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Abstract 
 
Development of single cell sequencing allows detailing the transcriptome of individual oocytes. 
Here, we compare different RNA-seq datasets from single and pooled mouse oocytes and show 
higher reproducibility using single oocyte RNA-seq. We further demonstrate that UMI (unique 
molecular identifiers) based and other deduplication methods are limited in their ability to 
improve the precision of these datasets. Finally, for normalization of sample differences in 
cross-stage comparisons, we propose that external spike-in molecules are comparable to using 
the endogenous genes stably expressed during oocyte maturation. The ability to normalize data 
among single cells provides insight into the heterogeneity of mouse oocytes.  
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Background 
 
Single cell RNA-seq has revolutionized investigations of transcriptomes that transform cell fate 
during development. The application of UMI (unique molecular identifiers) now acts as a 
standard for read quantification, which greatly improves data precision and reproducibility, 
especially for low count genes [1-3]. Examining the heterogeneity and interactions between cell 
types benefit the studies of multicellular tissue and tumor development significantly. 
 
As a single cell, the mammalian oocyte is unique in its large size, uniform morphology, high 
RNA content and wide range of nucleic acid species. During oocyte maturation that immediately 
follows oocyte growth, the maternal transcriptome is dramatically degraded and reshaped in 
preparation of fertilization and early development. Since single oocyte RNA-seq was introduced 
[4], it has become increasingly popular for multi-omic studies in mice. These advances provide 
greater understanding of developmental and genetic variation as well as detailed information in 
the co-regulation of transcripts that affect oocyte quality and ageing [5-7]. However, there has 
been no direct evaluation of single oocyte RNA-seq compared to pooled oocytes, or any 
discussion of different analytical methods. By pairwise analyses of several published RNA-seq 
datasets of single and pooled oocytes, we now document the high reproducibility of single 
oocyte RNA-seq. In addition, by performing UMI based or Picard deduplication, we show that 
deduplication does not provide significant improvement to single oocyte RNA-seq. Finally, we 
demonstrate that external spike-in molecules, such as ERCC (External RNA Control 
Consortium), can effectively account for transcriptome size changes during oocyte maturation. 
We extracted a group of stably transcribed genes (constGenes) during oocyte maturation and 
illustrated the similarity of using ERCC and constGenes for cross-stage normalization. This 
normalization allows greater understanding of the oocyte heterogeneity at the germinal vesicle 
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(GV) stage. ConstGenes or ERCC normalization should become standards for cross-stage 
comparison in future single oocyte sequencing studies.  
 

 
Results and discussion 
 
Single oocyte RNA-seq has high reproducibility 
To estimate the reproducibility of mouse oocyte RNA-seq, we obtained several published 
datasets from single or pooled oocytes at GV (geminal vesicle) and MII (meiosis II) stages 
which are the beginning and ending of oocyte maturation, respectively [6-10]. We processed all 
raw sequencing files in parallel. Due to the different distribution of transcripts from all the 
samples, we only took the coding reads for comparison (Fig. 1a; Table S1). Interestingly, single 
oocyte RNA-seq (GSE141190, GSE96638, GSE44183) had higher correlation within the group 
than when compared to pooled oocytes of the same stage (Fig. 1b). In addition, MII stages 
exhibit higher deviation of poly(A) vs RiboMinus sequencing results, possibly due to the 
existence of dormant RNAs and hyper polyadenylated mRNAs being actively translated (Fig. 
1b) [11]. By principal component clustering, single oocyte groups show higher similarity, though 
experiments/methods dominate the difference (Fig. 1c-d). Thus, we concluded that single 
oocyte sequencing can generate highly reproducible and consistent results. 
 
Deduplication improved the single oocyte RNA-seq limitedly 
Single cell RNA-seq is susceptible to a range of biases, including gene capture, reverse 
transcription and cDNA amplification [12]. The incorporation of UMI (unique molecular 
identifiers) significantly improves single cell sequencing reproducibility by quantifying reads with 
more precision [3]. To test whether UMI also benefits single oocyte RNA-seq, we re-analyzed 
the GSE141190 RiboMinus RNA-seq results using UMI quantification (Fig. 2a-b) which 
determines duplicates by both UMI and insert reads. The N8 UMI, capable of distinguishing up 
to 65,536 molecules, is sufficient to distinguish the ~20,000 different RNAs expressed in mouse 
oocytes [3, 7]. On average, the number of reads of the Dedup (UMI-based) samples were 
43%±15% of their Original (without deduplication) samples (Fig. 2c-d; Table S2). After filtering 
out low-count genes, the linear regression of gene counts in Original and Dedup groups, 
normalized by library size, exhibited high correlation at the same stage (Fig. 2e).  
 
In addition, we performed downstream differential analysis using both Original and Dedup 
counts. The Original and Dedup counts from the same oocyte were similar, documented both by 
hierarchical clustering of principal components and distance calculations (Fig. 2f-g). The MII vs 
GV differential analysis in both Original and Dedup groups also were very similar (Fig. 2h-i; 
Table S3). On the other hand, no significant change in gene expression was identified (P-
adjusted < 0.01) when comparing Original and Dedup at the same stage (Fig. 2j; Table S3) 
which suggests that UMI deduplication does not significantly improve the quantitative precision 
in single oocyte RNA-seq. 
 
To further evaluate how important deduplication is to single oocyte RNA-seq, we took 
advantage of Picard deduplication, which defines duplicates based only on mapping 
coordinates. As expected, Picard trimmed off even more reads (Fig. 1c). Nevertheless, the 
correlation between Original and Picard remained high though obvious deviation were present 
due to trimming of reads (Fig. 3a). As expected, differential analyses of Original vs Picard at the 
GV or MII stages documented that a certain group of genes, including those encoding ribosomal 
proteins (Rpl19, Rpl32, Rps20) were sensitive to deduplication (Fig. 3b; Table S4). We also 
used the ERCC (External RNA Controls Consortium) spike-in molecules to visualize the 
linearization between their counts and raw concentrations. All generated a high correlation of 
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the ERCC molecules compared with their raw concentration (Fig. 3c-e). Thus, we conclude that 
deduplication provides only a limited advantage to the robustness of single oocyte RNA-seq, 
possibly due to the high RNA abundancy that makes the oocyte more like a tissue rather than a 
standard single cell. 
 
External and internal normalization for cross-stage comparison 
It has been long known that the transcriptome undergoes dramatic decrease during mammalian 
oocyte maturation [7, 10, 13]. Presumably, identification of the decreased and stable RNA in this 
process could add understanding to the molecular regulation of oocyte development and quality 
control. Several RNA-seq readouts have been used to represent cross-stage differences such 
as FPKM (Fragments Per Kilobase Million) and RPM (Transcripts Per Kilobase Million) which 
are normalized by gene length and library size [10, 14]. However, this library-size based 
quantification indicated as many genes with increased abundance as with decreased 
abundance which is difficult to explain biologically in the absence of transcription during oocyte 
maturation. Gfp/Rfp spike-in molecules have also been used to quantify changes in the 
transcriptome size, but not for differential analysis of individual genes [10]. Here, we propose 
that the ERCC spike-in mix can serve as control genes for single oocyte RNA-seq. We 
performed differential analyses using ERCC-dependent and median ratio dependent 
normalization (GSE141190, GSE96638). Within the same stage (GV), median ratio 
normalization (ERCC-independent) and the ERCC normalization produced roughly similar 
results, although ERCC normalization had more within-group deviation (Fig. 4a). However, 
ERCC normalization dramatically altered the results in cross-stage comparison in the 
GSE141190 dataset [7]. The absence of genes showing increased abundance is consistent to 
the absence of transcription during oocyte maturation, suggesting that external spike-in 
molecules provide better normalization for libraries with variated transcriptome size [7].  
 
To better illustrate ERCC normalization, we performed poly(A) GV sequencing using different 
fractions (1/2, 1/4, 1/8) of oocytes and different amplification cycles during library preparation. 
The PCA generated from ERCC normalization presented greater similarity between 1/4 GV (18 
cycles), 1/2 GV (18 cycles), 1 GV (10 cycles) and 1 GV (14 cycles). The 1/8 GV (18 cycles) and 
1 GV (18 cycles) were clustered farther away, presumably representing either less robust library 
representation or over amplification (Fig. 4b). The differential analysis also confirmed the overall 
smaller library sizes of the GV fractions compared to the intact GV (Fig. 4c-d; Table S5). On the 
other hand, the PCA generated from median ratio normalization had a different pattern: 1/8 GV 
(18 cycles), 1 GV (10 cycles) and 1 GV (14 cycles) were clustered together, while 1/2 GV (18 
cycles), 1/4 GV (18 cycles) and 1 GV (18 cycles) were clustered together (Fig. 4e). The 
differential analyses also revealed no indication of the “overall reduction” in GV fractions (Fig. 
4f-g; Table S6). Thus, we conclude that exogenous spike-in accounts for changes in library size 
and facilitates investigation of transcriptome degradation during oocyte maturation. 
 
To allow cross-stage comparison of sequencing samples when ERCC is unavailable, we have 
extracted a set of constant genes (constGenes) during oocyte maturation. These 147 genes 
exhibit little change (less than 50%) in transcript abundance from GV to MII whether obtained by 
poly(A) RNA-seq or RiboMinus RNA-seq (Fig. 5a; Table S7). The constGenes span a large 
range of gene length (~0.5-27 kb), have GC content ~30%-60%, contain protein coding genes 
and lncRNAs (Table S8). As expected, the differential analysis normalized by constGenes were 
very similar to those normalized by ERCC (Fig. 5b-f; Table S9-10).  
 
Better understanding of GV oocyte heterogeneity 
Lastly, we investigated the heterogeneity of GV oocytes divided into two subpopulations by 
nuclear configuration: SN (surrounded nucleolus) and NSN (non-surrounded nucleolus) oocytes 
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[15]. SN oocytes have fully condensed chromatin, no transcription and are more competent for 
maturation. NSN oocytes have residual transcription and an incomplete meiotic apparatus that 
reduces developmental competence [15]. The different transcriptome of NSN and SN has been 
studied by microarray and pooled sequencing which indicated different levels of ribosomal 
protein and components of the meiotic spindle [16, 17]. Ribosomal RNA sequencing indicated 
that upregulated 5’ETS of rRNA was linked to the NSN block to maturation [7]. Here, we 
inspected 3 NSN and 4 SN oocytes by unsupervised clustering and by analysis of the ribosomal 
RNA reads in the GV samples (Fig. 6a-b). The differential analysis detected a slight down 
regulation of the transcriptome during the NSN to SN transition (Fig. 6c; Table S11). The 
differentially expressed genes were enriched with several endomembrane components such as 
endoplasmic reticulum, Golgi and lysosome that are known to rearrange extensively during 
nuclear envelope breakdown (Fig. 6d) [18, 19]. Other events such as zinc-finger protein 
mediated chromatin modification associated with transcriptional inactivation, RNA-binding 
protein mediated RNA export causing transcript degradation, and abundance of cell division 
related proteins were also significantly enriched (Fig. 6d) [6, 20].  
 
Interestingly, intronic regions exhibit similar decreases (Fig. 6e; Table S11). The majority 
(75/81) of the double significantly changed genes shared decrease of coding and intronic reads 
(Fig. 6f). In addition, the constant distribution of the reads suggested that the residual introns 
are likely to originate from unspliced pre-mRNAs, which is consistent with the higher 
transcription activity in NSN oocytes (Fig. 6g). Functional annotation of the 81 differentially 
expressed genes are significantly enriched in cytoskeleton related genes (modified Fisher Exact 
P-value 0.037). These include Farp1/2, Dnm3, Eml6, Epb41l2, Flnb, Fmn1, Myo10/19, Arhgef18 
and Sptan1 which provide evidence that SN oocytes contain more proteins required for meiotic 
spindle organization. Moreover, the known decreased histone demethylase transcripts during 
the NSN to SN transition were also found to be decreased in the SN group, including Kdm1b, 
Kdm4b, Kdm5a, Kdm3b, Kdm5c (Fig. 6h; Table S12) [6]. 
 
In summary, based on higher reproducibility and known genetic/developmental heterogeneity, 
single cell RNA-seq appears to be the best method for transcriptome analyses of mouse 
oocytes. When an overall change of transcriptome size is anticipated, external spike-in or the 
constGenes are recommended for normalization to provide better insight into biological changes 
of the transcriptome.  
 
 
Methods 
 
Oocyte collection and culture  
Ovaries were dissected, washed with PBS, and transferred into M2 medium (CytoSpring, 
M2114) plus milrinone (2.5 µM). The ovaries were pierced mechanically with a 30-gauge needle 
to release oocytes and only fully-grown oocytes (GV-intact oocytes) were collected for further 
experiments. 
 
RNA-seq library preparation of intact and fractions of mouse oocytes 
Individual and fractions (1/2, 1/4, 1/8) of mouse oocyte RNA-seq libraries were prepared 
according to a published pipeline with minor modifications [21]. Briefly, single oocyte at desired 
stages were collected and transferred individually into 2.5 µl RLT Plus (Qiagen) and stored at -
80 °C. The single oocyte lysis was diluted 1:2, 1:4 and 1:8 which represented fractions of 
oocytes. To prepare libraries for sequencing, 1 µl of the 105-fold diluted ERCC spike-in mix 
(Thermo Fisher Scientific, 4456740) was added to 2.5 µl of each single or fraction lysis samples. 
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Poly(A) RNA was isolated by oligo (dT) beads, reverse transcribed, amplified and purified [21]. 
Individual samples were tested for different amplification cycles (10, 14, 18), and different 
fractions of oocytes (1/8, 1/4, 1/2) were amplified for 18 cycles. After purification, cDNAs were 
evaluated by Bioanalyzer 2100 (Agilent). Qualified cDNAs were used to construct sequencing 
libraries by Nextera DNA Sample Preparation Kits (Illumina). The sequencing was performed by 
the NIDDK Genomic Core Facility using the HiSeq 2500 Sequencing System (Illumina). 
 
RNA-seq analysis 
Raw sequence reads from each sequencing library were trimmed with Cutadapt 2.5 to remove 
adapters while performing light quality trimming with parameters "-m 10 -q 20, 20". Library 
quality was assessed with FastQC v0.11.8 with default parameters. The trimmed reads were 
mapped to the Mus musculus GRCm38 genome plus ERCC.fasta using STAR 2.7.2a. Multi-
mapping reads were filtered using samtools 1.9. For the Original reads group, the uniquely 
aligned reads were counted using HTseq 0.9.1 as an unstranded library with default 
parameters. For the Dedup reads group, before reads counting, the deduplication was 
performed using the UMI index reads and aligned bam files according to the Ovation Solo RNA-
seq manual v4. For the Picard reads group, the bam files were pre-processed by Picard to mark 
and remove duplicated reads. For each count file, a gene/ERCC was considered valid when it 
had at least 5 reads in at least 2 libraries.  
 
Differential expression between groups of samples was tested using R v3.5.1 with DESeq2 
v1.24.0. When ERCC molecules or constGenes were used for normalization, the counts of the 
ERCC molecules or constGenes were provided as the controlGenes for estimating the size 
factors (dds <- estimateSizeFactors(dds, controlGenes= grep("ERCC", row.names(filtered)))). 
Otherwise, the default estimate size factors (median ratio) was used. Functional annotation was 
performed using the DAVID website. For intronic read analyses, the intron gtf file were produced 
by BEDTools v2.29.0, and reads were directly counted against the special gtf file. For ribosomal 
RNA read analysis, the reads were directly counted against rRNA genome file [22].  
 
The regression analysis of the gene expression level and the ERCC molecules was performed 
by R v3.5.1. The sample distance analysis and gene expression differential analysis were 
performed with DESeq2 v1.24.0. The mapped reads were visualized in IGV 2.3.97.  
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The other sequencing data used in this study include: 
GEO entry Single/ 

pooled 
Stage Library preparation  Name of 

libraries 
GSE141190 
https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE141190 

Single GV, MII Poly(A); 
RiboMinus 

GV_s_pA_G1 
MII_s_pA_G1 
GV_s_rM_G1 
MII_s_rM_G1 

GSE44183 
https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE44183 

Single MII Poly(A) MII_s_pA_G2 

GSE96638 
https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE96638 

Single GV Poly(A) GV_s_pA_G3 
3 from each 
mouse ID.  

GSE70116 
https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE70116 

Pooled GV RiboMinus GV_p_rM_G4 

GSE71257 
https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE71257 

Pooled GV, MII Poly(A) GV_p_pA_G5 
MII_p_pA_G5 

 
Note that the name of libraries are following the pattern of: 
GV/MII_single/pooled_polyA/riboMinus_Geo(1/2/3/4/5) 
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Table S1. Calculation of the read coverage in all datasets in Fig. 1a. 
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Table S6. Differential analysis results of the GV fractions vs 1 GV through median ratio 
normalization in Fig. 4f-g. 
Table S7. List of the constGenes obtained from polyA RNA-seq and RiboMinus RNA-seq that 
remain stable during GV to MII in Fig. 5a. 
Table S8. The information of constGenes, including gene length, GC content and description. 
Table S9. Differential analysis results of MII vs GV from polyA RNA-seq, normalized by 
constGenes or ERCC in Fig. 5b-f. 
Table S10. Differential analysis results of MII vs GV from RiboMinus RNA-seq, normalized by 
constGenes or ERCC in Fig. 5b-f. 
Table S11. Differential analysis results of the putative SN vs NSN oocytes RNA-seq in Fig. 6c,e. 
Table S12. Significantly differential genes in both coding and intronic regions in SN vs NSN 
RNA-seq in Fig. 6h. 
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Figure legends 
Figure 1. Single mouse oocyte RNA-seq exhibited higher reproducibility. a Bar graph of 
read coverage in coding, UTR, intronic and intergenic regions in different datasets. b Plots of 
transcript abundance regression analysis of single or pooled oocytes RNA-seq results. 
Normalized mean of gene counts: mean of gene counts from all libraries normalized by library 
sizes in each condition. In each plot, the x-axis and y-axis are the log10 count values from 
different sequencing results. Three gray dashed lines: y=x, y=x+1 and y=x-1. Red number: the 
correlation coefficient of each comparison. The library names: 
GV/MII_single/pooled_polyA/riboMinus_GEO abbreviation. The GEO abbreviation is listed in 
Availability of data and materials. c-d Principal component analysis (c) and sample distance 
matrix (d) of the single and pooled oocytes RNA-seq datasets at GV and MII stages. 
 
Figure 2. Deduplication of single oocyte RNA-seq reads does not significantly improve 
results. a Outline of single oocyte RNA-seq adapted from Ovation Solo RNA-seq system. b 
Structure of the sequencing reads, including the insert (cDNA), cell barcode and N8 random 
sequence (UMI, unique molecular identifier). c Bar graph of Original, UMI-based (Dedup) and 
Picard deduplicated (Picard) counts. d Dot plot of the Original and UMI-based (Dedup) gene 
counts at GV stage. The chosen genes are the top 30 after ranking by their Ensembl gene ID. e 
Plots of transcript abundance regression analysis of Original vs Dedup gene counts normalized 
by library sizes. f-g Principal component analysis (f), sample distance matrix (g) of combined 
Original and Dedup samples. h-i Differential analysis of MII vs GV in Original and Dedup groups 
(h) and the comparison of the log2FC (MII vs GV) in Original and Dedup groups (i). j MA plots of 
differentially expressed genes of Original vs Dedup in GV and MII oocytes. 
 
Figure 3. Picard deduplication of single oocyte RNA-seq reads does not significantly 
improve results. a Plots of transcript abundance regression analysis of Original vs Picard gene 
counts normalized by library sizes. b MA plots of differentially expressed genes of Original vs 
Picard in GV and MII oocytes. c-e ERCC regression between the sequenced counts to their 
original concentration at GV and MII stages from the Original, Dedup and Picard groups. An 
example of ERCC molecules linearization is in (c), the summary of all groups is in (d) and the 
coefficients of correlation are summarized in (e). 
 
Figure 4. ERCC (External RNA Controls Consortium) spike-in molecules can normalize 
transcriptome size difference between samples. a Principal component analysis (PCA) of 
ERCC-containing samples, including GSE141190 and GSE96638, by ERCC or Median ratio 
normalization. b-g ERCC or median ratio normalization of GV oocyte fractions (1/2, 1/4, 1/8) 
and different amplification cycles (10, 14, 18). b, e PCA of GV fractions and different 
amplification cycles by ERCC or median ratio normalization. c, f MA plots showing the 
differentially expressed genes compared between oocyte fractions by ERCC or median ratio 
normalization. d, g Summaries of log2 fold change in (c) and (f). 
 
Figure 5. Constant genes (constGenes) can also normalize library differences. a MA plots 
of selected constant genes (constGenes) from poly(A) and RiboMinus RNA-seq results. b-e MA 
plots showing the differentially expressed genes in poly(A) sequencing (b-c) and in RiboMinus 
sequencing (d-e) from GV to MII stages in GSE141190, normalized by either constGenes (b, d) 
or ERCC (c, e). Blue/red dots: genes having decreased/increased abundance by P-adjusted 
<0.01. f Principal component analysis of GV and MII oocytes from GSE141190 by constGenes 
or ERCC normalization. 
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Figure 6. Single oocyte RNA-seq allows better evaluation of oocyte heterogeneity. a PCA 
of GV oocytes from the GSE141190 polyA GV samples. Two groups could be visualized based 
on the distribution, which were putatively NSN (non-surrounded nucleolus) and SN (surrounded 
nucleolus) indicated by (b). b Heatmap of rRNA coverage obtained from GSE141190 polyA GV 
samples mapped to the rRNA genomic region. c-d MA plots of differentially expressed genes in 
SN vs NSN GV oocytes counted at coding region (c) and their functional analysis (d). e MA 
plots of differentially expressed genes in SN vs NSN GV oocytes counted at intronic region. f 
Quadrant chart showing coding and intronic sequences that overlapped significantly in 
differentially expressed genes. g Plot from Integrative Genomics Viewer (IGV) showing the read 
distribution of Nlrp5 in the SN and NSN oocytes. Blue box: coding region; blue line: intron 
region. h Differential expression fold change of SN vs NSN of the chromatin modification genes. 
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Figure 6
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