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Abstract

In order to increase statistical power for learning a causal network, data are often
pooled from multiple observational and interventional experiments. However, if the
direct effects of interventions are uncertain, multi-experiment data pooling can result in
false causal discoveries. We present a new method, “Learn and Vote,” for inferring
causal interactions from multi-experiment datasets. In our method, experiment-specific
networks are learned from the data and then combined by weighted averaging to
construct a consensus network. Through empirical studies on synthetic and real-world
datasets, we found that for most of the larger-sized network datasets that we analyzed,
our method is more accurate than state-of-the-art network inference approaches.

Introduction 1

Causal modeling is an important analytical paradigm in action planning, predictive 2

applications, research, and medical diagnosis [1, 2]. A primary goal of causal modeling is 3

to discover causal interactions of the form Vi → Vj , where Vi and Vj are observable 4

entities and the arrow indicates that the state of Vi influences the state of Vj . Causal 5

models can be fit to passive observational measurements (“seeing”) as well as 6

measurements that are made after performing external interventions (“doing”). 7

In many settings, observational measurements [3] are more straightforward to obtain 8

than interventional measurements, and thus observational datasets are frequently used 9

for causal inference. However, given only observational data, it is difficult to distinguish 10

between compatible Markov equivalent models [4, 5]. For example, the three causal 11

models Vi −→ Vj −→ Vk, Vi ←− Vj ←− Vk, and Vi ←− Vj −→ Vk are Markov equivalent—each 12

encodes the conditional independence statement Vi ⊥⊥ Vk | Vj . This ambiguity can in 13

principle be resolved by incorporating measurements obtained from interventional 14

experiments in which specific entities are targeted with perturbations. With the benefit 15

of interventional measurements, Markov equivalent causal models can have different 16

likelihoods, enabling selection of a maximum-likelihood model. These considerations 17

have motivated the development of network learning approaches that are specifically 18

designed to leverage mixed observational and interventional datasets [6]. 19

Learning a causal network from a mixed observational-interventional dataset poses 20

methodological challenges, particularly in integrating datasets from different 21
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experiments and accounting for interventions whose effects are uncertain [7]. Due to 22

batch effects, data collected from two different experiments might not be identically 23

distributed and thus the two experiments may be incoherent from the standpoint of 24

causal network model. As a result, directly combining data from different experiments 25

can lead to errors in network learning. Interventions, too pose a challenge due to the 26

fact that in real-world settings many interventions are (i) imperfect, meaning 27

interventions are unreliable and have soft-targets (A “soft” target intervention, or 28

“mechanism change,” is an intervention that changes a target node’s distribution’s 29

parameters, but does not render that it’s independent of its parent nodes [7]), and 30

(ii) uncertain, meaning that the “off-target” nodes are unknown. Classical causal 31

learning algorithms are based on the assumption that interventions are perfect [1]; 32

applying such algorithms to a dataset derived from imperfect interventions would likely 33

yield spurious interactions. Eberhardt [8] classifies such errors into two types: 34

a) independence to dependence errors, where two variables Vi and Vj that are 35

independent are detected as dependent when data from the observational and 36

interventional experiments are pooled (i.e., false positive detection of a causal 37

interaction) and b) dependence to independence errors, where two variables Vi and Vj , 38

that are dependent in an observational study are independent when the data from the 39

observational study are pooled with data from an interventional study (i.e., a false 40

negative for the interaction). Consensus has yet to emerge on the question of 41

how—given two or more datasets generated from different interventions—the datasets 42

should be combined to minimize such errors in the learned network model. 43

We have developed a new method, “Learn and Vote”, for inferring causal networks 44

from multi-experiment datasets. “Learn and Vote” can be used to analyze datasets from 45

mixed observational and interventional studies and it is compatible with uncertain 46

interventions. As it is fundamentally a data integration method, “Learn and Vote” is 47

compatible with a variety of underlying network inference algorithms; our reference 48

implementation combines “Learn and Vote” data integration with the Tabu search 49

algorithm [9] and the Bayesian Dirichlet uniform (BDeu) [6, 10,11] network score, as 50

described below. To characterize the performance of “Learn and Vote”, we empirically 51

analyzed the network learning accuracies of “Learn and Vote” and six previously 52

published causal network learning methods (including methods that are designed for 53

learning from heterogeneous datasets) applied to six different network datasets. Of the 54

six network datasets, the largest real-world dataset is a cell biology-based, mixed 55

dataset (the Sachs et al. dataset [12]) with a known ground-truth network structure. On 56

larger networks, we report superior (or in worst case, comparable) performance of 57

“Learn and Vote” to the six previously published network inference methods. 58

Motivation and Background 59

Spurious dependencies and independencies 60

In this section, we introduce notation and describe how perturbations affecting two or 61

more variables in a causal model can lead to spurious dependencies or independencies. 62

Mathematically, a causal model Mc is described by a directed acyclic graph (DAG) 63

containing a pair (V,E), where V is a set observable nodes (corresponding to random 64

variables), E is a set of directed edges between pairs of nodes, Pa(Vi) represents the set 65

of parent nodes of variable Vi, and P (V ) represents the joint probability distribution. In 66

the context of network learning from interventional data, it is helpful to picture an 67

intervention (say, I1) as a separate type of node (denoted by a dashed circle in Fig. 1) 68

that can be connected to its targets (say, Vi and Vj) by causal edges of a separate type 69

(dashed arrow in Fig. 1). Applying classical network inference algorithms to 70
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(a) False dependence (b) False independence

Fig 1. Cross-experiment data pooling leads to network inference errors.
Illustration of a simple hypothetical causal model Mc with three observable entities (Vi,
Vj , and Vk. Two different interventional experiments are depicted: experiment Me1

involves intervention I1, and experiment Me2 involves intervention I2. Pooling
measurements from the two experiments can cause two types of network inference
errors: false positive edge (shown in (a) as a red arrow between Vi and Vj), and false
negative edges (shown in (b) as blue arrows between Vi and Vk and between Vj and Vk).

measurements pooled from multiple interventional experiments can lead to two different 71

types of learning errors, as we explain below. 72

1. False causal dependence: In the experiment depicted in Fig. 1a, Vi and Vj , 73

which are not causally related in Mc (Vi 6→ Vj), are affected by intervention I1. 74

Due to the intervention’s confounding effect, we have Vi 6⊥⊥ Vj in the combined 75

model MT1 = Mc + Me1 (we denote the joint distribution in the combined model 76

by P1(V ⊂ MT1
). Thus, pooling data from such different distributions may lead 77

to spurious correlations between independent variables. 78

2. False causal independence: In the experiment depicted in Fig. 1b, the 79

intervention I2 on Vk removes all the incident arrows for Vk and cuts off the 80

causal influences of Vi and Vj on Vk, causing Vi ⊥⊥ Pa(Vi). Pooling data from 81

such models can cause the causal dependencies Vi → Vk and Vj → Vk in Mc to be 82

missed (i.e., a “false negative” in the inferred network). 83

Review of prior literature 84

Classical causal learning methods fall into two classes: constraint-based methods (e.g., 85

PC [2], FCI [13]), in which the entire dataset is analyzed using conditional independence 86

tests; and score based methods (e.g., GES, GIES [14]), in which a score is computed 87

from the dataset for each candidate network model. Both classes of methods were 88

designed to analyze a single observational dataset, with the attendant limitations (in 89

the context of multi-experiment datasets) that we described above. Several 90

multi-dataset network inference approaches have been proposed that circumvent the 91

above-described problems associated with cross-experiment measurement pooling. 92

Cooper and Yoo [6] proposed a score-based algorithm that combines data from multiple 93

experiments, each having perfect interventions with known targets. The approach was 94

later refined by Eaton and Murphy [7] for uncertain and soft interventions [15]. The 95

method of Claassen and Heskes [16] is based on imposing the causal invariance property 96

across environment changes. Sachs et al. [12] analyzed a molecular biology dataset 97

(which has since become a benchmark dataset for molecular network inference, a 98

primary application focus of our work) using a variant of the Cooper-Yoo method. 99

Chen et al. [17] proposed a subgraph-constrained approach, called Trigger, to learn a 100
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yeast gene regulatory network model from transcriptome and genotype data. In the 101

Joint Causal Inference (JCI) [18] method, additional experimental context variables are 102

introduced before data pooling. Notably, the aforementioned methods assume some 103

prior knowledge about the network model. In contrast, our “Learn and Vote” method 104

(see Methods and Datasets) requires no prior knowledge about the network model. 105

Network Combination Methods: 106

Another class of multi-dataset network inference approaches, which we call “network 107

combination” methods, involve learning causal interaction statistics from each 108

experiment followed by integration of the statistics to obtain a single consensus network. 109

For example, in the ION [19] method, locally learned causal networks having 110

overlapping variables are integrated. The constraint-based COmbINE [20] method is 111

based on the estimation of variable-variable dependencies and independencies across 112

separate experiments. The MCI [21] algorithm is a constraint-based method that 113

exploits the ‘local’ aspect of causal V-structures [22]. However, none of these methods 114

produce experiment-specific weighted graphs, instead enumerating experiment-specific 115

partial ancestral graphs that are consistent with the data. In real-world datasets, due to 116

a variety of factors (finite sampling, experiment-specific biases and confounding effects, 117

measurement error, missing data, and uncertain/imperfect interventions), the 118

confidence with which a given causal interaction Vi → Vj can be predicted within a 119

given experiment will in many cases vary significantly from experiment to experiment 120

(and in the case of incomplete measurements, may not be quantifiable at all in a given 121

experiment). Thus, a network combination method compatible with experiment-specific 122

edge weights would seem to offer a distinct advantage in the context of multi-experiment 123

network inference. Furthermore, all of these methods assume that a single underlying 124

causal model accounts for all observed causal dependencies. In real-world settings where 125

experimental conditions change across experiments, this assumption seems unlikely to 126

hold, motivating the need for network inference methods that can (1) score candidate 127

interactions within individual experiment-specific datasets and (2) combine weighted 128

edges from experiment-specific datasets into a consensus network. 129

Biological Signaling Networks 130

A cell signaling network is a type of causal network in which the state of a protein or 131

other biomolecule influences the state of another protein or biomolecule downstream of 132

it (denoted by a directed arc). Such networks are amenable to interventional 133

experiments using molecular agents that target (i.e., activate or inhibit) specific 134

molecules. Sachs et al. [12] used a Bayesian network approach to infer causal 135

interactions among eleven signaling molecules in human CD4+ T-cells. In a series of 136

nine experiments—two observational and seven with specific molecular 137

interventions—they measured the activation levels of eleven phosphorylated proteins 138

and phospholipids by flow cytometry (Figure 2). They found 17 true positive 139

interactions, with 15 that were well-established in the biology literature and two that 140

were supported by at least one study; their inferred network missed three arcs (false 141

negatives) and it had no false positive arcs. 142

Uncertain interventions 143

Like most causal network learning approaches, the method used in the Sachs et al. study 144

and in our re-analysis assumes perfect interventions, i.e., that each of the interventional 145

agents targets exactly one of the signaling molecules. Such a perfect intervention 146

assumption is likely not consistent with typical interventions in biological systems, due 147
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Fig 2. Biological network for the Sachs et al. study, showing interactions (arcs) and
interventions (starred ellipses). The pathways represented by bold black lines are the
Ground Truth known causal interactions, established through literature study.

to potential off-target effects of pharmaceutical agents. Moreover, in a biological system, 148

the effects of certain types of interventions (for example, a gene knockout) may not be 149

describable by forcing of a target node’s state to a specific value in the observational 150

network. In the Sachs et al. experiments, although the interventions are assumed to be 151

perfect, they are known to have off-target effects, as shown by Eaton & Murphy 152

(2007) [7]. Eaton & Murphy modeled chemical interventions as context variables in the 153

network (assuming they had some known background knowledge about the underlying 154

network) to learn the intervention’s effects and found them to have multiple children. 155

To summarize, in the context of current learning algorithms, there are three primary 156

issues with pooling experimental data that were acquired with imperfect interventions: 157

1. Current algorithms might make mistakes since the arcs pointing towards the 158

unknown targets are not removed or handled properly. 159

2. Although pooling data adds more confidence into learning the true causal arcs, it 160

can also introduce spurious arcs with incorrect direction (see Fig. 4). 161

3. Each intervention might alter a mechanism or influence the local distribution in 162

an unknown way [23]. 163

Methods and Datasets 164

To avoid the problems arising from pooling data from different experiments in causal 165

network learning, we propose the “Learn and Vote” method (shown in Fig. 3 and 166

Algorithm 1). The method’s key idea is to (1) learn a separate weighted causal network 167

from the data generated in each experiment (which may be interventional or 168

observational) by ignoring the directed arcs into the intervened variables and then (2) 169

combine the experiment-specific networks by weighted averaging. The algorithm’s inputs 170

are, for each experiment, the values of the observed variables (V ) in the experiments 171
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(we denote the number of variables by v and the number of experiments by k) and the 172

identities of the known target nodes (stored as a list intv) for any interventions. 173

Algorithm 1 Learn and Vote

Input: set of k experiments with dataset D1,D2...Dk

Output: DAG Gf = (E, V), final causal network

1: procedure Our Approach
2: for j = 1 to k do
3: V = nodes In Dj

4: intv = Intervened nodes in Dj

5: randomNet = createRandNet(V, 100)
6: for l = 1 to 100 do
7: Net[l] = Tabu(randomNet[l], intv)

8: arcProb[j] = arcStrength(Net)

9: avgArcs = avgNetwork(arcProb)

10: Gf = learnDAG(avgArcs,Threshold)

Scoring Function 174

We incorporate the effect of intervention in the score component associated with each 175

node by modifying the standard Bayesian Dirichlet equivalent uniform score 176

(BDeu) [6, 10,11]. Given measurements Dj of variables V in experiment j, let Gj
177

represent a DAG learned from it (with conditional distributions P (Vi|Pa(Vi)G
j

), where 178

Pa(Vi)
Gj

is the set of parent nodes of Vi in DAG Gj). In a perfect interventional 179

experiment, for the set Int(m) of intervened nodes in sample m, we fix the values of 180

Vi[m] ∈ Int(m), meaning that we exclude P (Vi[m] | Pa(Vi)[m]) from the scoring 181

function for Vi ∈ Int(m). All the other unaffected variables are sampled from their 182

original distributions. The distribution of Dj is per experiment and not a pooled dataset 183

of all experiments as in the Sachs et al. method. We define an experiment-specific 184

network score S(Gj : Dj) as sum (over all variables Vi) of per-variable local scores 185

Slocal(Vi, U : Dj) of variables Vi. The left part of the equation is the prior probability 186

assigned to the choice of set U as parents of Vi, and the right part is the probability of 187

the data integrated over every possible parameterizations (θ) of the distribution. 188

Slocal(Vi, U : Dj) = logP (Pai = U) + log

∫ ∏
m,Vi 6∈Int(m)

P (Vi[m]|U [m], θ)dP (θ).

189

Structure learning 190

Because our method uses local stochastic search (Tabu), we create an ensemble of n 191

random starting DAGs (stored as randomNet, see Algorithm 1) using the procedure 192

createRandNet. Empirically, we have found that n = 100 is adequate for the network 193

multivariate datasets that we analyzed in this work to demonstrate empirical 194

performance of our method (see Results). From each DAG in randomNet, we then 195

search for an optimal network model using the Tabu search algorithm [9] and store the 196

n networks in a list Net. The list intv of known targets is passed as an argument which 197

incorporates interventions in the search algorithm by preventing the arcs to be incident 198

on the targets. Next, we measure the probabilistic arc strength and direction (using the 199

procedure arcStrength) for each arc as its empirical frequency given the list of 200

networks in Net. We average the arc strengths for every directed arc over the networks 201

in which corresponding target node was not intervened and store them as a list arcProb. 202
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Fig 3. Workflow of “Learn and Vote”: Step 1 - Collecting data from k experiments
(combination of observational and interventional studies). For interventional studies, the
known targets (marked in Red) are incorporated as external perturbation during the
search process. Step 2 - Creating 100 random DAGs using the observed nodes, as a
starting point. Step 3 - Optimizing each of the 100 DAGs with data using Tabu search.
Step 4 - Calculating probability (in terms of strength and direction) of occurrence for
every possible arc from the 100 optimized DAGs and storing them in tables. Step 5 -
Combining votes from all the tables by weighted averaging and constructing the final
causal network, with arc strengths above a threshold (in this case 50%)

.
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Combining results from experiments 203

Given arc information (in arcProb, see Algorithm 1) from each experiment, we average 204

their strengths and directions over the number of experiments where the given arc is 205

valid (using procedure avgNetwork). Finally, we compute the averaged arc strengths as 206

avgArcs and threshold on arc strength (using a predefined Threshold) in order to 207

produce the final DAG (using procedure learnDAG). We found that our method 208

performs best at a 50% threshold. We implemented “Learn and Vote” in the R 209

programming language, making use of the bnLearn package [24]. 210

Datasets that we used for empirical performance analysis 211

From six published networks, we obtained nine datasets (with associated ground-truth 212

networks) that we analyzed in this work. To avoid bias, from each network we used 213

both observational and interventional datasets. For synthetic networks, as observations, 214

we drew random samples. As interventions, we set some target nodes to fixed values. 215

Next, in order to model uncertainty, we also set one or more of the target’s children to 216

different values (like “fat-hands” [7]) which are assumed to be unknown. Finally, we 217

sampled data from each of the mutilated networks [25] : 218

• Lizards: a real-world dataset having three variables representing the perching 219

behaviour of two species of lizards in the South Bimini island [26]. We generated 220

one observational dataset and two interventional datasets from the lizards 221

network. 222

• Asia: a synthetic network of eight variables [27] about occurrence of lung diseases 223

and their relation with visits to Asia. For our empirical study, we created two 224

mutilated networks: Asia mut1 has one observation and one interventional 225

dataset, and Asia mut2 has one observational and two interventional datasets. 226

• Alarm: a synthetic network of thirty seven variables representing an alarm 227

messaging system for patient monitoring [28]. For our study, we created two 228

mutilated networks: Alarm mut1 has three observational and six interventional 229

studies, and Alarm mut2 has five observational and ten interventional datasets. 230

• Insurance: a synthetic network of twenty seven variables for evaluating car 231

insurance risks [29]. We created two mutilated networks: Insurance mut1, from 232

which we obtained one observational and five interventional datasets; and 233

Insurance mut2, from which we obtained three observational and eight 234

interventional datasets. 235

• gmInt: a synthetic dataset containing a matrix of observational and 236

interventional data from eight Gaussian variables, provided in the pcalg-R 237

package. 238

• Sachs et al.: a cell signaling network and associated mixed 239

observational-interventional dataset published by Sachs et al. [12], described 240

above). 241

Causal network learning methods that we compared to “Learn and Vote” 242

Using the aforementioned networks and datasets, we compared the accuracy of “Learn 243

and Vote” for network inference to the following six algorithms (implemented in R): 244

• PC: We used the observational datasets to evaluate DAG-equivalent 245

structures [2], and we used Fisher’s z-transformation conditional independence 246

test (varying α from 0 to 1). 247
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• GDS: This is a greedy search method [14] to estimate Markov equivalence class of 248

DAG from observational and interventional data. It works by maximizing a 249

scoring function (L0-penalized Gaussian maximum likelihood estimator) in three 250

phases, i.e., addition, removal and reversal of an arrow, as long as the score 251

improves. 252

• GIES: This algorithm [14] generalizes the greedy equivalence search (GES) 253

algorithm (Chickering 2002) to include interventional data into observational data. 254

• Globally optimal Bayesian Network (simy): This is a score-based dynamic 255

programming approach [30] to find the optimum of any decomposable scoring 256

criterion (like BDe, BIC, AIC). This function (simy) estimates the best Bayesian 257

network structure given interventional and observational data but is only feasible 258

up to about 20 variables. 259

• Invariant Causal Prediction (ICP): This method by Peters et al., [31] 260

calculates the confidence intervals for causal effects by exploiting the invariance 261

property of a causal (vs. non-causal) relationship under different experimental 262

settings. We implemented it in R, making use of the 263

InvariantCausalPrediction package. 264

• Sachs et al. method The Bayesian network approach used by Sachs et al. was 265

described in Methods and Datasets above. 266

For each of these methods except PC, the method implementations that we used were 267

adapted for heterogeneous datasets (see citations above). 268

Performance measurement 269

For the purpose of quantifying the accuracies of the nine networks learned by each of 270

the seven network algorithms, we treated the presence of an arc in the ground-truth 271

dataset as a “positive” and its absence as a “negative”. For each inferred network and 272

each algorithm, from the confusion matrix we computed precision, recall, and the F1 273

harmonic mean of precision and recall (we did not compute accuracy due to the 274

inherent class imbalance of sparse networks), as shown in Table 1. 275

Results 276

Effect of interventions on network inference 277

Based on prior studies suggesting that incorporating data from interventional studies 278

improves network inference (see Introduction), we re-analyzed the Sachs et al. [12] 279

biological cell signaling dataset (for which a ground truth network was published [12]) 280

using their published inference approach twice, first using observational samples only 281

(Figure 4a) and then using an equal number of samples comprising 50% observational 282

and 50% interventional data (Figure 4b). We found that sensitivity for detecting cell 283

signaling interactions increases when data from observational and interventional 284

experiments are co-analyzed (Fig. 4b), versus when only data from observational 285

experiments are used (Fig. 4a). These results illustrate the benefit of using data from 286

interventional experiments for causal network reconstruction. 287

Effect of pooling on network inference 288

Based on prior studies suggesting that pooling data from multiple experiments can lead 289

to errors in network learning (see Introduction), we analyzed the same cell signaling 290

February 19, 2020 9/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.18.955153doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955153
http://creativecommons.org/licenses/by/4.0/


(a) TP: 3, FP: 10, FN: 17 (b) TP: 5, FP: 10, FN: 15 (c) TP: 4, FP: 5, FN: 16

Fig 4. Networks inferred by (a) pooling data from two observational experiments;
(b) pooling data from an observational (anti-CD3/CD28) and an interventional
experiment (AKT inhibitor); and (c) “Learn and Vote” using the same experiments as
in the middle panel. The structure learning statistics used are True Positive (TP), False
Positive (FP) and False Negative (FN). False positives are reduced by avoiding pooling.

dataset as in Fig. 4b, using the “Learn and Vote” method, in which data are not pooled. 291

Compared to the the Sachs et al. inference method which was based on data pooling 292

(Fig. 4b), use of “Learn and Vote” significantly reduced false positives, while increasing 293

the overall robustness of the network learning (Fig. 4c). 294

Systematic comparative studies 295

To study the performance characteristics of “Learn and Vote” for a broader class of 296

network inference applications, we carried out a systematic, empirical comparison our 297

method’s performance with six previously published causal network learning methods 298

using nine datasets (from six underlying networks of small to medium size, as described 299

above in Methods and Datasets), spanning a variety of application domains. 300

Networks learned by the seven methods on the cell signaling dataset 301

On the Sachs et al. dataset, the consensus networks that each algorithm learned are 302

shown in Fig. 5a-g; the networks varied significantly in terms of density, with GDS, 303

GIES, and simy giving large numbers of edges, and PC and ICP giving relatively sparse 304

networks (with the PC network having many ambiguous arc directions). For each of the 305

methods, we tabulated the numbers of correct and incorrect (or missing) arcs in the 306

consensus networks learned (Fig. 5h). The greedy algorithms (Fig. 5b,c) and simy 307

(Fig. 5e) are able to find most of the true positive arcs at the cost of a large number of 308

false positives. The consensus “Learn and Vote” network (Fig. 5g) improved over the 309

consensus network obtained using the Sachs et al. inference method (Fig. 5f), by 310

eliminating six false positive edges and gaining a true positive edge (PIP2 → PKC) 311

(Fig. 5h, rightmost two columns). We further note that two of the putatively false 312

interactions that were detected by “Learn and Vote”, (P38 → pjnk) and 313

(PKC → p44.42), on further study are likely real interactions according to PCViz 314

(www.pathwaycommons.org/pcviz) and PubMed (www.ncbi.nlm.nih.gov/pubmed). 315

Moreover, our method had the lowest number of false positives among all seven methods 316

and was tied for second-highest in terms of the number of true positives (Fig. 5h). 317

Quantifying performance of seven network learning algorithms 318

In Table 1, we summarize the performance, in terms of network learning precision, 319

recall, and F1 score of the seven network inference methods applied to nine datasets 320

(with associated ground-truth networks) that were described in Methods and Datasets. 321

In terms of F1 accuracy, while the PC algorithm (which used observational 322
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(a) PC (b) GDS (c) GIES (d) ICP

(e) simy (f) Sachs (g) Learn and Vote

Method PC GDS GIES ICP simy Sachs et al. Learn & Vote
True Positive 8 18 17 9 19 17 18
False Positive 6 25 28 0 26 8 2
False Negative 12 2 3 11 1 3 2

(h) Performance

Fig 5. Consensus networks inferred from various algorithms (a-g) on the Sachs et al.
cell signaling dataset. A bidirectional arrow between two nodes denotes that an
interaction is predicted between the two nodes, but the direction of causality is
ambiguous. In the table (h), each row corresponds to a component of the confusion
matrix (true positives, false positives, and false negatives), and each column corresponds
to a causal network inference method.
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Table 1. Multi-dataset performance of “Learn & Vote” versus six other
methods. Each row corresponds to a specific dataset derived from a specific underlying
ground-truth network (as described in detail in Methods and Datasets). Each row is
split into three performance measures (precision, recall, and the “F1” harmonic mean of
precision and recall). For each sub-row, the highest performance measurement is
boldfaced. Each column corresponds to a specific method for causal network inference
(as described in detail in Methods and Datasets), with the performance measures of our
method (“Learn and Vote”) in the rightmost column. The symbol “n/a” denotes that
no performance results were available for that method on that dataset. Here, the
method “simy” is only feasible for networks containing up to 20 nodes, so it failed to
produce results on the larger networks. The network size denotes the number of nodes
in the indicated network. The network type is as follows: RW, real-world; S, synthetic.

Dataset size type Metric PC GDS GIES ICP simy
Sachs
et al.

Learn
&
Vote

Lizards 3 RW
Precision 1 1 1 0 1 1 1

Recall 1 1 1 0 1 0.5 0.5
F1 score 1 1 1 0 1 0.667 0.667

Asia mut1 8 S
Precision 1 0.625 0.625 1 0.316 0.77 1

Recall 0.75 0.625 0.625 0.5 0.75 0.875 0.75
F1 score 0.857 0.625 0.625 0.666 0.444 0.824 0.857

Asia mut2 8 S
Precision 1 0.857 0.857 1 0.304 0.666 1

Recall 0.75 0.75 0.75 0.5 0.875 0.75 0.75
F1 score 0.857 0.8 0.8 0.666 0.493 0.706 0.857

gmInt 8 S
Precision 0.75 0.889 0.889 1 0.889 0.857 1

Recall 0.75 1 1 0.375 1 0.75 0.75
F1 score 0.75 0.94 0.94 0.545 0.94 0.8 0.857

Cell signaling 11 RW
Precision 0.571 0.419 0.377 1 0.422 0.68 0.89

Recall 0.4 0.9 0.85 0.45 0.95 0.85 0.89
F1 score 0.47 0.572 0.522 0.62 0.584 0.756 0.89

Insurance mut1 27 S
Precision 0.714 0.36 0.362 0.7 n/a 0.857 0.8

Recall 0.288 0.346 0.327 0.25 n/a 0.577 0.538
F1 score 0.411 0.352 0.343 0.368 n/a 0.689 0.643

Insurance mut2 27 S
Precision 0.714 0.355 0.366 0.64 n/a 0.676 0.686

Recall 0.288 0.423 0.423 0.21 n/a 0.442 0.461
F1 score 0.411 0.386 0.392 0.316 n/a 0.535 0.552

Alarm mut1 37 S
Precision 0.666 0.25 0.26 0.7 n/a 0.625 0.564

Recall 0.434 0.217 0.26 0.26 n/a 0.446 0.4
F1 score 0.526 0.232 0.26 0.38 n/a 0.52 0.468

Alarm mut2 37 S
Precision 0.666 0.411 0.513 0.6 n/a 0.725 0.769

Recall 0.434 0.456 0.434 0.21 n/a 0.63 0.642
F1 score 0.526 0.432 0.47 0.311 n/a 0.675 0.7
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measurements) has strong performance on smaller networks, “Learn and Vote” has 323

superior performance for learning the structure of larger networks. More broadly, 324

“Learn and Vote” outperformed the other six algorithms in five out of nine studies in 325

terms of precision, with the ICP method having second best performance. The positive 326

predictive rate of our approach is higher for small or medium sized networks (i.e., fewer 327

than 20 nodes) but decreases as the size of the network increases. In contrast, the 328

greedy algorithms (GDS, GIES) perform well for smaller networks but suffer from lower 329

precision on larger networks. In terms of F1, our approach outperformed the others in 330

five out of nine studies and is more stable even when the network size increases. For 331

very small networks (i.e., fewer than 10 nodes), the PC-based approach has good 332

sensitivity, however, it leaves many of the arc directions ambiguous (Fig. 5a). 333

Sensitivity to threshold 334

To study the sensitivity of our results to the threshold parameter (which was set to 0.5) 335

for predicting a causal arc, we compared the performance of “Learn and Vote” to that 336

of the Sachs et al. method on three different network datasets (cell signaling, Asia mut1, 337

and Asia mut2; see Methods and Datasets) by plotting the sensitivity versus false 338

positive error rate (FPR) for various threshold values (Fig. 6a). On all three datasets, 339

in terms of area under the sensitivity-vs-FPR curve, “Learn and Vote” has a higher 340

score than the Sachs et al. method, with the most significant performance gap occurring 341

at thresholds where the specificity is in the range of 0.7–0.9. 342

(a) Cell signaling (b) Asia mut1 (c) Asia mut2

Fig 6. Sensitivity vs. FPR for “Learn and Vote” and the Sachs et al. method on three
datasets: (a) Sachs et al. cell signaling; (b) Asia lung disease (mut1); and (c) Asia lung
disease (mut2). The line plots are nonmonotonic due to the use of different random
initial DAGs for different points on the line plot.

Effect of sample size 343

It seems intuitive that in cases where single-experiment sample sizes are very small, 344

separately analyzing data from individual experiments would be expected to perform 345

poorly relative to a pooling-based approach like the Sachs et al. method. To test this, 346

we analyzed the how the relative performances of “Learn and Vote” and the Sachs et al. 347

method vary with sample size on the Sachs et al. dataset (for which the Sachs et al. 348

method was specifically developed). We sampled equal numbers of data points from 349

each experiment to prevent bias towards a particular experiment. Fig. 7 shows the 350

performance of our method versus the Sachs et al. method by varying the numbers of 351

samples used from each experiment. When the number of samples per experiment is 352

very small, learning from pooled data gives a better result. For the Asia network, which 353

has eight nodes, when the number of samples per experiment is very small (e.g., 20 354

samples), the performance of “Learn and Vote” is no better than the pooling-based 355

Sachs et al. method (Fig. 7b-c). Hence, when only a small amount of data are available 356

it is a good idea to combine them irrespective of experimental conditions. However, for 357
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large enough sample size, we see that pooling degrades accuracy of network 358

reconstruction. 359

(a) Cell signaling (b) Asia mut1 (c) Asia mut2

Fig 7. F1 vs. sample size for Learn and Vote and the Sachs et al. method, for three
datasets.

Discussion 360

Taken together, our results (Fig. 5 and Table 1) suggest that for analyzing datasets 361

from studies that have imperfect interventions, greedy analysis methods (e.g., GDS, 362

GIES) are not as accurate as “Learn and Vote”. On the other hand, ICP is conservative 363

due to its strict invariance property and helps reduce false causal arcs to a great extent, 364

but at the cost of sensitivity (Fig. 5d). The relatively poor performance of the PC 365

method on the Sachs et al. dataset likely reflects the fact that it does not utilize 366

interventional data. In future work, we plan to study the case of handling uneven 367

samples of data from different experiments. We also plan to extend the work by 368

choosing which interventional target is more informative in an unknown network 369

structure. Another improvement of our approach is to see how choosing the number of 370

random DAGs (we have taken 100) scales with network size. For example, in case of 371

larger graphs, 100 might not be sufficient while in smaller graphs it could be overkill. 372

One possible improvement to “Learn and Vote” would be an adaptive method for 373

selecting the number of random initial DAGs; this is an area of planned future work. 374

Conclusion 375

We report a new approach, “Learn and Vote,” for learning a causal network structure 376

from multiple datasets generated from different experiments, including the case of 377

hybrid observational-interventional datasets. Our approach assumes that each dataset is 378

generated by an unknown causal network altered under different experimental 379

conditions (and thus, that the datasets have different distributions). Manipulated 380

distributions imply manipulated graphs over the variables, and therefore, combining 381

them to learn a network might increase statistical power but only if it assumes a single 382

network that is true for every dataset. Unfortunately, this is not always the case under 383

uncertain interventions. Our results are consistent with the theory that simply pooling 384

measurements from multiple experiments with uncertain interventions leads to spurious 385

changes in correlations among variables and increases the rate of false positive arcs in 386

the consensus network. In contrast, our “Learn and Vote” method avoids the problems 387

of pooling by combining experiment-specific weighted graphs. We compared “Learn and 388

Vote” with six other causal learning methods on observational and interventional 389

datasets having uncertain interventions. We found that for most of the larger-network 390

datasets that we analyzed, “Learn and Vote” significantly reduces the number of false 391

positive arcs and achieves superior F1 scores. However, for cases where sample size per 392
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experiment is very small, we found that pooling works better. Our findings (i) motivate 393

the need to focus on the uncertain and unknown effects of interventions in order 394

improve causal network learning precision, and (ii) suggest caution in using causal 395

learning algorithms that assume perfect interventions, in the context of real world 396

domains that have uncertain intervention effects. 397
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