL reaction, with 1 µL each of the forward and reverse primer (10 µM). The first PCR 

products were purified using E.Z.N.A.® Cycle Pure Kit (OMEGA Bio-tek, Inc.). Afterwards, 10 

µL of the first PCR product was then used as a primer to extend the entire plasmid, where the 

cycling conditions were identical to the first reaction except the extension time (90 s) and 1 ng of 

pIDR2-wtVIM-2 was freshly added as the template. Product from the second PCR was treated 

with Dpn I for one hour at 37°C to degrade the original wtVIM-2 plasmids, and then the amplified 

plasmids were purified and concentrated by the ethanol precipitation method. Subsequently, the 

purified plasmids were transformed into E. cloni® 10G chemically competent cells (Lucigen 

Corp.) using the supplier’s recommended heat-shock transformation protocol and plated on LB-

Cm (containing 25 µg/mL chloramphenicol) agar plates. We then counted the number of colony 

forming units (CFU) obtained after the transformation for every mutagenesis library. Using 

CASTER87 and GLUE88, we conservatively estimated that at least 700 CFU after transformation 

is needed to achieve 100% coverage of all 64 codon variants per position. If a transformation met 

the required CFU, all colonies were collected and the plasmids were purified using QIAprep Spin 
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Miniprep Kit (QIAGEN N.V.), while those that did not were re-transformed or re-cloned until the 

count was met.  

 

Antibiotic selection of the VIM-2 mutagenized library 

Mutant libraries at individual codons were mixed into seven groups of 39 (33 for the last group) 

consecutive codons (see “Deep sequencing and quality control”). E. cloni® 10G electrocompetent 

cells (Lucigen Corp.) were transformed with 1 ng of the plasmid DNA from each of the seven 

groups using the supplier’s recommended electro-transformation protocol and grown overnight in 

10 mL LB-Cm shaking at 30°C. We plated 1/1000 of the transformed culture on LB-Cm agar 

plates to estimate total CFU after transformation. Using CASTER and GLUE, it was estimated 

that 20,000 CFU are needed to fully cover 2496 codon mutants (64 codons × 39 positions) and all 

groups transformed had at least 100,000 CFU. The transformed libraries were suspended in LB 

media and preserved in 1 mL aliquots at -80°C in LB with 25% final volume glycerol. 

Antibiotic selection was conducted in duplicate on two separate days. For each experiment, the 1 

mL glycerol stock from each group was thawed and grown in 10 mL LB-Cm shaking at 30°C for 

16 hrs, with optical density at 600 nm (OD600) of the cell culture reaching ~1.5. The cultures were 

then diluted by 1000 fold into fresh LB-Cm and grown at 37°C for 1.5 hrs. After 1.5 hrs of growth 

(OD600 of the culture is between 0.01 and 0.02), 960 µL of each culture was directly introduced 

to 40 µL of the antibiotics at 25× concentration (final concentrations are 128, 16 and 2.0 µg/mL 

for AMP, 4.0 and 0.5 µg/mL for CTX, and 0.031 µg/mL for MEM, prepared in water) or water 

(no selection) into the wells of a 2.2mL deep-well 96 well plate, and grown for 6 hrs at 37°C. The 

cultures were also selected at the same AMP concentrations or grown without selection at 25°C. 
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A culture of E. cloni® 10G electrocompetent cells transformed with pIDR2-wtVIM-2 was also 

grown for 6 hours at 37°C. 

After placing the cultures under selection, antibiotics and DNA from lysed cells were removed by 

washing the selected cultures three times using a Biomek 3000 (Beckman Coulter Inc.) liquid 

handling robot. For each wash, the culture was centrifuged at 4000 RPM for 12 min, and the 

supernatant was removed using the Biomek. Subsequently, 800 µL of fresh LB was manually 

dispensed into the wells, the plate was sealed with plastic film, and the pellets were resuspended 

by vortexing. The resuspended cultures were centrifuged again for the next cycle of the wash. 

After the final wash, all cultures were propagated overnight shaking at 30°C in 1 mL of LB-Cm. 

Plasmid DNA was purified from the cultures using a QIAprep 96 Turbo Kit (QIAGEN N.V.). 

Determination of half maximal effective concentration (EC50) 

We isolated 12 variants from codon libraries at positions 55, 62, 67, 68 and 11 variants from codon 

libraries at positions 205, 209, 210, 211 by transforming the libraries into E. coli, plating on agar 

plates, and picking single colonies. The identity of each variant was obtained by Sanger 

sequencing. The variants are grown into glycerol stocks in a 2.2 mL 96 well deep well plate; 2 

single colonies of the VIM-2 WT and empty vector were also placed on this plate as controls.  

The variants in the plate were then placed under the same liquid culture selection procedure as the 

DMS selection experiments (see “Antibiotic selection of the VIM-2 mutagenized library” above), 

up to the end of the 6 hrs of selection where the cell growth (OD600) was measured. The range of 

selection is 1 – 1024ug/mL for AMP, 0.0625 – 64ug/mL for CTX and 0.002 – 2 µg/mL for MEM, 

separated in 2 fold increments. All variants were also grown without antibiotics as a growth 

control. We calculate the EC50 by fitting equation (2) using the “curve_fit” function of the 

“Scipy.optimize” package.  
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Initial estimates were 100% for top, 0% for bottom, -1.0 for the Hill coefficient and 1.0 for the 

EC50. In the case where a variant’s growth curve did not produce a successful fit based on the 

initial estimate, only the Hill coefficient and EC50 were adjusted until the fit was successful. 

Variants where the EC50 do not appear in the growth curve (stop codons, highly deleterious 

mutations and empty vector) could not be fitted and were excluded. 

The DMS fitness scores (y-values) for each antibiotic were fitted against the EC50 (x-values) using 

a similar sigmoidal curve in equation (3) with the “curve_fit” function.  

    FGH ������� ��	
� = *	��	+ + -./01.--.2
345 I96789;<=>> ?@ABB=C=ADE  (3) 

The initial guesses for top, bottom and Hill coefficient are 2.0, -4.0 and 1.0 respectively for all 

antibiotics. The initial estimate for x0, the inflection point of the curve, was 64 µg/mL for AMP, 

4.0 µg/mL for CTX and 0.031 µg/mL for MEM. 

The linear region of the sigmoidal curve for the DMS fitness scores was calculated using equations 

(4-7), based on the final fitted values for each antibiotic49.  

 JK.LMN = �	O + ( 1.--.20-./
343/R.TUVW )         (4)  JY//MN = �	O + ( 1.--.20-./

34R.TUVW )        (5) 

 ZK.LMN = [V( 1.--.20\��$��\��$��0-./ ) ]^��� 7����������  (6) ZY//MN = [V( 1.--.20\�__��\�__��0-./ ) ]^��� 7����������  (7) 
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Deep sequencing and quality control 

We grouped individual codon libraries into seven groups of 39 consecutive codons (33 for the last 

group) so that all mutations are within a distance of 117 bp (99 bp for the last group), allowing 150 

bp forward and reverse NGS sequencing reads to generate full overlap of each group. PCR 

amplicons of each library group and wtVIM-2 were generated using primers that flank the 117 bp 

region of each group, where primers have a Nextera transposase adapter sequence (Illumina, Inc.) 

in the 5’ overhangs. We used KAPA HiFi PCR Kit (Kapa Biosystems, Inc.) for 15 cycles of 

amplification each with denaturation at 98°C for 20 s, annealing at 65°C for 5 s and no extension 

time. The amplicons were extended by PCR again to include the sample indices (i7 and i5) and 

flow cell binding sequence, then sequenced using a NextSeq 550 sequencing system (Illumina, 

Inc.); all samples were sequenced in the same NextSeq run. The raw sequencing data can be found 

on the NCBI Sequencing Read Archive (SRA) (BioProject accession: PRJNA606894). Each group 

under each condition received between 400,000 to 1,000,000 reads, which is at least 160 reads per 

codon variant on average. There were 5 samples that received as low as 100,000 reads in one of 

the two replicates, but the correlation of fitness scores between both replicates still showed an R2 

of at least 0.72 and the scores were retained.  

To process the NGS data, including merging paired-end reads, quality filtering, variant 

identification and fitness score calculation, we use a set of in-house Python scripts 

(https://github.com/johnchen93/DMS-FastQ-processing). Paired-end reads in FastQ format were 

first merged using a Python script, where quality (Q) scores of matching read positions were 

combined using a posterior probability calculation to obtain posterior quality (Q) scores, measured 

on the Phred scale for sequencing quality89. In the case of a base mismatch between the forward 

and reverse reads, the base was taken from the read with the higher Q score at the position.  
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Reads that had more than 20 base mismatches between the forward and reverse reads, or that had 

any bases with a posterior Q score less than 10 were discarded. It was found that above a Q score 

of 10 or more, the average proportion of sequencing errors per position stabilized and no sizeable 

reduction of sequencing errors can be obtained by Q score cut-offs (Supplementary Fig. 12a). 

Usually, 75-85% of all reads passed these filters. Additionally, the expected number of errors per 

read was calculated from adding the error rates calculated from the posterior Q Scores of every 

position in the entire read89. Reads that had an expected number of error greater than 1 would also 

be discarded, however no reads exceeded this limit after the previous filters.  

Variant identification and noise filtering  

Once forward and reverse reads were merged and filtered by read quality, codon mutants were 

identified and counted, then aggregated into amino acid (or stop codon) variants. Codon mutations 

were identified by comparing to the wtVIM-2 sequence as a reference. Since we only intended for 

single codon mutants in the library, any sequence with mutations in more than one codon was 

discarded, leading to retention of 80-90% of the filtered reads.  

To exclude variants that may be due to sequencing errors alone, we estimated the expected 

frequency of each variant generated by sequencing errors and excluded variants that have less than 

2× the expected frequency in the non-selected library. Using sequencing data from wtVIM-2, we 

calculated the error rates that originates from culture growth, sample preps (PCRs) and sequencing. 

The error rates at each position was calculated by dividing the errors observed by the total number 

of reads at that position (Supplementary Fig. 13d). The mean of the distribution of the positional 

errors was used as the estimate for error rates (0.072%) in all positions across the VIM-2 gene. 

The proportion of each type of nucleotide error (A>T, A>C, A>G, etc.) was calculated to estimate 
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the likelihood of each type of nucleotide error given a starting nucleotide (Supplementary Fig. 

12b). 

We made the observations that 1) sequencing errors in wt sequences will generate single codon 

mutants, but errors in single codon variants are most likely to be turned into double codon mutants 

(Supplementary Fig. 13a) 2) ~5-10% of reads in each library group were occupied by wt 

sequences while other variants are rarely higher than 0.5% (Supplementary Fig. 13b) and 3) 

single nucleotide sequencing errors are the most abundant type of errors affecting  up to 10% of 

all reads, while higher numbers of sequencing errors are nearly negligible (Supplementary Fig. 

13c). In summary, single nucleotide errors on wt sequences are the main source of single codon 

variants arising from sequencing errors. Thus, we first calculated the chance of each of the 64 

codons to mutate into the 9 adjacent codons by single nucleotide sequencing errors using Equation 

(8) (Supplementary Fig. 13e).  

�ℎ`��� 	� �	a	� (��ℎ �b*����b��	� Z → J = 

�

	
 
`�� O�
 O	����	� ×  �
�eb���f 	� �b*����b��	� Z → J   (8) 

For example, to gauge how often AAA gets mutated to GAA by chance, we multiplied the per 

position error rate by the proportion of G mutations when starting from an A, leading to 0.0719% 

× 70.7% = 0.000719 × 0.707 = 0.00051. This means for each 100,000 wt reads that has an AAA 

codon at a given position, we expect 51 GAA mutants on average that arise by chance at the same 

position. We calculated expected codon error frequencies from every codon, then summed the 

expected error frequencies of the codons mutant for each amino acid variant (Supplementary Fig. 

13f). The error frequency is multiplied by the count of the wt reads in each non-selected library 

group to arrive at an expected error count for that group. Subsequently, we compared the observed 
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count of amino acid (or codon) variants in the non-selected library to the expected count from 

errors alone and we accepted a variant as truly existing if the observed count is at least twice the 

expected count from errors. In addition, because our filtering method only accounts for the 9 

codons with a single mutation relative to the wt codon, we also applied a count cut-off of 5 for all 

variants to reduce noise by excluding very low count data. 

Fitness Score Calculations 

The fitness score of each variant was calculated according to equation (1) (see main text). To 

calculate the fitness score of a given amino acid (or codon) variant, the read count of the variant 

was first normalized to frequencies within the non-selected or selected library group. Variants that 

exist in the non-selected library but disappear in the selected library were interpreted to have been 

removed by antibiotic selection, and were given a dummy count of 1 to emulate the minimum 

frequency observable for that variant. The frequency of the variant after selection was divided by 

the frequency of the same variant in the library grown without selection for an enrichment ratio; 

synonymous codon variants were also considered as variants rather than wt during scoring. The 

variant enrichment ratio was then normalized to the enrichment ratio of the wt. The final score was 

expressed in Log2 units, and scores were calculated separately across the 7 groups and separately 

for each replicate. 

When combining all data across the 7 groups, we subtracted the mean fitness scores of all 

synonymous variants in each group from all variants of that group to center the mean fitness of 

synonymous variants at a fitness score of 0. To combine scores from replicates, we simply 

averaged the fitness scores across the two replicates, and take the single score if only one replicate 

contained the variant above noise in the non-selected library. 
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Fitness effect classification 

To classify each amino acid variant as positive, neutral or negative for each of the three selection 

antibiotics, we use the score of each variant in a two tailed z-test on a normal distribution (null-

model) with the same mean and standard deviation as our synonymous distribution (244 

synonymous variants total). The p-values were then FDR corrected to an α of 0.05 using the 

Benjamini-Hochberg procedure; only missense variants were tested and the total number of tests 

was 5291. The variants with scores that are significantly different from the synonymous 

distribution after FDR correction are then classified as ‘positive’ if their score is greater than the 

synonymous mean and ‘negative’ if the score is less, while the remaining variants are classified as 

‘neutral’.  

Linear Model of DMS Scores with various predictors 

We generated a linear model in R using a combination of terms to try and find properties that best 

explain the behavior we see in the DMS fitness scores. Using the fitness score as a response, we 

tried using 1) wild-type (wt) amino acid 2) variant (var) amino acid 3) accessible surface area 

(ASA) of the residue calculated from the crystal structure of wt VIM-2 (PDB: 4bz3) using ASA 

view90 4) change in amino acid volume91 (Δvolume = volumevar-volumewt) 5) change in amino 

acid polarity (hydrophathy index92) (Δpolarity = Δpolarityvar – Δpolaritywt) 6) distance of the alpha 

carbon of each residue in the crystal structure to the active site water held between the Zn ions 7) 

Rosetta predicted stability change between the variant and the wt (ΔΔG = ΔGvar-ΔGwt) (also see 

“Rosetta ΔΔG Calculation” below) and 8) BLOSUM62 score for the substitution from wt to 

variant. Only variants from positions observable in the crystal structure were modelled (positions 

32 to 262), and synonymous variants were excluded. 
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All parameters were first modelled individually as predictors with DMS fitness score as the 

response, and the predictors with R2 higher than 0.10 are then modelled in combinations of two or 

more until the combination with the least predictors and the highest adjusted R2 was found. 

Predictors with R2 less than 0.10 are also retried in combination with the best predictors when 

optimizing for adjusted R2. Interaction between predictors were tested, but they did not improve 

adjusted R2 and were excluded for the sake of simplicity. The relative contribution of each term to 

the overall adjusted R2 were calculated using the R package ‘RelImpo’, using the ‘lmg’ method 93.  

The final equation of the linear model is shown in equation (9) where the fitness score of a given 

variant is the additive combination of the model intercept β0 and the various properties and the 

coefficients of the properties ( e.g. βASA and ASA ) plus a random error term ε.  

Fitness Score = β0 + βASA × ASA + βΔΔG × ΔΔG + βwt × wt + βvar × var + ε  (9) 

The categorical predictors wt and var are simplified in the equation and each is actually a collection 

of terms in the model, where every amino acid is a single binary term represented by 0 or 1 such 

that 1 indicates the presence of the amino acid. For example, the variant Q60V has Q = 1 for wt 

and V = 1 for var, while all other wt and var amino acids are set to 0. Ala is not present as one of 

the estimates in either wt or var, because they are used in calculating the intercept; this is the mean 

fitness of all data points where either wt = 1 or var = 1 for alanine.   

Rosetta ΔΔG calculation 

To estimate the effects of each VIM-2 variant on the stability of the protein, we used the Rosetta 

“ddg_monomer” application to calculate the folding energy of a monomeric protein crystal 

structure. Rosetta was run on the Compute Canada server Cedar using a Rosetta 3.8 installation. 

Following the ‘ddg_monomer’ documentation, the VIM-2 structure (PDB: 4bz3) was first 
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processed using ‘preminimize’ to pre-optimize the packing of the crystal structure and generate a 

constraints file. Then, all single amino acid variant structures and the wt structure at each position 

were simulated 50 times each using ‘ddg_monomer’, configured to protocol 16 as specified in 

Kellog et al. 201194 while using Talaris 2014 as the scoring function. We store the simulated 

structures (variant and wt) as PDB files and scored them using the Rosetta ‘score’ function with 

Talaris 2014 weights to obtain the predicted ΔG in Rosetta Energy Units (REU). We average the 

predicted ΔG of all 50 replicates of each variant or wt. The ΔΔG is calculated using equation (10) 

as the difference in average ΔG between variant and wt at the same position.  

    ΔΔG = ΔGvar-ΔGwt      (10) 

RNA folding energy calculation for single codon mutants 

The RNA folding energy contribution of the 5’ UTR and signal peptide region is calculated 

according to a previously described method59. The ΔG of folding of the 5’ UTR and signal peptide 

is calculated using equation (11). 

    ΔG1,118 = ΔG1,841 – ΔG119,841     (11) 

Each ΔG term is calculated using the NUPACK software package95, using the ‘pfunc’ 

program which calculates the ΔG of all RNA secondary structures from the partition function. All 

folding energies were calculated using default conditions, with [Na+] = 1 M and T = 37°C, and 

the results are in units of kcal mol-1. The subscripts for each ΔG term indicates the first and last 

nucleotide position in the transcript that is used for calculating the ΔG of folding, respectively. 

Thus, ΔG1,841 represents the calculated folding energy of the full transcript (including the 5’ UTR 

and coding region, but excluding the 3’ UTR), while ΔG119,841 is the folding energy of the transcript 

after the signal peptide. The interpretation of ΔG1,118 is that it is the folding energy contribution of 
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the RNA transcript up to the end of the signal peptide, including energy from non-local interactions 

with downstream parts of the transcript but excluding folding energy of interactions exclusively 

within positions downstream of the signal peptide. The DNA sequence of the wtVIM-2 transcript 

used to calculate the folding energies is shown below, with positions 1-118 italicized and the 

translated signal peptide region underlined for clarity; the sequence is converted to RNA for 

calculation. 

5’-

CTGATAAATGCTTCAATAATATTGAAAAAGGAAGCCCATGGGATTCAAACTTTTGAGTAAGT

TATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGCCCGCTCGCTTTTTCCGTAGA

TTCTAGCGGAGAATATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTA

CCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGT

CTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACA

GCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGG

ACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGT

TGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCT

AGCCGAGGTAGAGGGGAACGAGATTCCCACGCACTCTCTTGAAGGACTTTCATCGA

GCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATT

CGACCGACAACTTAATTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTG

CGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTG

AATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTC

ATTCCGGGGCACGGCCTGCCGGGCGGTCTTGACTTGCTCAAGCACACAACGAATGTT

GTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAA-3’ 

Equation (12) is used to calculate the ΔΔG of folding upon codon mutations in the signal peptide. 
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    ΔΔGsigpep RNA = (ΔG1,118 var - ΔG1,118 wt ) / (kT)   (12) 

ΔG1,118 wt is the folding energy of the wtVIM-2 signal peptide sequence shown above, while ΔG1,118 

var is the folding energy of the signal peptide sequence with a single codon mutation. The difference 

in folding energy is normalized to the thermal energy factor kT, where k = 0.0019872041 kcal mol-

1 K-1 and T = 310.15 K (37°C). 

Identification of critical residues and temperature dependence 

We classify the role of residues in wtVIM-2 by examining the DMS fitness scores of selection conducted 

at 128 µg/mL and 16 µg/mL AMP at 37°C and 25°C (4 data sets), excluding signal peptide residues 

1-26. Residues are classified as ‘essential’ when >75% of variants are below a fitness score of -

2.0 when selected at the least stringent condition of 16 µg/mL and 25°C. Residues are classified 

as ‘tolerant’ when >75% of variants are above a fitness score of -1.0 when selected at the most 

stringent condition of 128 µg/mL and 37°C. Residues are classified as ‘temperature dependent’ 

when the fitness score of 25°C selection is higher than 37°C selection of the same AMP 

concentration by at least 2.0, for two or more variants at either 128 µg/mL or 16 µg/mL. The 

‘temperature dependent’ classifications overwrite ‘essential’ or ‘tolerant’ classifications (4 

occurrences total). Residues that do not fall into the three other classifications are defined as 

‘residue dependent’. 

Detecting hydrogen bonds in the wtVIM-2 crystal structure 

Potential hydrogen bonding pairs in the wtVIM-2 crystal structure (PDB: 5yd7, chain A only) were 

extracted using the ‘Polarpairs’ script in PyMol (https://pymolwiki.org/index.php/Polarpairs). The 

script filters for pairs of h-bond donor and acceptor atoms within a defined distance and h-bond 

angle; we set the distance limit to be within 3.6 Å and the h-bond angle to be greater than 63°. The 

script returns atom indices, which were converted to PBD atom IDs using pymol’s built in 
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‘id_atom’ function. The atoms were then extracted from the 5yd7 pdb file using the atom IDs, and 

the atom’s name was used to determine if the h-bond was formed between backbone atoms only 

(‘N’ and ‘O’ atoms indicate backbone amides and carbonyls, respectively), between sidechain 

atoms only or between backbone and sidechain atoms. All extracted h-bonds can be found in 

Supplementary Data 7. 

Analysis of specificity variants  

We define variants with altered specificity by filtering for variants with a change in fitness effect 

classifications (positive, neutral and negative, defined in “Fitness effect classification”) as well as 

a fitness score difference of 2.0 between at least 2 of the 3 antibiotics being compared. 

Specificity positions are visualized on the wtVIM-2 structure (PDB: 5yd7) using PyMol, with 

substrates overlaid from aligned MBL homolog structures (AMP - NDM-1(PDB:4hl2), 

cefuroxime – NDM-1(PDB:4rl0), MEM – VIM-1 (PDB:5n5i)). To overlay the substrates, the 6 

metal binding residues (structure positions 114, 116, 118, 179, 198, 240 for VIM-1/VIM-2 and 

120, 122, 124, 189, 208, 250 for NDM-1) and the 2 active-site Zn ions were selected from each 

structure, and the PyMol ‘align’ function was used with the VIM-2 active-site as the target object 

and the other structure’s active-site as the mobile object. When structures have more than one 

chain (PDB: 5yd7, 4hl2 and 4rl0), only chain A was used in the alignment. The protein portions 

of the homolog structures are hidden after alignment, to visualize just the substrates with the 

wtVIM-2 structure. 

Collection of naturally occurring VIM variants 

Amino acid sequences of naturally observed VIM variants were extracted by performing a 

BLASTP search of the NCBI non-redundant protein database 96, using the protein sequence of our 

in-house VIM-2 with Gly removed from the 2nd position, identical to the VIM-2 discovered in 
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Pseudomonas aeruginosa isolates (UniProt accession: A4GRB6). We retained all BLASTP results 

with at least 70% identity and >90% query coverage. We also retrieved protein sequences from 

the Comprehensive Antibiotic Resistance Database (CARD) 62. All sequences from both sources 

were merged and sequences that are exactly identical in length and sequence were combined, while 

sequences that are less than 250 or greater than 290 residues were excluded. Recombinant variants 

VIM-12 and VIM-25 were excluded from this analysis, as well as VIM-14 (UniProt accession: 

Q6GUL7) which is a member of the VIM-1 clade despite being labelled as both VIM-11 and VIM-

14 (UniProt accession: A0SWU7) (both are in the VIM-2 clade). 

To identify all mutations different between wtVIM-2 and the 55 other variants, a multiple sequence 

alignment (MSA) was constructed using the MUSCLE method in MEGA 7 (version 7.0.26)97. 

Equivalent positions bearing a different amino acid from VIM-2 were identified as mutations, 

while deletions are ignored (1 in VIM-1, 1 in VIM-7, 4 in VIM-18). The MSA was also used to 

generate a maximum likelihood phylogenetic tree using MEGA 7 (default settings). The tree was 

used to identify separate VIM clades which were labelled using the VIM variant with the lowest 

number in the clade (VIM-1, VIM-2, VIM-7, VIM-13).  
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Figure 1. Deep mutational scanning (DMS) overview. (a) The workflow for DMS. All single amino 
acid variants are first generated using RF cloning, subsequently transformed into E. coli and then subject 
to selection for antibiotic resistance conferred to E. coli. The effects of selection (fitness score) were 
evaluated by deep sequencing and comparing the enrichment of each variant with and without selection. 
(b) Chemical structures of the antibiotics used in this study. (c) The dose-response growth curve of E. coli 

transformed with wtVIM-2, and an empty vector control for each antibiotic. The vertical dashed lines 
indicate antibiotic concentrations at which selections were performed in this study. 
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Figure 2. Quality control of DMS data and general mutational properties of VIM-2. In the horizontal 
panels, data is shown for (a) 128 µg/mL AMP selection, (b) 4.0 µg/mL CTX selection and (c) 0.031 µg/mL 
MEM selection. For each panel, the left plot shows correlation between fitness scores of all variants in the 
two replicates of DMS. The middle plot shows distribution of fitness effects for all variants separated into 
synonymous, missense and nonsense distributions, where the vertical grey lines indicates fitness score cut-
offs used to classify fitness effects as positive, neutral or negative. The right plot shows the relationship of 
DMS fitness scores with antibiotic resistance (EC50) of isolated variants measured in a dose-response curve; 
variants with resistance lower than the tested range could not be fitted for EC50, leading to 69 individually 
measured EC50 values for AMP, 67 for CTX and 75 for MEM—some points are the same codon or amino 
acid variant isolated multiple times. The filled rectangle in the background indicates the region of linear 
association between fitness scores and EC50. The legend in panel a) is shared by all panels.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.956706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956706
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.956706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956706
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Fitness of all VIM-2 single amino acid variants under 128 µg/mL AMP selection. Each cell in 
the heat map represents the fitness score of a single amino acid variant. Synonymous variants are indicated 
by black circles and variants that are not present in the library are in grey. The x-axis under the heatmap 
indicates the wt residue and position (the 6 active site metal binding residues are highlighted as circles), 
while the y-axis indicates the variant residue at that position. The secondary structure of the wtVIM-2 
crystal structure (PDB: 4bz3) is displayed below the heatmap.   
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Figure 4. Correlation of fitness with structural attributes. Fitness scores are from DMS at 128 µg/mL 
AMP selection. (a) Crystal structure of wtVIM-2 (PDB: 4bz3) colored by the average fitness of 20 amino 
acid mutations at each position. (b) The correlation between accessible surface area and the average 
fitness of 20 amino acid mutations at each position. (c) The correlation between the changes in folding 
energy predicted by Rosetta and the DMS fitness scores for all variants.  
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Figure 5. Conservation patterns and fitness scores in the signal peptide. (a) Sequence logo of the 
signal peptide region aligned across all VIM natural variants generated using WebLogo 
(https://weblogo.berkeley.edu/). Positions with two major naturally occurring residues are conserved 
differences between the VIM-1 and VIM-2 clades (clades are defined in Supplementary Fig. 6). (b) The 
distribution of fitness effects of all DMS variants, separated into signal peptide variants and catalytic 
domain variants. (c) DMS fitness scores of all variants at each position of the signal peptide. Synonymous 
variants of wtVIM-2 and conserved variants observed in the VIM-1 clade are highlighted as labelled 
circles. 
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Figure 6. Distribution of mutational tolerance and temperature dependence of wtVIM-2 residues. 

(a) Scatterplots comparing fitness scores under selection at 25°C and 37°C (128 µg/mL AMP). Variants 
within the classified positions are highlighted in dark blue while all variants are plotted in grey for 
reference. (b) Proportion of residues in the wtVIM-2 catalytic domain that have been classified into each 
behavioral category. (c-d) The wtVIM-2 crystal structure (PDB: 5yd7) is colored by the behavioral 
classifications, the active-site zinc ions are colored in green. (c) View of the inner core of wtVIM-2, with 
essential and temperature dependent residues depicted as spheres. (d) Cartoon representation of wtVIM-2 
with metal-binding residues shown as sticks.  
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Figure 7. Visualization of VIM-2 specificity determining positions. The wtVIM-2 crystal structure 
(PDB: 5yd7) is featured in all panels, with the active site Zn ions depicted as grey spheres. (a) Positions 
with at least one globally adaptive mutation are highlighted as orange spheres. (b) Positions classified as 
being responsible for specificity towards certain antibiotics in wtVIM-2 are color coded by antibiotic and 
highlighted as spheres. (c-e). Close-up views of the specificity residues in the active site with (c) 
hydrolyzed ampicillin (PDB: 4hl2), (d) cefuroxime (PDB: 4rl0) and (e) meropenem (PDB: 5n5i) from 
VIM-1 and NDM-1 structures that have been aligned to the wtVIM-2 structure using the active site 
residues. Residues are colored by the inferred substrate specificity as in b). Substrates are shown in stick 
and ball representation. 
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Figure 8. Behavior of natural VIM variants inferred from DMS fitness. (a) Maximum likelihood 
phylogenetic tree of all natural VIM variants examined in this study, colored by major clades (a larger 
version of the tree is presented in Supplementary Fig. 6). (b) Distribution of fitness for all unique 
individual mutations found in VIM natural variants compared to all missense variants measured in DMS 
for all 3 antibiotics. (c) All residues mutated in the natural variants are shown in sphere representation and 
colored by mutational tolerance and temperature dependence. The pie chart on the right shows the 
proportion of natural variant positions in each classification. (d) wtVIM-2 residues that are both mutated 
in at least one natural variant and affect specificity are highlighted as sticks, colored by the clade(s) in 
which the residue is mutated. 
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Table 1. Linear model output for DMS fitness scores under 128 µg/mL 

AMP selection   

          

Predictora Estimated effectb 
Adjusted P-value 

(α=0.05)c 

Variance 

explainedd 

(Intercept)e -1.73 < 0.001   
ASAf 2.83 < 0.001 21% 

Rosetta ΔΔGg -0.28 < 0.001 18% 

Starting(wt) residue 

C -1.53 < 0.001 

10% 

D -1.33 < 0.001 
E -0.53 < 0.001 
G -0.92 < 0.001 
H -1.09 < 0.001 
I -0.50 < 0.001 
L -0.43 < 0.001 
N -0.62 < 0.001 
R -0.35 0.001 
S -0.23 0.018 
V -0.36 < 0.001 

W -1.35 < 0.001 

Variant residue 

C -1.69 < 0.001 

5% D -0.40 0.002 
P -0.61 < 0.001 
W -0.45 < 0.001 

          
a) Each predictor indicates a class of wtVIM-2 derived values that were used as explanatory variables to 
model a linear relationship with the observed fitness score.  
b) The estimated effect is the predicted change in fitness score away from the intercept with a 1 unit 
increase in a continuous predictor or a binary change in a categorical predictor. 
c) P-values indicates whether a predictor makes a significant contribution to the change fitness score, and 
are adjusted for a false discovery rate of 5% using the Benjamini-Hochberg procedure. 
d) The adjusted R2 of each predictor when correlated with fitness, which is a measure of how much 
variation in the fitness score can be explained by each predictor in the linear model. 
e) The intercept is the average fitness of all variants where the continuous variable is 0 (ASA and Rosetta 
ΔΔG) and the wt or variant residue is Ala. 
f) ASA ranges from 0.0 to 1.0. 
g) Rosetta ΔΔG ranges from -5.0 to 5.0 Rosetta energy units 
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