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Abstract

Background: Microbe-microbe and host-microbe interactions in a microbiome play a vital role in both health
and disease. However, the structure of the microbial community and the colonization patterns are highly complex
to infer even under controlled wet laboratory conditions. In this study, we investigate what information, if any,
can be provided by a Bayesian Network (BN) about a microbial community. Unlike the previously proposed
Co-occurrence Networks (CoNs), BNs are based on conditional dependencies and can help in revealing complex
associations.

Results: In this paper, we propose a way of combining a BN and a CoN to construct a signed Bayesian Network
(sBN). We report a surprising association between directed edges in signed BNs and known colonization
orders.

Conclusions: BNs are powerful tools for community analysis and extracting influences and colonization patterns,
even though the analysis only uses an abundance matrix with no temporal information. We conclude that
directed edges in sBNs when combined with negative correlations are consistent with and strongly suggestive of
colonization order.
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Introduction and Background
Bayesian Networks (BN) (also Belief Networks and
Bayes Nets) are graphical models where nodes rep-
resent a set of multi-dimensional variables and edges
represent conditional dependencies between the nodes.
BNs can thus capture implicit and explicit relation-
ships between these nodes [1]. When learning from
data, edges in BNs can be directed or undirected.
In fact, highly correlated variables very often lead to
undirected (or two-way dependencies), since knowing
one variable provides a lot of information about the
other variable. In its simplest form, an edge in a BN
expresses the conditional probability of knowing the
(multi-dimensional) value of the variable at one node,
given the value of the variable at another. BNs were
used by Friedman et al. to use gene expression data to
infer interactions between genes [2]. Conditional de-
pendencies are often misinterpreted as causation, but
are merely mathematical relationships that approxi-
mate causation under specific circumstances.
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A significant feature of BNs is that they can allow
us to differentiate between direct and indirect condi-
tional dependence [3]. For example, if the dependence
of variable B on variable A vanishes when conditioned
on a third variable C, then it allows us to infer that a
directed edge from A to B is superfluous and may be
removed without loss of information since the directed
edges (A,C) and (C,B) allows us to completely cap-
ture the dependency of B on A. BNs also help to dif-
ferentiate between dependency configurations referred
to as “common cause” and “common effect” [4].

Many algorithmic variants and implementations
to construct BNs exist, including bnlearn [5], CG-
BayesNet [6], Banjo [7], DEAL [8], GlobalMIT [9],
BNFinder [10] and Tetrad [11].

Causation is an important type of relationship to
be explored with biological data. So it makes sense to
see if BNs can identify relationships that are sugges-
tive of causation and that could lead to wet lab ex-
periments for validation. Recently, BNs were used by
Zhang et al. to understand changes in gene regulatory
networks under different cellular states [12]. By model-
ing metabolic reactions and their involvement in mul-
tiple subnetworks of “metabosystems”, Shafiei et al.
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used BNs to infer differential prevalence of metabolic
subnetworks within microbial communities [13].

The term microbiota refers to the community of mi-
crobes, including bacteria, archaea, protists, fungi, and
viruses that share an environmental niche [14]. The
term microbiome refers to the entire habitat, includ-
ing the microbes, their genetic material and the envi-
ronmental factors. The total genome from microbiota
is referred to as the metagenome. The microbes ex-
ist as a social network because of the complex set of
potential interactions between its various taxonomic
members [15,16].

To understand potential interactions between taxa
in a microbial community, the construction of co-
occurrence networks (CoN) was proposed by Fernan-
dez et al. [15] and Faust et al. [17]. The results sug-
gested that groups of taxa frequently co-infected or
co-avoided cohorts of subjects due to underlying in-
teractions between them. Unfortunately, that is as far
as CoNs are able to go in terms of inferring complex
relationships in microbiomes.

In this paper, we investigate how to infer directional
relationships between microbial taxa in a microbiome
by focusing on the important challenge of inferring
“colonization order” from abundance data.

In humans, normal microbial colonization starts
from birth, and over time these communities become
relatively stable [18]. Microbial communities are dy-
namic, and their compositions change with time [19].
Some microbes occupy an environmental niche early
and then recruit other microbes suggesting an order
of colonization in many microbial communities. Once
new recruits enter the scene, their fitness for the envi-
ronmental niche could determine the growth or decline
of the early colonizers [20].

In the healthy state, our bodies harbor rich commu-
nities of microbes mostly on cutaneous and mucosal
surfaces such as the skin, oral cavity, gastrointestinal
tract, and the reproductive tract [21, 22]. Microbes in
these communities have a variety of interactions that
impact the health of the host or the environmental
niche [17]. An imbalance (dysbiosis) in the microbial
community is strongly associated with a variety of hu-
man diseases [23]. The dysbiosis is often due to inva-
sion or increase in harmful pathogenic bacteria, which
in turn is often preceded by colonization at the site
of infection by specific early colonizers [24]. Thus, un-
derstanding colonization and its order can provide a
window into how infections take hold. Understand-
ing these functional (directed) relationships within the
niche is critical for understanding healthy versus dis-
eased microbiomes as well as the mechanisms and bi-
ological processes involved in the disease.

In this paper, we show that signed Bayesian Net-
works (sBNs), a variant of BNs obtained by combin-
ing BNs with co-occurrence networks can help tease
apart some of these directed relationships and provide
a glimpse into the complex and dynamic world of mi-
crobial communities. The paper is organized as follows.
Section 2 provides foundations of BNs and some back-
ground on microbial colonization in select niches. Sec-
tion 3 presents the details of the data and experiments
and summarizes the results, and Section 4 presents
some conclusions and future directions.

Methods
Bayesian networks
Bayesian Networks (BNs) are a class of Probabilistic
Graphical Models (PGMs) [1,25] where each node rep-
resents a random variable from a set, X = {Xi, i =
1, ..., n}, with n random variables. The BN is repre-
sented as a graph G = (V,E), where each vertex in
V represents a random variable from X, and E is the
set of edges on V . In general, a BN is represented as a
Directed Acyclic Graph (DAG), although undirected
edges are used in cases where the direction cannot
be reliably determined or when both directions ap-
pear plausible. Each random variable Xi has a local
probability distribution. A directed edge of E between
two vertices represents direct stochastic dependencies.
Therefore, if there is no edge connecting two vertices,
the corresponding variables are either marginally inde-
pendent or conditionally independent given (a subset
of) the rest of the variables. The “local” probability
distribution of a variable Xi depends only on itself
and its parents (i.e., the vertices with directed edges
into the node Xi); the “global” probability distribu-
tion, P (X) is the product of all local probabilities, i.e.,
a joint distribution [26] as shown below:

P (X) =

n∏
i=1

P (Xi|Parents(Xi)).

The task of fitting a BN is called “model learning”
and its implementation generally involves two steps -
structure learning and parameter learning. Structure
learning involves finding a BN that encodes the con-
ditional dependencies from the data, while parame-
ter learning is the estimation of the parameters of
the global distribution [27]. Eliminating edges in the
structure helps to simplify the “global” joint distri-
bution, allowing for more efficient computations with
the model and for better inferring of critical relation-
ships. In this paper, we only focus on the structure
of the BN, not the parameters. For structure learning,
at least three approaches have been proposed in the
literature – constraint-based, score-based, and hybrid.
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We focus on the constraint-based algorithms, which
are based on an approach called Inductive Causation
(IC) [28]. IC provides a framework for learning the
BN using conditional independence (CI) tests under
the assumption that graphical separation in the BN is
equivalent to probabilistic independence between the
corresponding variables. Note that the resulting BN
may be a partially directed acyclic graph (PDAG) [29]
because not all edge directions can be resolved with
IC.

Training the Bayesian network structure
The constraint-based IC approach to structure learn-
ing mentioned above was proposed by Spirtes et
al. [30]. The constraint-based approaches are typi-
cally more conservative than score-based algorithms
in terms of the number of edges they retain in the fi-
nal Bayesian network. Furthermore, constraint-based
approaches are better suited for causal inferences [29].
The approach of Spirtes et al. was later modified by
Colombo and Maathuis to make it order independent
in an algorithm known as PC-Stable [31]. The main
feature of PC-Stable algorithm is the inference of a
skeleton (undirected structure) in an order indepen-
dent way [31]. Order dependency is a minor issue for
low dimensional settings. However, in high dimensional
settings, order dependence may give results with high
variance [32].

PC-stable consists mainly of three steps – adjacency
search in order to learn the “skeleton”, identifying
important substructures called v-structures, and de-
tecting and orienting other arcs. In Step 1, the algo-
rithm starts with a complete undirected graph and
then performs a series of conditional independence
tests to eliminate as many edges as possible. The re-
maining undirected graph is referred to as the skeleton.

Step 2 is key to inferring a BN model, and uses the
concept of v-structures, which are defined as follows.
For any three nodes representing variables Xi, Xj , Xk

in a Bayesian network G, if {Xi, Xj} and {Xj , Xk} are
edges in G, but {Xi, Xk} is not, and if edges are ori-
ented as Xi → Xj ← Xk then the triple (Xi, Xj , Xk) is
called a v-structure. Triples satisfying the v-structure
property can be identified in the skeletons using con-
ditional dependency tests, following which edges are
appropriately directed to form a v-structure. The vari-
able Xj in the triple forming the v-structure represents
a “common effect” of Xi and Xk. These v-structures
are critical in giving directions to some of the edges of
the skeleton.

In Step 3, three rules [31] are applied repeatedly to
orient edges not already in v-structures.
Rule 1: Orient Xj − Xk as Xj → Xk whenever (a)

there is a directed edge Xi → Xj and (b) Xi and
Xk are not adjacent.

Table 1: Microbiomes analyzed with sites, number of
samples and number of taxa detected. The first eight
are from oral microbiomes, the next one from gut mi-
crobiome, and the last three from vaginal microbiomes.
Note that the Nugent score is an indicator of the level
of vaginosis.

Site # of samples # of taxa

Buccal mucosa 309 51
Keratinized gingiva 269 29

Palatine tonsils 320 68
Saliva 298 75

Subgingival dental plaque 325 84
Supragingival dental plaque 335 65

Dorsum of tongue 335 37
Throat 313 64

Infant gut 922 12

Vaginal (lower Nugent score) 3203 19
Vaginal (medium Nugent score) 568 19

Vaginal (higher Nugent score) 916 19

Rule 2: Orient Xj −Xk as Xj → Xk whenever there
is a chain Xj → Xi → Xk.

Rule 3: Orient Xj −Xk as Xj → Xk whenever there
are two chains Xj −Xi → Xk and Xj −Xl → Xk

given that Xi and Xl are not adjacent.

Real Data sets
Ribosomal 16S rRNA sequences from three micro-
biome data sets (oral, infant gut, and vaginal) were
used (see Table 1). The oral data set was generated as
part of the Human Microbiome Project (HMP) from
eight different sites within the oral cavity from 242
healthy adults (129 males, 113 females) [14, 33]. The
samples included: saliva, buccal mucosa (cheek), kera-
tinized gingiva (gums), palatine tonsils, throat, tongue
dorsum, and supra- and sub-gingiva dental plaque
(tooth biofilm above and below the gum) [14,33].

The preterm infant gut microbiome samples were
collected and processed for a longitudinal study as de-
scribed by La Rosa et al. [34]. This study involved a
total of 922 stool samples from 58 premature babies,
each weighing ≤ 1500 g at birth.

The vaginal microbiome data set was previously gen-
erated to determine temporal dynamics of the human
vaginal microbiota [35]. This study involved 32 women
from different ages (18 through 40), races (Black,
White, Hispanic and other), educational backgrounds,
and sexual habits [35]. Each sample was associated
with a Nugent score [36], an indicator of the level of
vaginosis. All OTUs associated with Lactobacillus were
combined into one taxa.

Friedman et al. performed the BN inference by
adding an extra “cell cycle phase” variable to account
for the temporal aspect of the data [2]. Following their
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suggestion, an extra variable for sampling time was
added to the analyses of the infant gut and vaginal
microbiome data sets, thus assuming that the sam-
pling time for each sample is an independent random
variable from some distribution.

Data processing
The samples were processed by amplifying the V35
hypervariable region of the bacterial 16S rRNA gene.
This was followed by sequencing and grouping reads
into common Operational Taxonomic Units (OTUs).
The Mothur pipeline [37] was used to compute the
microbial abundance of each taxon.

OTU abundance data were stored in matrix B,
an n × p abundance matrix, where n is the num-
ber of samples and p is the number of OTUs. The
i-th sample is represented by the i-th row of B,

B(i) =
[
b
(i)
1 , b

(i)
2 , b

(i)
3 , ..., b

(i)
p

]
, where b

(i)
j denotes the

abundance of the j-th bacterial OTU in the i-th sam-
ple. The total number of mapped reads from the i-th

sample is denoted by w(i) =
∑p

j=1 b
(i)
j . The relative

abundance matrix is then computed by normalizing

each raw count, b
(i)
j , with the total number of reads

in that sample w(i). The normalized vector of relative
abundances for sample i is thus given by

x(i) =

[
b
(i)
1

w(i)
,
b
(i)
2

w(i)
, · · · , b

(i)
p

w(i)

]
.

Each data set from the HMP collection had abun-
dances for several hundred taxa, most of which were
extremely small [14,33]. To make our computations ef-
ficient, taxa with abundance close to the background
noise were eliminated. This is achieved by first sorting
the relative abundance values of the OTU-level taxa
and then picking the taxa with the highest values that
added up to a total of 99%. In other words, the dis-
carded taxa were the lowest values that summed up to
less than 1%. Table 1 shows the number of taxa from
each site used to learn the BNs during the structure
learning step. The subjects in the vaginal data set were
grouped by Nugent Scores — lower (healthy), medium,
and higher. Individuals with higher Nugent scores had
more severe cases of bacterial vaginosis [36].

Semi-synthetic data
Besides using real data for our experiments, we also
carried out experiments on what we refer to as “semi-
synthetic” data, which were obtained by appropriate
modifications of real data sets as described below. The
semi-synthetic data sets were obtained by performing
temporal alignments on the infant gut data sets using
the time-warping methods proposed by Lugo-Martinez

et al. [38,39]. The purpose of temporal alignments was
to align the “internal clocks” of the subjects correct-
ing for their different metabolic speeds. The temporal
alignment was done by interpolating the time series
and stretching/squishing and shifting them with re-
spect to time series of a reference subject. As a con-
sequence, the time series are put on an artificial time
scale and then uniformly sampled with a sampling rate
of 1 per (warped) day.

Construction of Bayesian Networks
The PC-stable, a causality-learning algorithm, was
used to construct the BNs [31]. It is a constraint-
based algorithm that is more conservative than score-
based algorithms and results in fewer false positives.
Also, it is partly order-independent, as described be-
low [31]. The PC-stable algorithm from the bnlearn

package [40] was used to obtain the BNs for each data
set.

Construction of Co-occurrence Networks
The co-occurrence networks (CoNs) were constructed
for each cohort using Pearson correlation coefficient,
as described in previous work [15].

Construction of Signed Bayesian Networks
The edges of BNs were augmented with the coefficient
values generated in CoNs, thus distinguishing between
positive and negative correlations. As mentioned ear-
lier, the resulting network is referred to as a Signed
Bayesian Network (sBN). All sBNs in this paper were
visualized using Cytoscape [41]. The color of the edges
(green for positive and red for negative) indicates sign
information.

Experiments and Statistical Analyses
The constraint-based algorithms employ statistical
tests for deciding conditional independence. Since the
random variables in our experiments hold continuous
data representing the abundance of taxa, we used lin-
ear correlation (student’s exact T-test) and Fisher’s
Z-test (asymptotic normal test) for conditional inde-
pendence testing [42,43].

In the PC-stable algorithm, inferring the skeleton
structure and inferring the directions of edges in-
volved in the v-structures are known to be “order-
independent”. However, inferring the directions of
edges not involved in the v-structures is not order-
independent. A non-parametric bootstrap value was
computed to indicate the strength of each edge in the
output network in order to assess the accuracy of the
output [44,45]. To achieve this, the data was random-
ized before input into the PC-stable algorithm. The
bootstrap values were computed by executing the pro-
gram on 200 different permuted inputs and reporting
the percentage of times it reports one direction.
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Results and Discussion
The sBNs were obtained by prudent use of BNs in con-
junction with CoNs. The main contribution of this pa-
per is to show evidence to support the claim that sBNs
can help make inferences about colonization order. In
some niche environments, research has shown that mi-
crobes colonize the niche in specific orders, with early
colonizers often recruiting late colonizers or creating
conditions that make it more attractive for specific late
colonizers [46]. We have observed that with high accu-
racy, the edges of sBNs are consistent with known col-
onization orders. In particular, we show that the sBNs
can capture colonization order when augmented with
the correlation coefficient. The findings were validated
by analyzing oral, infant gut, and vaginal microbiome
data sets, where prior published information on col-
onization order was available. The colonization order
was also retained in our experiments with the semi-
synthetic data sets as well.

The sBNs generated from the data sets mentioned
above were visualized with Cytoscape. In all the sBNs
generated (Figs. 2-5 and Supplementary Figs. 6-11),
nodes correspond to bacterial taxa, node sizes are pro-
portional to the average abundance of the taxa, thick-
ness of the edges are proportional to the absolute value
of Pearson correlation coefficient (i.e., measure of co-
occurrence), and opacity of an edge is proportional
to its bootstrap values. Edges are colored green and
red for positive and negative correlations, respectively.
The purple and red node colors correspond to the bac-
terial taxa that are described as early and late coloniz-
ers (in published literature), respectively [47–49]. The
black nodes indicate colonizers whose order has not
been described previously. We note (data not shown)
that while there are many strongly connected clusters
in CoNs, these nodes remain connected in sBNs (as
expected), but relatively sparsely because of the strin-
gent conditional probability tests.

Semi-synthetic data from infant gut microbiome — sBN
Edges are Consistent with Temporal Order
The infant gut data set was temporally aligned as de-
scribed earlier. We then divided the time line into k
periods, with k = 1, 2, . . . and created sBNs from each
period. The goal was to see if any of the known orders
of colonization can be observed in the figures, even
after having modified the time axis of each subject
differently.

The infant gut is dominated by three classes that
generally appear and colonize in a sequential order:
Bacilli (Firmicutes) soon after birth, which then gives
way to the Gammaproteobacteria (Proteobacteria),
and followed by Clostridia (Firmicutes) [34]. When
we partitioned the time series into k = 2 periods, the

sBN from the first period had a directed edge from the
Bacilli to Gammaproteobacteria. The red-colored edge
suggested a negative correlation as would be expected
if this inference came from colonization order. Addi-
tionally, the sBN generated from the second period
showed a directed edge from Gammaproteobacteria to
Clostridia, also colored red (Fig. 1).

When the time series were partitioned into three pe-
riods, the same two edges were represented strongly
in periods 2 and 3 respectively. In fact, the strength
of the two edges in the three periods were (1) 0.4 and
0.16 (i.e., both weak), (2) 0.94 and 0.16, and (3) 0.61
and 0.80. The above observations suggest strongly that
the transition from Bacilli to Gammaproteobacteria
occurs before the transition from Gammaproteobac-
teria to Clostridia, and that the colonization order is
supported in the sBNs.

We, therefore, conclude that sBNs are capable of
capturing colonization order using the methods sug-
gested above. Red edges or negative correlations are
consistent with the model that for both edges when
one taxon is declining in abundance, the other is in-
creasing in abundance.

Oral Microbiome — sBN Edges are Consistent with
Colonization Order
In the oral cavity, early and late bacterial colonizers
have been identified and reviewed in the literature [47].
Many species from the genus Streptococcus is the early
primary colonizer, accounting for 60% - 90% of the
early abundance profile [50]. The following taxa have
been identified as early and late colonizers for oral mi-
crobiomes [47–49].
Early: Streptococcus gordonii, Streptococcus mitis,

Streptococcus oralis, Streptococcus sanguis, Acti-
nomyces israelii, Actinomyces naeslundii, Propi-
onibacterium acne.

Late: Selenomonas flueggei, Treponema spp., Porphy-
romonas gingivalis.

Comparison of the sBNs for all oral microbiomes (Figs.
2-3 and Supplementary Figs. 6-11) showed that the
keratinized gingiva (Fig. 2) and tongue dorsum (Fig.
3) have the fewest number of distinct taxa. The sBNs
for these two sites were more distinctive than those
derived from other sites and showed stronger correla-
tions between taxa. The saliva, subgingival, and pala-
tine tonsils sites harbored a higher number of taxa
and exhibited weaker correlations. Note that not ev-
ery taxa is present in every oral site, thus explaining
the differences in the set of nodes present in each sBN.

The sBNs for the oral microbiomes had a combined
total of 716 edges. Of these, 78 edges connected ver-
tices, which were associated with known early or late
colonizers. Table 2 summarizes the directed edges be-
tween early and late colonizers, they are consistent
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with the known colonization order, and the correla-
tion (negative/positive edges) among them. More than
90% of the sBN edges for the oral microbiome were
directed with the exceptions of saliva and buccal mu-
cosa, for which only 83-84% were directed. Of the 78
edges connecting labeled vertices, all edges except for
two were consistent with the known colonization order,
i.e., directed from early to late colonizers (Table 2).
These two edges are shown as dashed lines in the cor-
responding sBNs (see Figs. 7 and 10). In summary, for
the oral microbiome the directed sBN edges go from
early to late colonizers, with few exceptions. For ex-
ample, the sBN from keratinized gingiva (Fig. 2) has
three directed edges (Actinomyces2-Porphyromonas1,
Streptococcus1-Porphyromonas1, and Streptococcus2-
Porphyromonas1) from early colonizers to late coloniz-
ers and none from late to early colonizers. Note that all
taxonomic names have been abbreviated in the figures
to the first five characters plus a number, each name
refers to a distinct OTU. The sBN for the buccal mu-
cosa (Supplementary Fig. 6), palatine tonsils (Supple-
mentary Fig. 7), saliva (Supplementary Fig. 8), sub-
gingival plaque (Supplementary Fig. 9), supragingival
plaque (Supplementary Fig. 10), and throat (Supple-
mentary Fig. 11) are included in the supplementary
files.

Oral Microbiome — sBN Edges with Negative
Correlation are Consistent with Colonization Order
As mentioned above, two out of the 78 edges are excep-
tions to the rule that no edges in the sBNs are directed
from late to early colonizers. In particular, one edge
goes from Trepo5 (Treponema, labeled as a late colo-
nizer) to Actin3 (Actinomyces, labeled early colonizer)
in palatine tonsils. Similarly, another edge goes from
Porph3 (Porphyromonas, labeled as late colonizer) to
Actin3 (Actinomyces, labeled early colonizer) in supra-
gingival plaque. However, the correlation coefficient of
the edges between them is positive. Thus, the accu-
racy in terms of direction is 97.4%, and all correctly
directed edges have negative correlations. According
to Kolenbrander et al., the bacterial taxa representing
early colonizers coaggregate with only a specific set of
other early colonizers, and not with any of the late
colonizers [47]. Our findings, albeit limited, are consis-
tent with this observation, that all edges connecting
early to late colonizers in that direction are negatively
correlated (red edges).

Infant Gut Microbiome
The abundance of microbes in neonatals over the
course of the first few weeks of their lives have been
reported [34]. In two infant gut microbiome stud-
ies, the class Bacteroidetes and Gammaproteobacteria

were observed early, followed by Bacilli, Clostridia and
Gammaproteobacteria [34, 51]. Over time, there was
a significant decrease in Bacilli, and the infant’s gut
appears to have a tug-of-war between the two classes
Gammaproteobacteria and Clostridia [51]. When the
sBNs were constructed with the infant gut micro-
biome data, we obtained a directed network that sup-
ported the claim that sBNs shed light on the coloniza-
tion pattern (Fig. 4). There were directed edges from
Bacteroidetes, Bacilli, and Clostridia to Gammapro-
teobacteria (Fig. 4). The results also supported the
prior knowledge that Clostridia precedes Bacilli in the
colonization order. All these taxa are mostly negatively
correlated (red edges), as shown in Fig. 4, reinforcing
the point that a directed edge combined with nega-
tive correlations is strongly suggestive of colonization
order.

Vaginal Microbiome
A healthy vaginal microbiome is dominated mainly
by Lactobacillus species [52]. When women at a re-
productive age suffer from bacterial vaginosis (BV),
the Lactobacillus species are replaced by Gardnerella,
Peptostreptococcus, Atopobium, Sneathia, Parvimonas,
and Corynebacterium, among others [53]. Fig. 5 shows
three sBNs for vaginal microbiomes associated with
low (healthy), medium (early BV), and high (advanced
BV) Nugent scores. All samples were analyzed for
the abundance of the same set of 23 genera. Overall,
the predominant genera observed were Lactobacillus,
Atopobium, Gardnerella, Parvimonas, and Prevotella
(Fig. 5).

In the sBN associated with the healthy “vaginome”,
the abundance of Lactobacillus was comparatively
higher as expected. The Lactobacillus species, espe-
cially, L. crispatus and L. iners (data not shown)
displayed an antagonistic relationship with the BV-
associated Gardnerella.

In the sBN for the medium Nugent score cohort,
indicative of early vaginosis, the BV-associated gen-
era, Atopobium, and Sneathia AND Gardnerella were
significantly increased in abundance, and appeared
as early colonizers. The abundance of all the BV-
associated pathogens was negatively correlated with
Lactobacillus, reaffirming an antagonistic relationship.

In the sBN for the advanced BV cohort, charac-
terized by higher Nugent scores, a proportional in-
crease in abundance was observed with Atopobium
followed by Gardnerella. Even with the antagonis-
tic relationship with Lactobacillus, the BV-associated
pathogenic genera especially Atopobium and Gard-
nerella, Sneathia are connected by a directed edge to
Lactobacillus. The appearance of the pathogenic gen-
era as late colonizers is consistent with clinical find-
ings [54]. Strong positive relationships were observed

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.18.955344doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955344
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sazal et al. Page 7 of 9

Table 2: Inferring Colonization order in oral microbiomes. The columns indicate the following: sampled oral
sites, total number of edges in causal network, number of directed edges, total number of negatively correlated
(red) edges, number of edges connecting early to late colonizers, number of edges connecting early with early
or late colonizers, number of inconsistent directed edges (i.e., from late to early colonizers), and percentage of
negatively correlated edges connecting early to late colonizers.

Oral Site Total Directed Red E → L E → E or E → L L → E Consistent Red edges

Buccal mucosa 69 57 5 1 4 0 100%
keratinized gingiva 39 36 8 3 5 0 100%

Palatine tonsils 126 116 9 1 13 1 92%
Saliva 102 86 8 1 12 0 100%

Subgingival plaque 123 113 8 1 18 0 100%
Supragingival plaque 109 105 11 3 13 1 92%

Dorsum of tongue 56 50 11 1 4 0 100%
Throat 92 83 8 0 9 0 100%

Total 716 646 68 11 78 2 97.4%

between Prevotella and Peptostreptococcus, and Pep-
tostreptococcus with Parvimonas. This may suggest
that the presence of Prevotella enables the coloniza-
tion of Peptostreptococcus followed by Parvimonas.

To check the robustness we also experimented with
a higher number of taxa, i.e., by including all taxa
whose abundance added up to 99.99 %. We found that
sBNs can retrieve the known colonization order even
if we include taxa with small abundance (from 99% to
99.99% of most abundant taxa shown in Fig. 12).

Conclusions
In healthy oral microbiomes, taxa such as Actinobac-
teria were identified as early colonizers [55]. Many
pathogenic microbes associated with oral diseases such
as dental caries, gingivitis, and periodontitis appeared
as late colonizers [56]. In addition, there were antag-
onistic relationships between these pathogens. The ri-
valry seemed to occur between Streptococcus, Fusobac-
terium, Prevotella, Porphyromonas, Veillonella, Pro-
pionibacterium and Neisseria. Since the oral samples
came from healthy individuals, the existence of the ri-
valry could lead to the elimination of one or more taxa
from the site. Alternatively, it is also possible that one
taxon keeps the other in check to prevent dysbiosis. A
well-known pathogenic genera, Treponema, appeared
as a late colonizer with positive correlations in most
of the sites. It was absent in keratinized gingiva and
tongue dorsum, but appeared as an early colonizer in
buccal mucosa. This may suggest that the buccal mu-
cosa is the site in the oral cavity where Treponema
colonizes.

The sBN for the vaginal microbiome confirmed pre-
viously known relationships between Lactobacillus and
other BV-associated pathogens. In the process, it also
suggested a possible colonization order. It would re-
quire a longitudinal study of women before and after
BV to validate the suggested colonization order. Cur-
rent analyses suggest that the balance in the relative

abundance of Lactobacillus and Atopobium may be a
biomarker for BV.

Inferring the interactions between different taxa
within a microbial community and understanding their
influence on health and disease is one of the primary
goals of microbiome research. The sBNs help us to in-
fer potential relationships and dependencies within a
microbiome, and the colonization order, even without
the use of data from longitudinal studies. The sBNs
could help in understanding the dependencies between
the entities of a microbial community.

Finally, we reiterate the conclusion that directed
edges in sBNs when combined with negative correla-
tions, may be strongly suggestive of colonization order.
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sBN generated from early to mid time point (top)

sBN generated from mid to last time point (bottom)
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