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Abstract 1 

Testing the effect of rare variants on phenotypic variation is difficult due to the need for 2 

extremely large cohorts to identify associated variants given expected effect sizes. An alternative 3 

approach is to investigate the effect of rare genetic variants on low-level genomic traits, such as 4 

gene expression or DNA methylation (DNAm), as effect sizes are expected to be larger for low-level 5 

compared to higher-order complex traits. Here, we investigate DNAm in healthy ageing populations - 6 

the Lothian Birth cohorts of 1921 and 1936 and identify both transient and stable outlying DNAm 7 

levels across the genome. We find an enrichment of rare genetic variants within 1kb of DNAm sites 8 

in individuals with stable outlying DNAm, implying genetic control of this extreme variation. Using a 9 

family-based cohort, the Brisbane Systems Genetics Study, we observed increased sharing of DNAm 10 

outliers among more closely related individuals, consistent with these outliers being driven by rare 11 

genetic variation. We demonstrated that outlying DNAm levels have a functional consequence on 12 

gene expression levels, with extreme levels of DNAm being associated with gene expression levels 13 

towards the tails of the population distribution. Overall, this study demonstrates the role of rare 14 

variants in the phenotypic variation of low-level genomic traits, and the effect of extreme levels of 15 

DNAm on gene expression.  16 
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Introduction 17 

DNA methylation (DNAm) is involved in the regulation of gene expression [1-3], as well as 18 

genomic imprinting [4], X-chromosome inactivation [5] , and the maintenance of genomic stability 19 

during mitosis and cell differentiation [6-8]. Variation in DNAm has been associated with many 20 

diseases, in particular cancers [9, 10], but also common disease [11] such as Parkinson’s disease [12], 21 

and rheumatoid arthritis [13]. Both genetic [14, 15] and environmental [16-18] factors are highly 22 

influential to the variation in DNAm levels across the genome. Studying the genetic architecture of 23 

DNAm can help us to understand the genetic control of DNAm and potential mechanisms through 24 

which genetic variants can affect complex traits via effects on DNAm. 25 

Variation in DNAm levels is known to be under partial genetic control; a family based study 26 

estimated the average heritability of DNAm levels to be ℎ2̅̅ ̅~19% [15], whilst another study 27 

estimated the average SNP-based heritability to be ℎ𝑆𝑁𝑃
2̅̅ ̅̅ ̅̅ ~21% [19]. DNA methylation quantitative 28 

trait loci (mQTL) analyses have discovered many associations between common genetic variants and 29 

DNAm levels across the genome [14, 19-22]. Regional control of DNAm has been observed in regions 30 

of up to 3kb, through shared mQTL and correlations between DNAm levels across the region [14, 31 

23], while a Bayesian co-localisation study found evidence for a shared genetic effect between 32 

~282,000 pairs of CpG-sites at a median distance of ~110kb [22]. Overlap between mQTL and gene 33 

expression QTL (eQTL) has also been observed [14, 21], with genetic variants found to affect DNAm 34 

and gene expression levels pleiotropically [22, 24]. These observations point towards a possible 35 

mechanism through which genetic variants can alter gene expression levels via underlying 36 

differences in DNAm levels in a region.  37 

Rare genetic variation has been shown to be important in the genetic architecture of complex 38 

traits, and gene expression [25-28]. Difficulties in studying the effect of rare variants reflect lack of 39 

power in traditional genome-wide association studies (GWAS) [29, 30]. Very large sample sizes are 40 

needed to detect statistically significant associations with rare variants given empirical estimated 41 
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effect sizes. Various statistical methods have been developed to detect rare variant associations, 42 

gaining power by aggregating the effects of multiple rare variants, or looking for unusual variances in 43 

the effect sizes of rare variants in a region [31-37]. Using one of these rare variant association tests, 44 

there has been evidence of effects from rare variants on DNAm levels, even when there is no 45 

common variant association at the relevant CpG-site [38]. Rare variants have also been found to be 46 

enriched near the transcription start site (TSS) of genes in individuals with outlying levels of gene 47 

expression, particularly in those individuals with outlying levels of gene expression across multiple 48 

tissue types [27]. Other studies have found that the number of rare alleles within a region of the TSS 49 

of genes is on average higher in those individuals with lower, or higher levels of methylation than 50 

the population average, in both humans [39] and maize [40]. These rare variants are likely to be in 51 

promoter regions; hence, it is possible that they affect the DNAm levels in CpG-islands, which can 52 

have an effect on the gene expression levels [1, 41].  53 

In this study, we investigate the effect of rare genetic variation on DNAm levels across the 54 

genome, and how DNAm levels may affect gene expression levels at nearby genes. We hypothesise 55 

that, similar to the association found between rare variants and outlying gene expression levels [27, 56 

39, 40], there are associations between rare variants and outlying levels of DNAm. Outliers in DNAm 57 

have been associated with common diseases such as motor neurone disease [42] and type I diabetes 58 

[43], understanding the underlying mechanisms may help in determining the genetic etiology of 59 

these associations. In addition, CpG-sites are known to be highly mutable, with the mutation rate at 60 

CpG-sites estimated to be one order of magnitude higher than anywhere else in the genome, which 61 

results in an enrichment of mutations at CpG-sites in the genome [44, 45]. Knowing how mutations 62 

at CpG-sites will affect DNAm and gene expression levels in the genome may also be important for 63 

understanding the genetic etiology of complex trait diseases and cancers.  64 
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Results 65 

 66 

An overview of the methods used in this study, with the different data available to us is given in 67 

Figure 1.  68 

Detecting genome-wide genetic effects on DNA methylation 69 

Using whole genome sequencing data and DNA methylation measures from the Illumina 70 

Infinium HumanMethylation450 array for n=1,261 individuals from the Lothian Birth Cohorts (LBC) of 71 

1921 and 1936 [46], we tested for global effects of both rare and common genetic variants on DNAm 72 

levels across the genome. At each of the ~460,000 DNAm probes, individuals were ranked from 73 

lowest DNAm level to the highest, and the number of minor alleles within 1kb of the CpG-site were 74 

counted for each individual within a given minor allele frequency range. We then averaged the 75 

minor allele counts for each rank at each DNAm probe. If there is no genetic effect on DNA 76 

methylation for single nucleotide polymorphisms (SNPs) with a given allele frequency range, we 77 

would expect no relationship between the average minor allele count across ranks. We observe an 78 

inflation in allele counts at the lowest and highest ranks, for all MAF ranges (Figure 2), suggesting 79 

genetic effects from variants across all MAF ranges.  80 

For the common variants (MAF > 0.1), we show that these effects are largely captured by mQTL 81 

analyses (Figure 3) by separating the ~50,000 probes with a significant mQTL detected in previous 82 

studies [20]. The inflation at the ends of the distribution remains for the DNAm probes with a known 83 

mQTL, while the majority of the inflation is removed for the remaining probes. This indicates that 84 

the majority of the relationship between methylation rank and SNPs for common variants is 85 

captured by known mQTL. 86 

We also observe that the association between minor allele counts and methylation rank is not 87 

symmetrical, with the lowest ranks having a larger inflation than the highest ranks in the MAF bins. 88 
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This observation suggests a bias towards SNP minor alleles decreasing DNAm levels across the 89 

genome. However, after separating the probes which contain a SNP at the CpG-site (CpG-SNP) from 90 

the rest of the probes, we see that the inflations are symmetrical for probes which do not contain a 91 

CpG-SNP (Figure 4). This  suggests that the allele disrupting the CpG site is, on average, the minor 92 

allele, which may be attributed to a combination of bias in selection of CpG sites included on the 93 

array (sites which are generally CpGs were chosen), and a known mutational bias in the genome 94 

from (methylated) cytosine to thymine through the process of deamination [44]. We have shown 95 

that the effect of SNPs outside of the CpG-sites are approximately equally likely to increase or 96 

decrease DNAm levels (Figure 4). 97 

While inflation in the minor allele count is observed for individuals with either lowly or highly 98 

ranked methylation values for all MAF classes, for the rare variants (MAF<0.001 and 99 

0.001<MAF<0.01) we see that the inflation is largely restricted to the extremes of the distribution. 100 

This is consistent with rare variants driving more extreme levels of DNAm. 101 

Enrichment in rare alleles in individuals with outlying DNA methylation 102 

We identified outlying DNAm levels at individual methylation probes using the subset of 642 103 

individuals in the LBC dataset who have DNAm measurements at a minimum of three time-points. At 104 

a given time-point, an outlier was defined as a CpG-site in an individual with DNAm levels more than 105 

three times the interquartile range below the 1st quartile, or above the 3rd quartile at that CpG-site.  106 

We detected a total of 3,143,781 outliers in at least a single time-point of measurement (each 107 

individual can be outlying at multiple probes). Approximately 67% (309,114/459,309) of DNAm 108 

probes had at least one individual with outlying levels of DNAm. In addition, approximately 9% of 109 

the outliers at a CpG-site (281,311/3,143,781) were consistently outlying at that site across at least 110 

three time-points. The outlier burden (mean number of outliers per individual at a time-point [47]) 111 

was 2212 (out of 459,309 probes ~ 0.5%), reducing to 168 (~ 0.04%) when considering only those 112 

outliers stable across at least three time-points. 113 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.950659doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.950659
http://creativecommons.org/licenses/by/4.0/


We observed an enrichment of ~1.2x the number of rare alleles (95% confidence intervals of 114 

[1.190, 1.222], [1.174, 1.193], and [1.157, 1.164] for variants with MAF<0.001, 0.001<MAF<0.01, and 115 

0.01<MAF<0.1 respectively) within 1kb of the CpG-sites in individuals with outlying DNAm levels 116 

compared to individuals with non-outlying DNAm levels at all time-points (Figure 5). The enrichment 117 

in outliers remained statistically significant after removing the probes with a CpG-SNP (These probes 118 

may bias the enrichment as they will disrupt the methylation at the site which will likely result in 119 

outliers [48]). The enrichment of rare alleles in outliers compared to non-outliers stable across three 120 

to four time-points was larger ([1.356, 1.517], [1.363, 1.459], and [1.253, 1.288] in probes without a 121 

CpG-SNP, and [3.612, 3.994], [3.234, 3.4377], and [3.010, 3.083] in probes with a CpG-SNP for 122 

variants with MAF<0.001, 0.001<MAF<0.01, and 0.01<MAF<0.1 respectively) relative to the 123 

transient outliers observed to be outlying at a single time-point ([1.025 1.058], [1.028 1.047], and 124 

[1.030 1.038] in probes without a CpG-SNP, and [1.098 1.182], [1.116 1.166], and [1.134 1.155] in 125 

probes with a CpG-SNP for variants with MAF<0.001, 0.001<MAF<0.01, and 0.01<MAF<0.1 126 

respectively. Figure 6).  127 

Outliers in gene-expression and DNA methylation are shared between relatives 128 

Using the Brisbane Systems Genetics Study (BSGS) dataset [49] (n=595), which includes 67 MZ 129 

twin pairs, as well as many siblings and parent-offspring pairs with DNAm and gene expression array 130 

data, we detected a total of 1,481,297 outliers in DNAm levels (using the same definition of outliers 131 

as before), and 446,916 outliers in gene expression levels  (using the definition of outliers as a gene 132 

expression probe in an individual with gene expression levels outside of 1.5x the interquartile range 133 

of the 1st or 3rd quartile).  134 

We observed a linear relationship between the proportion of DNAm outliers (R2=0.52, 135 

slope=0.31, and p<10-323) and gene expression outliers (Adjusted R2=0.02, slope=0.03, p<10-323) 136 

shared between each pair of individuals, and their pedigree relatedness (Figure 7). This is consistent 137 

with genetic effects underlying outlying levels of DNAm levels, as well as gene expression levels 138 
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across the genome. However, there was very little overlap between gene expression outliers and 139 

DNAm outliers, with 6.1% of individuals with a gene expression outlier also having a DNAm outlier at 140 

the nearest annotated gene. 141 

Outlying levels of DNA methylation are associated with a change in gene-expression 142 

Although the overlap of outlying DNAm and gene expression was not substantial, we tested 143 

whether the outlying DNAm levels correlates with any change in gene expression levels. For 144 

individuals with outlying levels of DNAm at a CpG-site, if the DNAm levels have no effect on gene 145 

expression levels, we would expect those individuals to be uniformly distributed across the gene 146 

expression distributions. Firstly, we paired DNAm probes to gene expression probes using significant 147 

common variant co-localisation established using a summary data-based Mendelian randomisation 148 

(SMR) study [24].  The rank of gene expression levels for individuals with outlying methylation levels 149 

at SMR-linked probes showed significant deviance from the uniform distribution (Kolmogorov-150 

Smirnov one sample test D=0.03, p<10-323, Figure 8), indicating an association between outlying 151 

levels of DNAm levels on gene expression levels. 152 

Secondly, we relaxed the criteria for linked DNAm and gene expression probes, using a distance-153 

based pairing, taking all probe pairs within 10kb of each other. This introduced more noise into the 154 

analysis as not all DNAm and gene expression probes will be linked in any way. However, we still 155 

observed a significant deviation from the uniform distribution (Kolmogorov-Smirnov one sample test 156 

D=0.006, p<10-323, Figure 9). These results correspond to a correlation between outlying levels of 157 

DNAm and a change in gene expression levels at the relevant genes. 158 

Discussion 159 

This study examined the links between DNAm levels, rare genetic variants, and gene expression 160 

levels across the genome. We combined multiple lines of evidence to demonstrate the role of rare 161 
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variants in outlying DNAm levels. Outlying levels of DNAm are further demonstrated to be associated 162 

with gene expression levels at nearby genes. 163 

We examined the patterns of effects from common and rare genetic variants, within 1kb of the 164 

CpG-site, on DNAm levels across the genome. We found that rare alleles were associated with 165 

extreme levels of DNAm. In addition, we observed a significant enrichment of rare alleles within 1kb 166 

of CpG-sites in individuals with outlying levels of DNAm compared to individuals with normal DNAm 167 

levels at that CpG-site. Our results suggest that, in addition to common variants, rare variants also 168 

play a role in the control of DNAm levels across the genome. 169 

DNAm levels at many CpG-sites are known to be correlated with age [23, 50], and changes in 170 

environment are also known to have an effect across time [16-18]. In our analysis, we found that 171 

outliers in DNAm levels which are present at only one time-point had almost no enrichment for rare 172 

alleles within 1kb of the CpG-site compared to non-outliers, but those probes outlying across 173 

multiple time-points within an individual had significant enrichment. This result suggests that 174 

transient outliers detected at a single time-point (2586888 3134194⁄  ≈ 83% of the outliers in our 175 

study) are likely caused by environmental effects or measurement error, but the outliers stable 176 

across time are more likely to have an underlying genetic cause. This genetic effect underlying 177 

outliers in DNAm was confirmed using a family study design in an independent dataset. This is 178 

consistent with previous observations made using the LBC dataset in Shah et al. [51] who noted that 179 

many CpG-sites across the genome had stable DNA methylation across the lifetime, and these 180 

results are also in concordance with the observation made by Gaunt et al. [19] that the majority of 181 

mQTL are stable across time. 182 

Similar to aggregation tests, we looked at enrichments and not associations with individual 183 

variants (which would be difficult to detect due to the power needed to reach statistical significance) 184 

we cannot say which variants have an effect and which do not. Notwithstanding, only a single rare 185 

variant (MAF<0.01) was observed within 1kb of the CpG-site in over 19% (25,591/131,903) of the 186 
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outliers that were stable across time and had no CpG-SNP. However, even in these cases of only one 187 

rare allele within 1kb, we cannot determine causality without functional experiments. 188 

Previous studies have found correlations between DNAm and gene expression, and an overlap in 189 

the association of common genetic variants between them [14, 21, 41, 52-55]. In this study, we 190 

show that outliers in DNAm levels are associated with a change in gene expression levels at nearby 191 

genes. Summary-data based Mendelian randomisation [56] analyses have provided us with evidence 192 

of pleiotropic effects of common variants on DNAm and gene expression levels across the genome 193 

[22, 24]. In addition, the proportion of phenotypic variance explained by the lead variant at a mQTL 194 

was, on average, larger than the phenotypic variance explained by the same variant at a co-localised 195 

eQTL and at a co-localised higher-order complex trait QTL, such as height [24]. This attenuation in 196 

effect size of the variant at each step suggests a mechanism of effect from genetic variant to DNAm, 197 

to gene expression, to higher-order complex trait. In this study, we observed that large differences 198 

in DNAm often corresponded to smaller differences in gene expression, which would fit into this 199 

hypothesised directional mechanism of effect. In addition, the difference in slope in Figure 7 also 200 

suggests a larger effect from genetic variation on DNAm levels, than gene expression levels. This 201 

mechanism may be important to consider, as DNAm has been shown to be associated with many 202 

common diseases [11], and as methylation outliers are relatively easy to detect, it could provide a 203 

useful tool for future research. 204 

A limitation of our study was that of the two data sets available to us, one (LBC) had WGS and 205 

DNAm array data, whereas the other (BSGS) had SNP array, DNAm array and gene expression array 206 

data. Ideally the study would be conducted on a cohort with all data types. With the increasing 207 

availability of whole genome sequence data, as well as RNA-seq and DNAm array/bisulfite sequence 208 

data, a more comprehensive study of the effects of rare variants on both DNAm and gene expression 209 

would provide a better understanding of the mechanisms underlying genetic effects on complex 210 

traits. Other epigenetic mechanisms, such as histone tail modifications, are highly correlated with 211 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.950659doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.950659
http://creativecommons.org/licenses/by/4.0/


DNAm levels, are under shared genetic control [14, 21], and are also involved in the regulation of 212 

gene expression [54, 57]. We hypothesise that other epigenetic modifications may also show similar 213 

patterns of effects to what we found in DNAm, and including these into future analyses could 214 

potentially provide a more complete picture of the shared genetic control between DNAm, other 215 

epigenetic modifications, and gene expression. 216 

In summary, this study provides a novel insight into the effect of rare variants on DNAm levels 217 

across the genome, and shows that extreme differences in DNAm are associated with gene 218 

expression levels at nearby genes, which may be driven by rare genetic variation.   219 
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Methods 220 

Lothian Birth Cohorts of 1921 and 1936 221 

The Lothian Birth Cohorts of 1921 and 1936 (LBC) [46] are part of a longitudinal study of 222 

cognitive ageing. DNA was extracted from whole blood samples from which DNAm levels were 223 

measured using the Illumina HumanMethylation450 BeadChip array across three or four time-224 

points. The raw intensity data were background corrected, corrected for cell-type and quantile 225 

normalised using standard QC protocols, and the DNAm beta-values were generated using the R 226 

package meffil [58]. 227 

DNAm levels were measured at an average age (sd) of 79.1 (0.6), 86.7 (0.4), and 90.2 (0.1) years 228 

in the LBC1921 cohort and ages 69.6 (0.8), 72.5 (0.7), 76.3 (0.7), and 79.3 (0.6) years in the LBC1936. 229 

Of the 1342 individuals with DNAm measured at one point, 642 had at least three timepoint 230 

measurements. While DNAm levels across the genome are known to change with age [23, 50], this is 231 

not a confounding factor in our analysis as the age ranges within each wave of measurement are 232 

very narrow (mean standard deviation of age for each cohort in each wave was 0.6 years). 233 

Whole genome sequencing was performed on the HiSeq X with an average coverage of 36x 234 

(minimum 19.6x, maximum 65.9x). Details of the QC can be found in Prendergast et al. 2019 [59]. 235 

Briefly, reads were mapped using BWA [60] to the build 38 of the reference genome, and GATK [61] 236 

was used for variant calling. Variant effect predictor (VEP) [62] was used to annotate variants and 237 

gene models from the version 85 release of Ensembl. 238 

Brisbane Systems Genetics Study 239 

The Brisbane Systems Genetics study (BSGS) [49] was a dataset designed to study the genetic 240 

effects on gene expression, and the role of gene regulation in complex traits. DNAm levels were 241 

measured, in whole blood using the Illumina Infinium HumanMethylation450 BeadChip array, on 242 

614 individuals from 117 families, including monozygotic twin pairs, dizygotic twin pairs, sibling 243 
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pairs, and parents. The QC of the DNAm data was performed using the same pipeline as with the LBC 244 

data. gene expression levels were measured in whole blood on 846 individuals using the Illumina 245 

HumanHT-12 v4.0 BeadChip array. The QC of the gene expression data are detailed in Lloyd-Jones et 246 

al. 2017 [63]. Briefly, the gene expression levels were normalised using variance stabilization [64], 247 

quantile normalised using the limma software [65], followed by PEER factor adjustment [66], with 50 248 

factors, correcting for covariates such as age, sex, cell counts, and batch effects. Both DNAm and 249 

gene expression levels were measured on a total of 595 individuals. 250 

An overview of the methods used to investigate the effects of genetic variants on DNAm levels 251 

and gene expression levels using the LBC and BSGS datasets are shown in Figure 1. 252 

Detecting genome-wide effects on DNAm 253 

Following similar procedures to Zhao et al. [39], and Kremling et al. [40], we ranked the 254 

individuals in the LBC data at each DNAm probe from lowest DNAm beta-value to the highest, and 255 

counted the number of minor alleles within 1kb of the CpG-site for each individual. We averaged this 256 

value at each rank across all autosomal probes to get the mean number of minor alleles within 1kb 257 

of a CpG-site. We did this for 4 MAF ranges, MAF>0.1, 0.1>MAF>0.01, 0.01>MAF>0.001, and 258 

0.001>MAF, which allowed us to separate the effects of common and rare variants. The rarest MAF 259 

bin (MAF<0.001) corresponded to variants with one or two observed minor alleles in our dataset. 260 

This analysis was performed using the 1st wave of measurements in the LBC dataset to maximise 261 

sample size. 262 

Detecting outliers 263 

We defined DNAm outliers as a CpG-site in an individual with DNAm levels outside 3 264 

interquartile ranges (IQRs) from the 1st quartile (Q1) or the 3rd quartile (Q3) of the DNAm levels at 265 

that CpG-site. The standard 1.5 IQRs from Q1 or Q3 compares to 3 standard deviation from the 266 

mean in a perfectly normal distribution. Our definition is slightly more stringent than this, as the 267 
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distribution of DNAm levels can be highly skewed. For detecting outliers in the gene expression data, 268 

which had more symmetric distributions, the standard 1.5 IQR from Q1 and Q3 definition was used. 269 

Enrichment of rare alleles around CpG-sites 270 

We defined enrichment as, 271 

Enrichment =  
𝑃 (

individuals with minor 
allele within 1kb

|
 individual is 

an outlier
)

𝑃 (
individuals with minor 

allele within 1kb
|
 individual is not 

an outlier at 
any time-point

)

 272 

In words, we defined enrichment as the probability of an individual having a minor allele within 273 

1kb of a CpG-site given they have outlying DNAm levels at that site, divided by the probability of an 274 

individual having a minor allele within 1kb of a CpG-site given they don’t have outlying DNAm levels 275 

at that site. This is similar to the definition used in Li et al. [27], although they used a slightly 276 

different definition of outliers (>2 standard deviations from the mean). 277 

Proportion of outliers shared 278 

To compute the proportion of outliers shared between each pair of individuals, we used the 279 

formula 
2𝑛12

𝑛1+𝑛2
, where n1 is the number of outliers for individual one, n2 is the number of outliers for 280 

individual two, and n12 is the number of outliers shared between the individuals. The relatedness 281 

coefficients were obtained from pedigree data. 282 

Testing for association between outlying levels of DNAm and gene expression 283 

To test for an association between outlying levels of DNAm and gene expression, the percentile 284 

in the gene expression levels distribution at a gene expression probe was calculated for each 285 

individual with outlying DNAm levels at the paired DNAm probe. We used two methods to pair 286 

DNAm probes to gene expression probes. Firstly, we linked DNAm probes through a shared common 287 

variant co-localisation with the gene expression probe detected using the Summary-data based 288 

Mendelian Randomisation (SMR) method [24, 56]. We also used all pairings of gene expression 289 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.950659doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.950659
http://creativecommons.org/licenses/by/4.0/


probes within 10kb of the CpG-sites. This represents a trade-off between number of pairs included in 290 

the analysis and including pairs of gene expression and DNAm probes that have no biological 291 

connection beyond proximity. Under the null hypothesis of no association between outlying DNAm 292 

and gene expression levels, the rank of gene expression levels for individuals with outlying DNAm 293 

levels should be uniformly distributed. We tested for deviation from the uniform distribution using 294 

the Kolmogorov-Smirnov one sample test [67], which tests the degree of agreement between the 295 

sampled values and a theoretical distribution, in our case the uniform distribution. 296 

  297 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.950659doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.950659
http://creativecommons.org/licenses/by/4.0/


References 298 

1. Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev, 2002. 16(1): 299 

p. 6-21. 300 

2. Fan, S. and X. Zhang, CpG island methylation pattern in different human tissues and 301 

its correlation with gene expression. Biochem Biophys Res Commun, 2009. 383(4): p. 302 

421-5. 303 

3. Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression: how the genome 304 

integrates intrinsic and environmental signals. Nature Genetics, 2003. 33: p. 245. 305 

4. Li, E., C. Beard, and R. Jaenisch, Role for DNA methylation in genomic imprinting. 306 

Nature, 1993. 366(6453): p. 362-365. 307 

5. Riggs, A.D., X inactivation, differentiation, and DNA methylation. Cytogenetic and 308 

Genome Research, 1975. 14(1): p. 9-25. 309 

6. Laurent, L., et al., Dynamic changes in the human methylome during differentiation. 310 

Genome research, 2010. 20(3): p. 320-331. 311 

7. Lister, R., et al., Human DNA methylomes at base resolution show widespread 312 

epigenomic differences. Nature, 2009. 462(7271): p. 315-322. 313 

8. Smith, Z.D. and A. Meissner, DNA methylation: roles in mammalian development. 314 

Nat Rev Genet, 2013. 14(3): p. 204-20. 315 

9. Klutstein, M., et al., DNA Methylation in Cancer and Aging. Cancer Research, 2016. 316 

76(12): p. 3446. 317 

10. Feinberg, A.P., M.A. Koldobskiy, and A. Göndör, Epigenetic modulators, modifiers 318 

and mediators in cancer aetiology and progression. Nature Reviews Genetics, 2016. 319 

17(5): p. 284. 320 

11. Jin, Z. and Y. Liu, DNA methylation in human diseases. Genes & Diseases, 2018. 5(1): 321 

p. 1-8. 322 

12. Feng, Y., J. Jankovic, and Y.-C. Wu, Epigenetic mechanisms in Parkinson's disease. 323 

Journal of the Neurological Sciences, 2015. 349(1): p. 3-9. 324 

13. Liu, Y., et al., Epigenome-wide association data implicate DNA methylation as an 325 

intermediary of genetic risk in rheumatoid arthritis. Nature Biotechnology, 2013. 31: 326 

p. 142. 327 

14. Banovich, N.E., et al., Methylation QTLs are associated with coordinated changes in 328 

transcription factor binding, histone modifications, and gene expression levels. PLoS 329 

Genet, 2014. 10(9): p. e1004663. 330 

15. McRae, A.F., et al., Contribution of genetic variation to transgenerational inheritance 331 

of DNA methylation. Genome Biology, 2014. 15(5): p. R73. 332 

16. Dowen, R.H., et al., Widespread dynamic DNA methylation in response to biotic 333 

stress. Proceedings of the National Academy of Sciences, 2012. 109(32): p. E2183. 334 

17. Garg, P., et al., A survey of inter-individual variation in DNA methylation identifies 335 

environmentally responsive co-regulated networks of epigenetic variation in the 336 

human genome. PLOS Genetics, 2018. 14(10): p. e1007707. 337 

18. Christensen, B.C., et al., Aging and Environmental Exposures Alter Tissue-Specific 338 

DNA Methylation Dependent upon CpG Island Context. PLOS Genetics, 2009. 5(8): p. 339 

e1000602. 340 

19. Gaunt, T.R., et al., Systematic identification of genetic influences on methylation 341 

across the human life course. Genome Biology, 2016. 17(1): p. 61. 342 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.950659doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.950659
http://creativecommons.org/licenses/by/4.0/


20. McRae, A.F., et al., Identification of 55,000 Replicated DNA Methylation QTL. Sci Rep, 343 

2018. 8(1): p. 17605. 344 

21. Bell, J.T., et al., DNA methylation patterns associate with genetic and gene expression 345 

variation in HapMap cell lines. Genome Biol, 2011. 12(1): p. R10. 346 

22. Hannon, E., et al., Leveraging DNA-Methylation Quantitative-Trait Loci to 347 

Characterize the Relationship between Methylomic Variation, Gene Expression, and 348 

Complex Traits. Am J Hum Genet, 2018. 103(5): p. 654-665. 349 

23. Bell, J.T., et al., Epigenome-Wide Scans Identify Differentially Methylated Regions for 350 

Age and Age-Related Phenotypes in a Healthy Ageing Population. PLOS Genetics, 351 

2012. 8(4): p. e1002629. 352 

24. Wu, Y., et al., Integrative analysis of omics summary data reveals putative 353 

mechanisms underlying complex traits. Nat Commun, 2018. 9(1): p. 918. 354 

25. Bomba, L., K. Walter, and N. Soranzo, The impact of rare and low-frequency genetic 355 

variants in common disease. Genome Biol, 2017. 18(1): p. 77. 356 

26. Hernandez, R.D., et al., Ultrarare variants drive substantial cis heritability of human 357 

gene expression. Nature Genetics, 2019. 51(9): p. 1349-1355. 358 

27. Li, X., et al., The impact of rare variation on gene expression across tissues. Nature, 359 

2017. 550(7675): p. 239-243. 360 

28. Marouli, E., et al., Rare and low-frequency coding variants alter human adult height. 361 

Nature, 2017. 542(7640): p. 186-190. 362 

29. Visscher, P.M., et al., 10 Years of GWAS Discovery: Biology, Function, and 363 

Translation. Am J Hum Genet, 2017. 101(1): p. 5-22. 364 

30. Lee, S., et al., Rare-variant association analysis: study designs and statistical tests. 365 

Am J Hum Genet, 2014. 95(1): p. 5-23. 366 

31. Asimit, J.L., et al., ARIEL and AMELIA: Testing for an Accumulation of Rare Variants 367 

Using Next-Generation Sequencing Data. Human Heredity, 2012. 73(2): p. 84-94. 368 

32. Lee, S., M.C. Wu, and X. Lin, Optimal tests for rare variant effects in sequencing 369 

association studies. Biostatistics, 2012. 13(4): p. 762-75. 370 

33. Li, B. and S.M. Leal, Methods for detecting associations with rare variants for 371 

common diseases: application to analysis of sequence data. Am J Hum Genet, 2008. 372 

83(3): p. 311-21. 373 

34. Morgenthaler, S. and W.G. Thilly, A strategy to discover genes that carry multi-allelic 374 

or mono-allelic risk for common diseases: A cohort allelic sums test (CAST). Mutation 375 

Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2007. 615(1): p. 376 

28-56. 377 

35. Neale, B.M., et al., Testing for an unusual distribution of rare variants. PLoS Genet, 378 

2011. 7(3): p. e1001322. 379 

36. Price, A.L., et al., Pooled Association Tests for Rare Variants in Exon-Resequencing 380 

Studies. The American Journal of Human Genetics, 2010. 86(6): p. 832-838. 381 

37. Wu, M.C., et al., Rare-variant association testing for sequencing data with the 382 

sequence kernel association test. Am J Hum Genet, 2011. 89(1): p. 82-93. 383 

38. Richardson, T.G., et al., Collapsed methylation quantitative trait loci analysis for low 384 

frequency and rare variants. Hum Mol Genet, 2016. 25(19): p. 4339-4349. 385 

39. Zhao, J., et al., A Burden of Rare Variants Associated with Extremes of Gene 386 

Expression in Human Peripheral Blood. Am J Hum Genet, 2016. 98(2): p. 299-309. 387 

40. Kremling, K.A.G., et al., Dysregulation of expression correlates with rare-allele burden 388 

and fitness loss in maize. Nature, 2018. 555(7697): p. 520-523. 389 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.950659doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.950659
http://creativecommons.org/licenses/by/4.0/


41. Deaton, A.M. and A. Bird, CpG islands and the regulation of transcription. Genes Dev, 390 

2011. 25(10): p. 1010-22. 391 

42. He, J., et al., C9orf72 hexanucleotide repeat expansions in Chinese sporadic 392 

amyotrophic lateral sclerosis. Neurobiology of Aging, 2015. 36(9): p. 2660.e1-393 

2660.e8. 394 

43. Paul, D.S., et al., Increased DNA methylation variability in type 1 diabetes across 395 

three immune effector cell types. Nature Communications, 2016. 7: p. 13555. 396 

44. Nachman, M.W. and S.L. Crowell, Estimate of the Mutation Rate per Nucleotide in 397 

Humans. Genetics, 2000. 156(1): p. 297. 398 

45. Cooper, D.N. and H. Youssoufian, The CpG dinucleotide and human genetic disease. 399 

Human Genetics, 1988. 78(2): p. 151-155. 400 

46. Taylor, A.M., A. Pattie, and I.J. Deary, Cohort Profile Update: The Lothian Birth 401 

Cohorts of 1921 and 1936. Int J Epidemiol, 2018. 47(4): p. 1042-1042r. 402 

47. Seeboth, A., et al., DNA methylation outlier burden, health and ageing in Generation 403 

Scotland and the Lothian Birth Cohorts of 1921 and 1936. medRxiv, 2019: p. 404 

19010728. 405 

48. Shoemaker, R., et al., Allele-specific methylation is prevalent and is contributed by 406 

CpG-SNPs in the human genome. Genome Res, 2010. 20(7): p. 883-9. 407 

49. Powell, J.E., et al., The Brisbane Systems Genetics Study: genetical genomics meets 408 

complex trait genetics. PLoS One, 2012. 7(4): p. e35430. 409 

50. Boks, M.P., et al., The relationship of DNA methylation with age, gender and 410 

genotype in twins and healthy controls. PLoS One, 2009. 4(8): p. e6767. 411 

51. Shah, S., et al., Genetic and environmental exposures constrain epigenetic drift over 412 

the human life course. Genome Research, 2014. 24(11): p. 1725-1733. 413 

52. Lea, A.J., et al., Genome-wide quantification of the effects of DNA methylation on 414 

human gene regulation. eLife, 2018. 7: p. e37513. 415 

53. Portela, A. and M. Esteller, Epigenetic modifications and human disease. Nat 416 

Biotechnol, 2010. 28(10): p. 1057-68. 417 

54. The ENCODE Project Consortium, An integrated encyclopedia of DNA elements in the 418 

human genome. Nature, 2012. 489(7414): p. 57-74. 419 

55. Ball, M.P., et al., Targeted and genome-scale strategies reveal gene-body 420 

methylation signatures in human cells. Nature Biotechnology, 2009. 27: p. 361. 421 

56. Zhu, Z., et al., Integration of summary data from GWAS and eQTL studies predicts 422 

complex trait gene targets. Nat Genet, 2016. 48(5): p. 481-7. 423 

57. Roadmap Epigenomics Consortium, et al., Integrative analysis of 111 reference 424 

human epigenomes. Nature, 2015. 518(7539): p. 317-30. 425 

58. Min, J.L., et al., Meffil: efficient normalization and analysis of very large DNA 426 

methylation datasets. Bioinformatics, 2018. 427 

59. Prendergast, J.G.D., et al., Linked Mutations at Adjacent Nucleotides Have Shaped 428 

Human Population Differentiation and Protein Evolution. Genome Biology and 429 

Evolution, 2019. 11(3): p. 759-775. 430 

60. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler 431 

transform. Bioinformatics, 2009. 25(14): p. 1754-60. 432 

61. DePristo, M.A., et al., A framework for variation discovery and genotyping using 433 

next-generation DNA sequencing data. Nat Genet, 2011. 43(5): p. 491-8. 434 

62. McLaren, W., et al., The Ensembl Variant Effect Predictor. Genome Biol, 2016. 17(1): 435 

p. 122. 436 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.950659doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.950659
http://creativecommons.org/licenses/by/4.0/


63. Lloyd-Jones, L.R., et al., The Genetic Architecture of Gene Expression in Peripheral 437 

Blood. Am J Hum Genet, 2017. 100(2): p. 228-237. 438 

64. Huber, W., et al., Variance stabilization applied to microarray data calibration and to 439 

the quantification of differential expression. Bioinformatics, 2002. 18 Suppl 1: p. S96-440 

104. 441 

65. Ritchie, M.E., et al., limma powers differential expression analyses for RNA-442 

sequencing and microarray studies. Nucleic Acids Res, 2015. 43(7): p. e47. 443 

66. Stegle, O., et al., Using probabilistic estimation of expression residuals (PEER) to 444 

obtain increased power and interpretability of gene expression analyses. Nat Protoc, 445 

2012. 7(3): p. 500-7. 446 

67. Massey, F.J., The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the 447 

American Statistical Association, 1951. 46(253): p. 68-78. 448 

 449 

  450 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.950659doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.950659
http://creativecommons.org/licenses/by/4.0/


Figures 451 

 452 

 453 

Figure 1 – Overview of the methods used in this study. The Lothian Birth Cohorts of 1921 and 1936 were used to 454 

investigate the effect of genetic variants on DNA methylation levels, while the Brisbane Systems Genetics Study was used 455 

to examine the effect of DNA methylation levels on gene expression levels. In subfigure a, the number of minor alleles 456 

within 1kb is plotted against methylation rank (The individual with the nth lowest DNAm levels will have a methylation rank 457 

of n at that CpG-site); in the case of no effect of genetic variants on DNAm levels, a uniform distribution is expected, any 458 

deviation from the uniform distribution is evidence for a genetic effect on DNAm levels. Subfigure b shows the enrichment 459 

of minor alleles within 1kb in outliers compared to non-outliers; in the case of no effect of genetic variants on DNAm 460 

outliers, the enrichment will be 1, any significant deviation from 1 is evidence of an effect of genetic variants on outliers of 461 

DNAm. In subfigure b, the proportion of outliers shared between pairs is plotted against the pedigree relatedness; if there 462 

is no genetic effect on DNAm outliers a slope of 0 is expected, any non-zero slope is evidence for a genetic effect on DNAm 463 

outliers. Finally, in subfigure d, the distribution of gene expression percentile of individuals with DNAm outliers at nearby 464 

probes is plotted; in the case of no effect from DNAm on gene expression, a uniform distribution is expected, any deviation 465 

from the uniform distribution is evidence for an effect of DNAm on gene expression. 466 
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 467 

 468 

Figure 2 – The mean number of minor alleles within 1kb of the CpG-site for each rank of DNAm levels across all 469 

autosomal probes. The analysis is split into 4 MAF bins. The inflation at the lowest and highest ranks is seen in each MAF 470 

bin, demonstrating that common and rare alleles both have an effect on DNAm genome-wide.  471 
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 472 

Figure 3 – The effect of common genetic variants on DNAm is captured by mQTL analyses. Separating the ~50000 473 

probes with a known mQTL from the remaining probes for the common variants (MAF>0.1), we see the inflation at the 474 

ends for the distribution is not as strong in the probes without an mQTL. There is also a mean difference of about 1 minor 475 

allele within 1kb, which is consistent with a nearby mQTL. 476 
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 478 

Figure 4 – The mean number of minor alleles within 1kb of the CpG-site for each rank of DNAm levels across all 479 

autosomal probes with and without a CpG-SNP. The effects of CpG-SNPs were observed to reduce DNAm levels on 480 

average. On the other hand, the effects of SNP not at the CpG-site were observed to be symmetrical. This suggests that 481 

genetic effects outside the CpG-site are equally likely to increase or decrease DNAm levels. 482 
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 484 

Figure 5 – Outliers are enriched in rare alleles within 1kb of the CpG-site. The enrichment of minor alleles within 1kb 485 

of the CpG-site for individuals with outlying levels of DNAm levels compared to individuals with non-outlying levels of 486 

DNAm was significant for all minor allele frequency (MAF) groups. 487 
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 489 

Figure 6 – The enrichment of minor alleles in outliers compared to non-outliers at probes with and without a CpG-490 

SNP.  The enrichment in common alleles is not significant when excluding the probes with a CpG-SNP. For rare alleles, the 491 

enrichment in outliers remains significant in the individuals DNAm levels outlying stably across time, whereas the 492 

enrichment in individuals with DNAm levels outlying at only a single time-point is not significant. 493 
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 495 

Figure 7 – Outliers in DNAm, and gene expression are shared between relatives more often than at random. The 496 

linear relationship between pedigree relatedness and proportion of outliers shared suggests a genetic component to the 497 

outlying levels of DNAm and gene expression. The difference in slope suggests a stronger genetic effect on the DNAm 498 

levels compared to gene expression levels. 499 
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 501 

Figure 8 – Density plot of the percentile in the gene expression distribution of individuals with outlying DNAm 502 

levels at a linked DNAm probe. Taking all DNAm and gene expression probe pairs linked through a summary-data based 503 

Mendelian randomisation analysis, we observe a significant deviation from the uniform distribution (Kolmogorov-Smirnov 504 

one sample test D=0.03 and p<10-323), suggesting that outlying levels of DNAm are associated with a change in the gene 505 

expression levels. 506 

 507 
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 510 

Figure 9 – Density plot of the percentile in the gene expression distribution of individuals with outlying DNAm 511 

levels at a DNAm probe within 10kb. Taking all individuals with outlying DNAm levels at DNAm probes within 10kb of a 512 

gene expression probe, we observe which percentile they lie in the gene expression distribution at the gene expression 513 

probe. We observe a significant deviation from the uniform distribution (Kolmogorov-Smirnov one sample test D=0.006 514 

and p<10-323), suggesting that outlying levels of DNAm are associated with a change in the gene expression levels. 515 
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