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Abstract 16 

Social interaction between microbes can be described at many levels of details, ranging from the 17 

biochemistry of cell-cell interactions to the ecological dynamics of populations. Choosing the best 18 

level to model microbial communities without losing generality remains a challenge. Here we 19 

propose to model cross-feeding interactions at an intermediate level between genome-scale 20 

metabolic models of individual species and consumer-resource models of ecosystems, which is 21 

suitable to empirical data. We applied our method to three published examples of multi-strain 22 

Escherichia coli communities with increasing complexity consisting of uni-, bi-, and multi-23 

directional cross-feeding of either substitutable metabolic byproducts or essential nutrients. The 24 

intermediate-scale model accurately described empirical data and could quantify exchange rates 25 

elusive by other means, such as the byproduct secretions, even for a complex community of 14 26 

amino acid auxotrophs. We used the three models to study each community’s limits of robustness 27 

to perturbations such as variations in resource supply, antibiotic treatments and invasion by other 28 

“cheaters” species. Our analysis provides a foundation to quantify cross-feeding interactions from 29 

experimental data, and highlights the importance of metabolic exchanges in the dynamics and 30 

stability of microbial communities.  31 
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Significance statement 32 

The behavior of complex multispecies communities such as the human microbiome is hard to 33 

predict by its composition alone. Our efforts to engineer such communities would benefit from 34 

mechanistic models that accurately describe how microbes exchange metabolites with each other 35 

and how their environment shapes these exchanges. But what is the most appropriate level of 36 

details to model microbial interaction? We propose an intermediate level to model metabolic 37 

exchanges that accurately describes population dynamics and stability of microbial communities. 38 

We demonstrate this approach by constraining models with experimental data from three 39 

laboratory communities with increasing levels of complexity. Each model allows us to predict 40 

metabolic byproduct leakage fractions as well as how external perturbations such as nutrient 41 

variations or addition of antibiotics impact those communities. Our work paves the way to model 42 

real-world applications including precise engineering of the microbiome to improve human health.  43 
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Introduction 44 

Most microorganisms that affect the environments we live in1 and that impact our health2 do not 45 

live in isolation: they live in complex communities where they interact with other strains and 46 

species. The past decade has seen a surge of scientific interest in microbial communities, such as 47 

the human microbiome, but most studies remain limited to cataloguing community composition3. 48 

Our mechanistic understanding of how biochemical processes occurring inside individual 49 

microbial cells command the interactions occurring between cells, and lead to the emergent 50 

properties of multi-species communities remains limited4.  51 

Microorganisms consume, transform and secrete many kinds of chemicals, including 52 

nutrients, metabolic waste products, extracellular enzymes, antibiotics and cell-cell signaling 53 

molecules such as quorum sensing autoinducers5,6. The chemicals produced by one microbe can 54 

impact the behaviors of other microbes by promoting or inhibiting their growth7, creating multi-55 

directional feedbacks that drive ecological interactions which may be beneficial or detrimental to 56 

the partners involved8,9. 57 

If a community is well-characterized and given sufficient data on population dynamics, it 58 

should be possible to parameterize the underlying metabolic processes involved in microbe-59 

microbe interactions by fitting mathematical models10. Any model can potentially yield insights11, 60 

but the complexity of most models so far has been either too high for parameterization, or too low 61 

to shed light on cellular mechanisms. Microbial processes may be modelled across a range of 62 

details: At the low end of this spectrum of details we have population dynamic models such as 63 

generalized Lotka-Volterra (gLV)12 and Consumer-Resource (C-R) models13, which treat each 64 

organism as a ‘black-box’ at the cellular level. For example, C-R models assume a linear or Monod 65 

dependence of microbial growth on resource uptake kinetics. At the high end of this spectrum, we 66 
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 5 

have detailed single-cell models such as dynamic flux balance analysis (dFBA)14 and agent-based 67 

models15 that have too many parameters to be parameterizable by experimental data. For example, 68 

the linear equations for fluxes obtained from quasi-steady-state assumption of dFBA are highly 69 

underdetermined. What is the appropriate level of details to model and constrain microbial 70 

processes using data, that may produce not only accurate predictions but also mechanistic insights 71 

on microbial communities? 72 

Here we propose a generalizable framework that couples classical ecological models of 73 

population and resource dynamics with coarse-grained intra-species metabolic networks. We show 74 

that modeling communities at this intermediate scale can accurately quantify metabolic processes 75 

from population dynamics data alone. We demonstrate the value of this approach on three 76 

engineered communities of Escherichia coli (E. coli) strains with increasing levels of complexity: 77 

(1) unilateral acetate-mediated cross-feeding16, (2) bilateral amino-acid-mediated cross-feeding 78 

between leucine and lysine auxotrophs17, and (3) multilateral amino-acid-mediated cross-feeding 79 

between 14 distinct amino acid autotrophs18. The models report inferred leakage fractions of 80 

metabolic byproducts that are difficult to measure directly by experiments, reveal how resource 81 

supply and partitioning alter the coexistence and ecological relationships between cross-feeders, 82 

and predict the limits of community robustness against external perturbations. 83 

 84 

Results 85 

Modeling microbial metabolic processes at an intermediate level is appropriate to fit the 86 

population dynamics data. Inspired by the classical MacArthur’s CR models19 and many follow-87 

ups13,20–22, we propose to integrate CR models with a coarse-grained yet mechanistic description 88 

of cell metabolism. Metabolic reactions can be broadly classified as catabolic and anabolic, where 89 
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catabolic reactions break down complex substrates from culture media into smaller metabolic 90 

intermediates that can be used to build up biomass components by anabolic reactions. A minimal 91 

representation of cell metabolism is a three-layer network composed of growth substrates at the 92 

top, metabolic intermediates in the middle, and biomass at the bottom (Fig. 1). Despite its 93 

simplicity, this model is flexible enough to describe the transformation of resources into other 94 

resources or non-consumable chemicals and biomass, regardless of the specific reactions involved. 95 

Real cells can consume multiple nutritional resources that may be either substitutable or 96 

complementary for cell growth. Our model focuses on complementary resources for three reasons: 97 

(1) many microorganisms in natural samples are auxotrophs23 whose growth relies on 98 

complementary essential nutrients; (2) minimal medium—popular for cultivating microbial 99 

communities in laboratory conditions including the data analyzed in our study—is composed of 100 

complementary nutrients; (3) substitutable metabolites can be mathematically lumped into 101 

functional groups. 102 

Based on these assumptions, we developed a dynamic modeling framework that contains 103 

six kinds of biochemical reactions describing resource consumption, transformation, secretion, 104 

utilization for biomass synthesis, and inactivation (Supplementary Equations (S1)-(S6)). Briefly, 105 

substrates available in the growth media can be imported into cells. A certain fraction of the 106 

imported substrates is then broken down into metabolites, which can either be released back to the 107 

surrounding environment or used by cells for biomass production. Released metabolites can be 108 

imported by cells in a way similar to externally supplied substrates, except that their uptake may 109 

be inhibited by other substitutable substrates that are assumed to be preferentially used. To model 110 

the effects of toxic compounds24 we allow the growth rate of any cell population to be not only 111 

governed by a birth-death process that constantly produces and loses cell material due to 112 
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 7 

biosynthetic and maintenance processes respectively, but can be additionally inhibited by 113 

accumulation of toxic metabolites in the environment.  114 

The six types of reactions can be translated to differential equations by specifying their 115 

kinetic rate expressions. We assumed quasi-steady-state for intracellular substrates and 116 

metabolites, as metabolic reactions typically occur at faster time scales compared to ecological 117 

dynamics. The time-scale separation thus simplifies our model by excluding intracellular variables, 118 

leaving only three types of variables that describe the population density of active cells (𝑁! , 𝑙 =119 

1,2, ,⋯ , 𝑛" ), the extracellular concentrations of substrates ( [𝑆#], 𝑖 = 1,2,⋯ , 𝑛$ ), and the 120 

concentrations of metabolic byproducts excreted by cells ([𝑀%], 𝑗 = 1,2,⋯ , 𝑛&). Assuming a 121 

chemostat environment with dilution rate 𝐷 (which reduces to a batch culture when 𝐷 = 0), the 122 

differential equations associated with the three state variables are given below 123 

 𝑑[𝑆#]
𝑑𝑡 = 𝐷3𝑆',# − [𝑆#]5 −6𝐽!,#

)*+,,𝑁!

-!

!./

 (1) 

 𝑑𝑁!
𝑑𝑡 = 𝑁!3𝐽!

0123 − 𝐽!456+7 − 𝐷5 (2) 

 𝑑[𝑀%]
𝑑𝑡 = 𝐷3𝑀',% − 8𝑀%95 +63𝐽!,%

!568,9 − 𝐽!,%
)*+,95𝑁!

-!

!./

 (3) 

where 𝑆',#  and 𝑀',%  are the feed medium concentrations of substrate 𝑆#  and metabolite 𝑀% 124 

respectively. 𝐽!,#
)*+,, and 𝐽!,%

)*+,9represent uptake fluxes of substrates and metabolites respectively, 125 

𝐽!,%
!568,9are metabolite secretion fluxes, and 𝐽!

0123and 𝐽!456+7 stand for per-capita growth and death 126 

rates respectively. We used Monod kinetics and first-order kinetics for resource uptake (𝐽!,#
)*+,,and 127 

𝐽!,%
)*+,9) and cell death (𝐽!456+7) respectively, and obtained expressions for resource transformation 128 

into other resources (𝐽!,%
!568,9 ) and biomass (𝐽!

0123 ) by intracellular flux balance analysis. The 129 
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functional forms of these kinetic laws and other details of model formulation are described in 130 

Supplementary Texts 1.1.  131 

Experimental data can be used to determine the parameters of our model either manually 132 

(by visual inspection) or automatically (by optimization algorithms). In the examples below we 133 

applied a combination of automatic and manual calibrations, where the latter is arguably a 134 

subjective process and requires an experienced operator with prior knowledge to choose a set of 135 

parameter values that are physically and biologically realistic through a laborious trial-and-error 136 

process. For each application, the manual process of parameter estimation began with initial values 137 

of parameters selected to be either equal to their previously reported values or assumed to be of 138 

the same order of magnitude based on the literature data. This was followed by the iterative 139 

evaluation of model outputs and refinement until sufficient concordance between the model 140 

predictions and the experimental data is achieved.  141 

 142 

Fitting the model to microbial community data. We applied our framework to published 143 

datasets of two two-species communities with increasing level of complexity: a uni-lateral16 and a 144 

bi-lateral17 cross-feeding between laboratory evolved and engineered strains of E. coli respectively. 145 

Our goal was to manually parameterize the intrinsic metabolic processes relevant for the 146 

interactions between the community members, directly from time series data of community 147 

composition and experimentally measured metabolite concentrations. The number of metabolites 148 

essential for E. coli growth is estimated of the order of hundreds25. Therefore, we chose to include 149 

in our model as model variables only the metabolites known to mediate interpopulation 150 

interactions, together with the most limiting growth substrate. 151 
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 9 

The first community is a well-documented unilateral acetate-mediated cross-feeding 152 

polymorphism evolved from a single ancestral lineage of E. coli in laboratory conditions16 (Fig. 153 

2A, Supplementary Texts 1.2.1, and Supplementary Table 1). The community contains two 154 

polymorphic subpopulations (E. coli subspecies) whose metabolism differs in their quantitative 155 

ability to uptake and efflux carbon sources: a glucose specialist strain (CV103) which has a faster 156 

glucose uptake rate but cannot grow on acetate, and an acetate specialist strain (CV101) which can 157 

grow on acetate but has a lower glucose uptake rate. CV103 secretes acetate—a major by-product 158 

of its aerobic metabolism—and this way creates a new ecological niche for CV101. Fig. 2B-E 159 

shows that our model accurately reproduced the observed changes in growth and acetate 160 

concentration in both monoculture and coculture experiments over time. Particularly, we captured 161 

that the competition outcome depends on the acetate level in the feed medium (Fig. 2E), which 162 

can be explained by the positive nutritional effect of the acetate at low concentrations 163 

(Supplementary Fig. 1).  164 

The second community is characterized by a synthetic cross-feeding mutualism between 165 

lysine and leucine auxotrophs of E. coli17 (Fig. 2F, Supplementary Texts 1.3.1, and Supplementary 166 

Table 2). The two mutants differ only by single gene deletions in the lysine (DlysA) and leucine 167 

(DleuA) biosynthesis pathways. Neither mutant can grow in monoculture, but their coculture can 168 

survive by creating a bilateral dependency of two mutants cross-feeding each other missing 169 

essential amino acids. Fig. 2G, H show that our model was able to quantitatively recapitulate the 170 

growth and nutrient dynamics in both monoculture and coculture conditions. The fitted values of 171 

parameters reveal that the maximum growth rate of the lysine auxotroph is over 50% larger than 172 

that of the leucine auxotroph (Fig. 2I), which is consistent with the data showing that the 173 

biosynthesis of leucine is more costly than the biosynthesis of lysine18. Nonetheless, the parameters 174 
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 10 

also indicate that the mortality rate of the lysine auxotroph (about 20% of its maximum growth 175 

rate) is also substantially higher than that of the leucine auxotroph (Fig. 2J), which qualitatively 176 

agrees with cell viability experiments in the monoculture and absence of amino acid 177 

supplementation17. Since cell mortality rate is determined by the ratio of maintenance rate to 178 

nutrient recycling efficiency from dead cells26, this finding suggests that the lysine auxotroph has 179 

either or both of high maintenance cost and low biomass recovering yield. 180 

Comparison of these two cross-feeding models suggests that resource sharing between 181 

natural (CV103 and CV101) and engineered (DlysA and DleuA) cross-feeders can be markedly 182 

different. We predicted that the glucose specialist lost 33% carbon in acetate overflow resulting in 183 

nearly equal flux values between acetate secretion and glucose uptake, a quantitative relationship 184 

that has been observed in a different E. coli strain27. By contrast, the engineered interaction 185 

between the DlysA and DleuA is much weaker with only 0.3% and 1.4% carbon loss in releasing 186 

leucine and lysine respectively. Although the acetate-mediated cross-feeding may have been an 187 

incidental finding, the high efflux of acetate could facilitate adaptive co-evolution and 188 

accumulation of degenerative mutations16. 189 

 190 

Metabolic secretion fluxes modulate likelihood of genotypic coexistence. The stable 191 

coexistence of different genotypes is a prerequisite for mixed microbial communities. But how 192 

strong are the metabolic secretion fluxes necessary to maintain genotypic coexistence in the 193 

absence of metabolite supplementation? We leveraged the two cross-feeding models above to 194 

address this question by simulating cocultures in chemostats at varied levels of resource supply 195 

and partitioning, which independently and synergistically modulate the actual secretion flux values. 196 
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 11 

We constructed phase diagrams that show how the community composition at steady state 197 

has distinct patterns between the two cross-feeding systems (Fig. 3A,B). First, competitive 198 

exclusion does not occur when cross-feeding is obligate and bidirectional (Fig. 3B). Second, 199 

coexistence of the glucose and acetate specialists can be attained largely independent of glucose 200 

supply when the partitioning level, controlled by the acetate leakage fraction 𝜑:, is below a certain 201 

threshold (dashed yellow line in Fig. 3A). By solving the model analytically (Supplementary Texts 202 

1.2.2), we found that the threshold can be approximated by ∆𝑉0 = (𝑉;,0 − 𝑉/,0)/𝑉;,0, where 𝑉;,0 203 

and 𝑉/,0 are the maximum glucose uptake rates of the glucose and acetate specialists respectively. 204 

When 𝜑: > ∆𝑉0, the glucose specialist releases more acetate than the amount needed to help the 205 

acetate specialist overcome its basal growth disadvantage, causing a declining self-balancing 206 

capacity of population dynamics and reduced likelihood of coexistence. By contrast, coexistence 207 

of the lysine and leucine auxotrophs is only weakly constrained by the resource partitioning level, 208 

but ultimately determined by the total amount of resources put into the system (Supplementary 209 

Texts 1.3.2). 210 

Within the region of coexistence, the relative frequency of the acetate specialist increases 211 

continuously with the fraction of acetate leaked (Fig. 3A), whereas increasing the fraction of lysine 212 

leaked by the leucine auxotroph triggers a discontinuous, abrupt switch from a steady state 213 

dominated by the leucine auxotroph to a steady state dominated by the lysine auxotroph (Fig. 3B). 214 

Such abrupt, discontinuous regime shifts are a common feature of microbial communities limited 215 

by several essential nutrients28. Interestingly, growth of the dominant and rare auxotrophs are 216 

always limited by its auxotrophic amino acid and glucose respectively, which suggests an implicit 217 

negative feedback loop that maintains their relative abundance ratio before and after the switch: 218 

increasing population size of the dominant auxotroph impairs the growth of the rare auxotroph by 219 
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 12 

consuming more glucose but eventually, its own growth is inhibited because a smaller amount of 220 

amino acid it needs to grow can be produced by its partner. Taken together, our models show that 221 

the likelihood of coexistence can be modulated by varying the metabolic secretion fluxes, but the 222 

effect of varying those fluxes depends on the approach used to modulate the system (resource 223 

supply or partitioning) and the cross-feeding type (unilateral or bilateral). 224 

 225 

Environmental changes to nutrients can reverse the sign of microbial social interactions. 226 

Cross-feeding interactions within a microbial community may be described as social interactions 227 

with costs and benefits to the members involved29,30. Those costs and benefits may be altered by 228 

environmental perturbations that supply or remove the cross-fed metabolites form the environment. 229 

Using our community model, we investigated how the supplementation of metabolite mediators 230 

affected ecological relationships between cross-feeders at the steady state. We simulated 231 

chemostat cocultures at increasing levels of metabolite supplementation in the feed medium, and 232 

computed the net effect (+,0,-) of one population on the other by comparing to monoculture 233 

simulation. The pairwise ecological relationship between the two populations can then be 234 

determined by the signs of their reciprocal impacts31. 235 

The ecological relationship between the glucose and acetate specialists was displayed on a 236 

2-dimensional phase space spanned by the feed medium concentrations of glucose and acetate (Fig. 237 

4A). The entire space is divided into six distinct regions with diverse outcomes, including 238 

population collapse, competitive exclusion, and stable coexistence. Notably, it is very difficult to 239 

select supplementation resulting in stable coexistence. This is because, as explained above, the 240 

inferred value of 𝜑: (0.33) is much greater than that of ∆𝑉0 (0.12). The remaining diversity of the 241 

phase space structure is primarily driven by the dose-dependent effect of acetate24: it serves as a 242 
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nutrient for the acetate specialist at low concentration but becomes inhibitory to growth of both 243 

strains when abundant (Supplementary Fig. 1). To illustrate this effect, we increased glucose 244 

supplementation from P1 to P3 (gray dots in Fig. 4A) in the phase space, which induced higher 245 

release of acetate to environment (Fig. 4B, top row) and switch of winners of the coculture 246 

competition (Fig. 4B, middle row). The glucose specialist wins the competition at P1 because 247 

acetate level is too low to compensate the growth disadvantage of the acetate specialist. From P1 248 

to P2, acetate concentration exceeds the threshold level of compensation and thus supports faster 249 

growth of the acetate specialist. Further increase of acetate concentration to P3 inhibits both strains, 250 

among which the acetate specialist is more susceptible (Fig. 4B, bottom row; see also Fig. 2D): 251 

therefore, the glucose specialist wins again when the negative inhibitory effect of acetate 252 

outweighs its positive nutritional effect on the acetate specialist. 253 

 Compared to unilateral cross-feeding, new ecological relationships such as mutualism and 254 

parasitism emerges in the phase space when cross-feeding is bidirectional (Fig. 4C). The 255 

mutualistic relationship was maintained over a broad range of supplied amino acid concentrations, 256 

even though amino acid supplementation releases the dependence of one auxotroph on the other 257 

and is hence detrimental to mutualism. In the regime of mutualism, glucose is in excess and both 258 

strains are limited by the essential amino acids they cannot produce (Fig. 4D, left column). Further 259 

addition of amino acids leads to strain dominance, but not necessarily competitive exclusion. The 260 

lysine auxtroph was excluded when leucine was provided to release the leucine auxotroph from its 261 

growth dependence (Fig. 4D, middle column), whereas adding lysine only reduced the relative 262 

abundance of the leucine auxotroph, rather than leading to the loss of its entire population (Fig. 263 

4D, right column). 264 
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Amino acid supplementation may lead to competitive exclusion or parasitism depending 265 

on whether one or both auxotrophs are limited by glucose. When glucose limits both auxotrophs, 266 

the leucine auxotroph wins because it has the same growth rate as the lysine auxotroph on glucose 267 

but lower death rate (Fig. 2I,J). When only the lysine auxotroph is limited by glucose, the leucine 268 

auxotroph can sustain its population by occupying a different niche and growing on leucine 269 

released by its competitor. Regardless of the outcome, our results suggest that adding cross-fed 270 

nutrients can induce competition between community members that previously interacted 271 

mutualistically, and shift positive interactions to negative interactions. 272 

 273 

Uncovering complex cross-feeding interactions between 14 amino acid auxotrophs. Next we 274 

demonstrated the utility of our model to study cross-feeding interactions within communities of 275 

more than two members. We modeled a community of 14 amino acid auxotrophs engineered from 276 

E. coli by genetic knockout18. The 14-auxotroph model was directly extended from our 2-277 

auxotroph model (Supplementary Texts 1.4.1) by considering each auxotroph can potentially 278 

release all other 13 amino acids to the shared environment. Although all feeding possibilities are 279 

known, the consumer feeding preferences are not. By fitting experimental data on the population 280 

compositions we aimed to infer the unknown feeding pattern—what amino acids and how much 281 

they are released by each auxotrophic strain to feed each other. 282 

The model constructed this way has a total of 269 parameters; 50 of these parameters are 283 

either biological constants or can be obtained from the literature (Supplementary Table 3). From 284 

the remaining parameters, the 196 unknown amino acid leakage fractions (14 auxotroph by 14 285 

amino acids) can be easily estimated by automatically minimizing the least square error between 286 

observed fold changes of population density in all pairwise batch cocultures (196 data points in 287 
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total) and their analytical, rather than simulated, solutions after model simplication 288 

(Supplementary Texts 1.4.2). 289 

Outcompeting a simple population dynamics model (Fig. 5A, Pearson’s correlation 290 

coefficient = -36.06%), our fit gave an excellent match to the data (Fig. 5B, Pearson’s correlation 291 

coefficient = 94.32%), except for cross-feeding pairs whose observed fold change values are less 292 

than 1. The observed reduction of growth fold changes may be caused by cell death in the absence 293 

of nutrients but practically, we assumed no cell death (so simulated growth fold changes are always 294 

non-decreasing) because measurement of optical density at low inoculation amount (107 cells/mL) 295 

is highly noisy and we are unable to distinguish between the two factors. Clearly, the 14 auxotrophs 296 

derived from the same wild-type strain showed different profiles of amino acid leakage (Fig. 5C): 297 

some auxotrophs such as the methionine auxotroph DM (36.41% total carbon loss) are highly 298 

cooperative whereas others such as the tryptophan auxotroph DW (1.37% total carbon loss) have 299 

very low cooperativity. 300 

 The remaining 20 free parameters, among which 14 are death rate constants, were obtained 301 

by manually selecting a set of values that fit the population dynamics of serially diluted cocultures 302 

of all 14 auxotrophs and four selected 13-auxotroph combinations (Fig. 5D). The fit is reasonably 303 

good at the log scale, except for the DM-absent community which seems to undergo non-ecological 304 

processes that rescue the threonine auxotroph (DT) from the brink of extinction between day 2 and 305 

day 3. Quantitatively, the Pearson’s correlation coefficients between log10-transformed observed 306 

and predicted values are 88.71% (all 14 auxotrophs), 75.30% (DK-absent), 78.34% (DR-absent), 307 

52.93% (DT-absent), and 8.90% (DM-absent). Most auxotrophs were diluted away very quickly 308 

but some exhibited transient recovery dynamics after the initial decay. For example, population 309 

density of the isoleucine (DI) auxotroph had an initial drop because the isoleucine pool had not 310 
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been accumulated to a critical size that allows the actual growth to compensate for mortality and 311 

dilution. As the pool size increases, its net growth rate (growth minus mortality) surpasses the 312 

dilution rate and recovers its population density, which eventually levels off when the positive and 313 

negative forces reach equilibrium. By fitting the population density dynamics, we concomitantly 314 

inferred the concentration dynamics of glucose and all amino acids (Supplementary Fig. 3), which 315 

are hidden states (not yet observed) that are relatively costly and inaccurate to measure in 316 

experiments.  317 

 318 

Cross-feeding network is prone to collapse upon external perturbations. By simulating the 319 

14-auxotroph community model to steady state, we predicted that the initial mixture converges to 320 

a stable coexisting subset that contains 4 auxotrophs that are deficient in biosynthesis of isoleucine 321 

(DI), lysine (DK), methionine (DM), and threonine (DT) (Fig. 6A). The predicted coexistence state 322 

was successfully validated by two independent observations over 50-day serial dilution18, a much 323 

longer period of time than the duration of the training dataset (7-day serial dilution; Fig. 5D). The 324 

predicted resource-consumer relationships of the stable subset are shown in a bipartite network 325 

(Fig. 6B), where 3 amino acid secretion fluxes were identified as essential (solid arrows) as their 326 

deletions resulted in strain loss (Supplementary Fig. 4). These essential fluxes suggest that the 327 

primary feeders for DK, DM, DT are DT, DI, DM respectively; however, none of DK, DM, DT 328 

dominates the feeding of DI and their contributions to the isoleucine pool in the environment are 329 

substitutable. 330 

We computationally tested how external perturbations, including nutrient downshift, the 331 

addition of antibiotics, and invasion of cheating phenotypes (the same auxotrophic dependence but 332 

no amino acid leakage) affect the stability of coexistence among the 4 auxotrophs (see Methods). 333 
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The 4-strain community was able to cope with these disturbances to a certain extent and remained 334 

integrated. Beyond the thresholds, all three perturbation types resulted in community collapse as a 335 

result of domino effect (Fig. 6C-E), implying that tightly coupled cooperative communities are 336 

fragile and prone to collapse. Since antibiotics inhibit growth of individual strains (targeting 337 

consumer nodes in the bipartite network) while cheaters are amino acid sinks (targeting resource 338 

nodes in the bipartite network), we identified that DT and methionine as the weakest consumer 339 

node (Fig. 6D) and resource node (Fig. 6E) in the bipartite network respectively. Our results 340 

suggest that DTàK (secretion of lysine by the threonine auxotroph) and MàDM (uptake of 341 

methionine by the methionine auxotroph)—the outgoing links from the two weakest nodes that 342 

are also essential to maintain community integrity—are the weakest metabolic fluxes that may set 343 

the resistance level of the community to external perturbations32. 344 

 345 

Discussion 346 

Predicting  population dynamics from the interactions between its members is difficult 347 

because interactions can happen across multiple scales of biological organization33. Here we 348 

propose a coarse-grained yet mechanistic ecology model and show that it may accurately quantify 349 

the metabolic exchanges underlying cross-feeding interactions in well-defined laboratory 350 

communities. Previous studies have used the metabolic flux analysis, but these studies required 351 

flux measurements by isotope tracing and metabolomics to fit the adjustable flux parameters in a 352 

stoichiometric metabolic model. Some success was also achieved by fitting the time series data 353 

with simple ecological models34–38 such as the gLV equations; however, in gLV-type models, 354 

interspecific interactions are phenomenologically defined based on density dependency, which 355 

gives no mechanistic understanding of how interactions occur39. By contrast, our model has 356 
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explicit formulations of context dependency by representing the chemical flows within and 357 

between microbes and thus can explain the metabolic part of microbe-microbe interactions. 358 

When we have limited prior knowledge and data on a given community it becomes critical 359 

to choose the right level of details. We show that a highly detailed metabolic network is not 360 

necessary for developing useful ecological models. In single-bacteria studies, coarse-grained 361 

metabolic models have been employed to understand the design principles of metabolic networks 362 

and their regulation40, as well as to predict metabolic flux distributions useful for synthetic 363 

biology41 and industrial42 applications. Compared to genome-scale models, using coarse-grained 364 

models linking ecology and metabolism is simple but rarely done until recently22. Depending on 365 

the research question, a coarse-grained metabolic network can be created at any level of granularity 366 

from a single reaction to the complete genome-scale reconstruction. The choice of granularity and 367 

how to derive a simpler model from the more complex one are usually empirical but can be 368 

facilitated by more systematic approaches to reduce dimensionality. 369 

Our model could extract new insights from previously published empirical data. The 370 

analysis shows that unidirectional cross-feeding is equivalent to a commensalism and bidirectional 371 

cross-feeding is equivalent to a mutualism. As shown by our study (Fig. 4) and previous work24,29, 372 

the actual relationship between cross-feeders, however, can be diverse in even simple and constant 373 

environments (e.g., glucose minimal medium) due to a combination of positive effects of cross-374 

feeding with negative effects of competition and toxicity of cross-fed metabolites, suggesting that 375 

the exact outcome cannot be precisely delineated by the cross-feeding type alone. Moreover, 376 

mechanistic models can help identify knowledge gaps43. For example, recent experiments have 377 

demonstrated that the coexistence of two carbon source specialists in the unilateral cross-feeding 378 

example is mutualistic in the sense that the consortium is fitter than the individuals44. The syntropy 379 
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can be explained by a null expectation from theoretical ecology models45: the glucose specialist 380 

provides acetate in an exchange for a service provided by the acetate specialist which scavenges 381 

the acetate down to a level at which growth inhibition is insignificant. Although we thoroughly 382 

considered the mechanism of resource-service exchange, additional features of our model and/or 383 

the use of data-consistent parameter values did not support mutualistic coexistence in any 384 

environmental condition we tested (however, competitive coexistence is possible). The 385 

discrepancy suggests that our model and even the classical resource-service exchange theory have 386 

missed some qualitative or quantitative details that are the key to understanding of syntrophic 387 

mechanisms in this specific example. 388 

What could we have missed? Since mutualism occurs when the reciprocal benefits 389 

associated with cross-feeding outweigh competitive costs46, our model should logically predict 390 

either or both of lower benefits and higher costs than the null expectation from simpler models. In 391 

the classical theory of syntropy, it is typically assumed that leaking chemicals are by-products 392 

which are inhibitory to producers but beneficial to consumers45. Since acetate was shown to inhibit 393 

growth of both cell types (Fig. 2D) and acetate specialist (the consumer) is more sensitive, its 394 

population density may be insufficient to reward the glucose specialist to a level that allows 395 

benefits higher than costs. On the other hand, costs are potentially similarly high since both cell 396 

types are polymorphic and share similar glucose uptake kinetics. We estimated that the relative 397 

difference in their maximum growth rates is 12%, which is much smaller than the observed value 398 

in experiments (33%)16. This quantitative difference may be important considering that the 399 

competition is stronger between populations with similar nutrient acquisition strategies. Recently, 400 

it was theoretically proposed that controlled metabolic leakages optimize resource allocation and 401 

can be beneficial to producers even under nutrient limitation47. We speculate that in case where 402 
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acetate overflow improves, rather than negatively impacts, the growth of producers, the likelihood 403 

of forming a mutualistic pair between two cell types would be much higher. Overall, the cost-404 

benefit nature of the cross-feeding interaction between polymorphic E. coli strains is more 405 

complex than thought before and warrants further research. 406 

So far, the current framework has been applied to well-characterized communities with 407 

known chemicals and associated interactions. Can it be applied to infer community structure of 408 

complex microbiomes (e.g., human gut microbiome) where most of the metabolic exchanges 409 

involved in microbe-microbe interactions are still unknown? Our model has the potential if some 410 

technical challenges can be solved. First, direct modeling of a real-world microbiome with 411 

hundreds of species would be hurdled by too many unknown kinetic parameters. One way to solve 412 

this problem is to simply ignore the rare species35. Another—arguably better—approach might be 413 

by grouping species composition into functional guilds using unsupervised methods that infer 414 

those groups from the data alone48, or to use prior knowledge from genomics or taxonomy to create 415 

such functional groups. Second, inferring chemical mediators within a community of interacting 416 

populations is a nontrivial task. It can be facilitated by prior knowledge such as searching the 417 

literature or leveraging systems biology tools such as community-level metabolic network 418 

reconstruction49. Finally, our model is nonlinear, so that an efficient and robust nonlinear 419 

regression approach for parameter estimation is essential. Manual parameter selection is often the 420 

only possible approach for small datasets like the experimental systems we analyzed here. Indeed, 421 

non-linear optimization algorithms often fail to converge to a realistic set of parameters. Although 422 

we chose the manual method to calibrate our models in this proof-of-concept study, manual fitting 423 

requires an expert operator and is a time‐consuming process, which for now precludes it from 424 

being applied to large-scale microbial communities. On the positive side, the process of trial-and-425 
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error was greatly improved by the speed at which the intermediate-scale model runs simulations 426 

on a regular desktop computer. Beyond these technical issues, the model itself can be extended in 427 

multiple ways such as incorporating mechanisms of resource allocation and non-metabolite-428 

mediated interactions and, despite any present limitations, we anticipate that network inference 429 

using mechanism-explicit models can open new avenues for microbiome research towards more 430 

quantitative, mechanistic, and predictive science. 431 

 432 

Methods 433 

General. The modelling framework was developed by integrating a classical ecology model for 434 

population and nutrient dynamics and a coarse-grained description of cell metabolism. Custom 435 

MATLAB (The MathWorks, Inc., Natick, MA, USA) codes were developed to perform 436 

computational simulations and analyses of all three cross-feeding communities. Parameter values 437 

were obtained from either literature or a combination of manual and automatic data fitting. See 438 

Supplementary Information for a detailed description of the general modeling framework, the 439 

specific models for each of the three communities, as well as their theoretical analyses. 440 

 441 

Simulation. Deterministic trajectories and their steady states in batch and chemostat conditions 442 

were simulated by solving the differential equations from the beginning to the end. Simulations of 443 

serial dilution transfer were slightly different in the aspect that the equations were only integrated 444 

within each day. The initial condition at the beginning of a day was obtained by dividing all 445 

population densities and nutrient concentrations at the end of the previous day by the dilution 446 

factor and resetting the feed medium glucose concentration to its initial value at day 0. 447 

 448 
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Network perturbation. External perturbations were exerted upon the steady state of the 4-449 

auxotroph community. Nutrient downshift was simulated by decreasing the feed medium 450 

concentration of glucose at time 0. The effects of antibiotics targeting amino acid auxotroph 𝑖 was 451 

simulated by multiplying the growth rate of the auxotroph by an inhibitory term, i.e., 𝐽#
0123 →452 

𝐽#
0123 (1 + [𝐴]/𝐾#)⁄ , where [𝐴] is the antibiotic concentration and 𝐾# is the inhibition constant. 453 

We assumed antibiotic concentration remains constant and chose 𝐾# = 1	𝜇𝑀. The cheaters of each 454 

amino acid auxotroph were simulated by turning off all amino acid leakages of the auxotroph. 455 

They were mixed with the resident community in varying ratios at the beginning of simulation. 456 

For all three perturbation types, the feed medium glucose concentration is 0.2 wt% in the 457 

unperturbed condition and serial dilution was run to steady state at 60 days. 458 

 459 
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The source codes for simulations of the three cross-feeding communities are available from 471 

https://github.com/liaochen1988/coarse-grained-ecology-models-for-microbial-community. 472 
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Figure Legends: 581 

 582 

Figure 1 | Schematic diagram illustrating our model and its potential applications in 583 

microbial ecology research. A distinguishing feature of our microbial community model is that 584 

each community member harbors a coarse-grained metabolic network. Briefly, the metabolic 585 

network transforms substrates (S) to byproduct metabolites (M1, M2) and then to biomass whose 586 

production rate is set by the supply flux of the most limiting resource among all substrates and 587 

metabolites. For simplicity, the network is visually illustrated using one substrate and two 588 

metabolites but it can be extended to any number of molecules. Enabled by the simplified 589 

metabolic network, different community members can interact through a variety of mechanisms, 590 

including exploitative competitions for shared substrates, cooperative exchanges of nutritional 591 

metabolites, and direct inhibition by secreting toxic metabolites. Using training data from batch, 592 

chemostat or serial dilution cultures, our model can be parameterized to infer microbial processes 593 

underlying the data and then used to explore ecological questions and generate testable predictions. 594 

Pointed arrows denote the material flow and blunt-end arrows represent growth inhibition.  595 
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 596 

Figure 2 | Model validation using two simple cross-feeding ecosystems. (A-E) Unilateral 597 

acetate-mediated cross-feeding. (A) Schematic diagram of the model. The glucose specialist 598 

(CV103) and acetate specialist (CV101) are two E. coli mutants with different metabolic 599 

strategies16: the glucose specialist has improved glucose uptake kinetics while the acetate specialist 600 

is able to use acetate as an additional carbon source. At high concentrations the acetate inhibits the 601 

growth of both strains and its uptake by the acetate specialist strain is weakly repressed by the 602 

glucose. We assume that glucose and acetate are fully substitutable resources and simplify the 603 

model by limiting bacterial growth dependence to acetate alone (indicated by dashed lines; see 604 

experimental support of this hypothesis in Supplementary Texts 1.2.1). (B-E) Manual model 605 

calibration. Circles: experimental data; lines: simulations. (B,C) 0.1% glucose-limited batch 606 

monoculture without supplementing acetate16. (D) 0.0125% glucose-limited batch monoculture 607 
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supplemented with different concentrations of acetate50. (E) 0.00625% glucose-limited chemostat 608 

(dilution rate: 0.2 h-1) coculture with (1 mM) and without acetate supplementation16. (F-J) Bilateral 609 

amino-acid-mediated cross-feeding. (F) Schematic diagram of the model. The E. coli lysine 610 

auxotroph (DK) and leucine auxotroph (DL) compete for glucose while additionally acquiring 611 

essential amino acids from each other. Growth of each auxotroph is determined by the more 612 

limiting resource between glucose and the amino acid it needs to grow. (G,H) Manual model 613 

calibration. Circles: data; lines: simulation. (G) 2 g/L glucose-limited batch monoculture 614 

supplemented with 10 mg/L amino acids17. (H) 2 g/L glucose-limited batch coculture without 615 

amino acid supplementation. (I,J) Inferred maximum growth rate when all limiting nutrients are 616 

supplied in excess (I) and death rate (J) of DK and DL strains.  617 
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 618 

Figure 3 | Impacts of resource supply and partitioning on coexistence of cross-feeders. Steady 619 

state compositions of the unilateral (A) and the bilateral (B) cross-feeding communities are shown 620 

for varied levels of resource supply and partitioning. In (A), ∆𝑉0 represents the relative difference 621 

in maximum glucose uptake rates between the glucose and acetate specialists, and gives the 622 

theoretical threshold of acetate leakage fraction above which the region of coexistence shrinks 623 

substantially. In (B), the leucine leakage fraction 𝜑∆=,> was fixed at 0.5 and the lysine leakage 624 

fraction 𝜑∆>,= was varied. Supplementary Fig. 2 shows that the symmetric choice that fixes 𝜑∆>,= 625 

and varies 𝜑∆=,> does not change the pattern of coexistence. All chemostat simulations were run at 626 

the dilution rate of 0.1 h-1. CV103: glucose specialist; CV101: acetate specialist; DK: lysine 627 

auxotroph; DL: leucine auxotroph. 628 

 629 
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 630 

Figure 4 | Impacts of nutrient supplementation on ecological relationships between cross-631 

feeders. Steady state compositions (A,C) and representative system dynamic trajectories (B,D) of 632 

the unilateral (A,B) and the bilateral (C,D) cross-feeding communities are shown for different 633 

levels of nutrient supplementation. In (B), acetate toxicity was defined as the ratio of growth rates 634 

between the presence and the absence of acetate. In (D), DGR was defined as the growth rate 635 

difference between amino-acid-limiting and glucose-limiting conditions. A positive or negative 636 

value of DGR indicates that cell growth is limited by glucose or amino acid respectively. The 637 

dilution rates used to run chemostat simulations of the unilateral and bilateral cross-feeding 638 

communities are 0.2 and 0.1 h-1 respectively. CV103: glucose specialist; CV101: acetate specialist; 639 

DK: lysine auxotroph; DL: leucine auxotroph. 640 

 641 
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 642 

Figure 5 | Modeling a consortium of 14 amino acid auxotrophs. (A,B) Comparison of fold 643 

changes in observed18 and simulated cell densities in batch coculture of all possible pairwise 644 

combinations of 14 E. coli amino acid auxotrophs. The population dynamics model and its 645 

associated parameters were adopted from Mee et al.18. (C) Predicted amino acid leakage profiles 646 

for the 14 auxotrophs. Each value in the matrix describes the fraction of carbon loss due to release 647 

of the amino acid in the row by the auxotroph in the column. (D) Comparison of the observed18 648 

(circles) and the simulated (lines) population dynamics in 7-day 100-fold serial dilution of one 14-649 

auxotroph and four 13-auxotroph communities. Abbreviations: cysteine auxotroph (DC), 650 

phenylalanine auxotroph (DF), glycine auxotroph (DG), histidine auxotroph (DH), isoleucine 651 

auxotroph (DI), lysine auxotroph (DK), leucine auxotroph (DL), methionine auxotroph (DM), 652 
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proline auxotroph (DP), arginine auxotroph (DR), serine auxotroph (DS), threonine auxotroph (DT), 653 

tryptophan auxotroph (DW), and tyrosine auxotroph (DY).  654 
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 655 

Figure 6 | Collapse of mutualistic cross-feeding network following external perturbations. (A) 656 

Emergence of stable coexistence of a four-auxotroph subset (DI, DK, DM, DT) over 50 daily 657 

passages. The two replicates of experimental observations were adopted from Mee et al.18. We 658 

used the same simulation parameters as in Fig. 5D except for a longer simulation time. See Fig. 5 659 

legend for abbreviations of the names of amino acid auxotrophs. (B) Predicted bipartite interaction 660 

network of the subset. The network contains resource nodes (I, K, M, T for isoleucine, lysine, 661 

methionine, and threonine respectively) and consumer nodes (DI, DK, DM, DT are their 662 

corresponding auxotrophs), and each directed link describes a resource-consumer relationship. (C-663 

E) External perturbations, including decreasing nutrient concentration (C), increasing antibiotic 664 

concentration (D), and introducing noncooperative cheaters (E), result in an abrupt collapse of the 665 

community when the perturbation level exceeds a certain threshold.  666 
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