1 TGF-β inhibitor accelerates BMP4-induced cochlear gap junction formation

2	during in vitro differentiation of embryonic stem cells
3	
4	
5	
6	Ichiro Fukunaga, Cheng Chen, Yoko Oe, Keiko Danzaki, Sayaka Ohta, Akito Koike,
7	Ayumi Fujimoto, Katsuhisa Ikeda, Kazusaku Kamiya*
8	Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo,
9	Japan
10	
11	*Corresponding author
12	E-mail: kkamiya@juntendo.ac.jp (KK)

14 Abstract

15	Mutations in the connexin 26 (CX26)/gap junction beta-2 (GJB2) gene are the
16	most frequent cause of hereditary deafness worldwide. Using mouse induced pluripotent
17	stem cells (iPSCs) and a BMP4 signal-based floating and adherent culture system, we
18	recently produced in vitro responsible for GJB2-related deafness (CX26-gap junction
19	plaque-forming cells, CX26GJCs). However, to use these cells as a disease model
20	platform for high-throughput drug screening or regenerative therapy, cell yields must be
21	substantially increased. In addition to BMP4, presently uncharacterized factors may also
22	induce CX26 gap junction (GJ) formation. A floating culture with embryonic stem cell
23	(ESC) treatment and BMP4/TGF- β inhibitor (SB431542:SB) has been shown to result
24	in greater production of isolatable CX26-positive small vesicles (CX26+ vesicles) and
25	higher Gjb2 mRNA levels than BMP4 treatment alone, suggesting that SB may promote
26	BMP4-mediated production of CX26+ vesicles in a dose-dependent manner, thereby
27	increasing the yield of highly purified CX26GJCs.
28	In the present study, we first demonstrated that SB accelerates BMP4 induced
29	GJ formation during stem cell differentiation. By controlling the concentration and
30	timing of SB supplementation with CX26+ vesicle purification, large-scale production

31 of highly purified CX26GJCs suitable for high-throughput drug screening or

32 regenerative therapy for *GJB2*-related deafness may be possible.

34 Introduction

35	Hearing loss is the most common congenital sensory impairment worldwide[1].
36	Approximately 1 child in 1,000 is born with severe hearing loss or will develop hearing
37	loss during early childhood, which is known as prelingual deafness[2, 3].
38	Approximately half of such cases are attributable to genetic causes[4]. Mutations in the
39	gap junction beta-2 (GJB2) gene, which encodes connexin 26 (CX26), are the most
40	common genetic cause of non-syndromic sensorineural hearing loss, accounting for
41	~50% of such hearing loss in children[5, 6].
42	CX26 and CX30, encoded by GJB6, are expressed in non-sensory cochlear
43	supporting cells and in such cochlear structures as the spiral limbus, stria vascularis, and
44	spiral ligament[7-12]. In contrast, CXs are not expressed in hair cells[9, 11-13].
45	CX26 and CX30 have been shown to form functional heteromeric and heterotypic
46	gap junction (GJ) channels in the cochlea[14] as well as in <i>in vitro</i> experiments[15]. At
47	the plasma membrane, GJs further assemble into semi-crystalline arrays known as gap
48	junction plaques (GJPs) containing tens to thousands of GJs[16].
49	GJs facilitate the rapid removal of K ⁺ from the base of cochlear hair cells,
50	resulting in cycling of K ⁺ back into the endolymph of the cochlea to maintain cochlear
51	homeostasis[17]. Several studies have reported that the deletion of GJB2 can cause

52 cochlear developmental disorders besides deafness, such as tunnel of Corti, Nuel's
53 space, or spaces surrounding the outer hair cells[18-23].

We previously showed that disruption of CX26-GJPs is associated with *Gjb2*-related hearing-loss pathogenesis and that assembly of cochlear GJPs is dependent on CX26[24]. Thereafter, we showed that the transfer of *Gjb2* into the cochleae using an adeno-associated virus significantly improved GJP formation and auditory functions in a mouse model[25].

59 Furthermore, we have recently reported that induced pluripotent stem cells 60 (iPSCs)-derived functional CX26-GJP-forming cells (CX26GJCs), as found in the 61 cochlea supporting cells[26], which is unlike previous studies that targeted the 62 generation of cochlear hair cells from embryonic stem cells (ESCs) and iPSCs[27-39].

Thus, CX26GJC could be generated from a floating culture (SFEBq culture; a serum-free floating culture of embryoid body-like aggregates with quick reaggregation) followed by an adherent culture[26].

66 SFEBq culture is superior for generating ectoderm-derived tissues, which can give 67 rise to forebrain, midbrain, adenohypophysis, retinal tissue, and otic sensory 68 epithelia[29, 38, 40-45]. Furthermore, in SFEBq culture, ectodermal tissues develop in 69 an epithelial form similar to that in *in vivo* counterparts.

70	However, to use these cells as a disease model for drug screening or other large-scale
71	assays, the cell culture system must be improved to increase the number of cells
72	available at a single time. Our previous research suggested that CX26 expressing
73	vesicles formed in day 7 aggregate are the origin of CX26-GJP-forming cells in the 2D
74	culture[26]. If CX26 small vesicles in SFEBq culture from ES/iPS cells could be
75	obtained in a substantial quantity, we could obtain an adequate number of
76	CX26-GJP-forming cells in the 2D culture.
77	Several studies have shown that BMP4 signaling plays a key role in embryonic
78	development[46-50] and <i>in vitro</i> differentiation of ESCs/iPSCs[51-53].
79	In SFEBq culture, BMP4 upregulated a non-neural ectoderm marker (Dlx3) and
80	downregulated a neuroectoderm marker (Sox1)[29]. Furthermore, BMP4 drives CX
81	expression and CX-mediated cell-to-cell communication[54-56].
82	Similarly, TGF- β inhibitor (SB431542:SB) has been implicated in efficient neural
83	conversion of ESCs and iPSCs via inhibition of SMAD signaling[57, 58], and by
84	blocking the progression of stem cell differentiation toward trophectoderm, mesoderm,
85	and endoderm lineages[59]. In SFEBq culture using mouse ESCs, SB inhibition of
86	TGF- β signaling is thought to promote proper non-neural induction following BMP4

88	regions should be part of the non-neural ectoderm, it has not been determined whether
89	SB can accelerate BMP4-induced CX expression or GJ formation.
90	Given this background, we hypothesized that SB plays a key role in the
91	differentiation of CX26GJCs. Therefore, in the present study, we evaluated modified
92	SFEBq culture conditions incorporating BMP4 and/or SB with the aim of generating
93	CX26GJCs from mouse ESCs with a greater potential to differentiate than that of
94	iPSCs. The large-scale production of CX26-GJP-forming cells could be used for
95	high-throughput drug screening related to deafness induced by mutations in GJB2.
96	

97 Materials and methods

98	All the experimental protocols using mouse tissues were approved by the
99	Institutional Animal Care and Use Committee at Juntendo University School of
100	Medicine and were conducted in accordance with the US National Institutes of Health
101	Guidelines for the Care and Use of Laboratory Animals. Adult mice (10-weeks-old)
102	were obtained from CLEA Japan, Inc. All methods were carried out in accordance with
103	relevant guidelines and regulations.

104

105 ESC culture

106	Mouse ESCs (EB5 cells)[61, 62] were provided by the RIKEN Bio Resource
107	Center Cell Bank and maintained under feeder-free conditions with 2i-LIF medium[63].
108	Briefly, ESCs were maintained on gelatin containing N2B27 medium consisting of a 1:1
109	(v/v) mixture of Advanced DMEM/F12 and neurobasal medium (Invitrogen)
110	supplemented with 1 mM GlutaMAX (Invitrogen), 1% N2 supplement (Invitrogen), 2%
111	B27 supplement (Invitrogen), 3 µM CHIR99021 (Stemgent), 1 µM PD0325901 (Santa
112	Cruz), and 1,000 U ml ⁻¹ of leukemia inhibitory factor (Millipore).

114 Differentiation of ESCs

115 Induction of CX26GJCs was performed as shown in Fig 1A. Briefly, ESCs were 116 dissociated with Accutase (Innovative Cell Technologies, Inc.), suspended in 117 differentiation medium (G-MEM, Gibco) supplemented with 1.5% (v/v) knockout 118 serum replacement (Gibco), 0.1 mM nonessential amino acids (Gibco), 1 mM sodium 119 pyruvate (Gibco), and 0.1 mM 2-mercaptoethanol), and then plated at 100 µl per well 120 (3,000 cells) in 96-well low-cell attachment V-bottom plates (Sumitomo Bakelite). 121 Recombinant BMP4 was obtained from Miltenyi Biotec and SB431542 was obtained 122 from Tocris Bioscience. On day 1, half of the medium (50 µl) per well was replaced 123 with fresh differentiation medium containing 4% (v/v) Matrigel (BD Bioscience). On day 3, one of three types of media was added to the culture: medium containing BMP4 124 (10 ng/ml, final concentration), SB (1–10 μ M, final concentration), or both factors at the 125 126 aforementioned concentrations.

127

Fig 1. Culture conditions for cells expressing high levels of *Gjb2* (CX26) and *Gjb6* (CX30) mRNA. (A): A schematic procedure for differentiating Connexin26 gap junctional plaque forming cells (Cx26GJCs) from mouse ESCs. SFEBq; serum-free floating culture of embryoid body-like aggregates with quick reaggregation, KSR;

132	knockout serum replacement, SB431542; TGF-beta inhibitor. (B): Relative expression
133	of mRNA at day 0 (for undifferentiated ES cells) and at day 7 for untreated,
134	BMP4-treated, SB-treated, and BMP4/SB-treated aggregates. The mRNA expression
135	levels were normalized to those of BMP4 culture on day 7. (qRT-PCR: $n = 5$. For
136	assessments, the procedures were repeated five times to generate cells. Each experiment
137	used 8 aggregates. Differences between samples were assessed by One-way ANOVA
138	and multiple comparison test; **, p < 0.01. The data are expressed as mean \pm standard
139	error.
1.40	

140

BMP4 and SB stock solutions were prepared at $5\times$ concentration in fresh medium. On days 7–11, the aggregates were semi-dissected and the small vesicles were mechanically isolated and collected using forceps. The small vesicles were transferred into adherent culture containing TRICs in the growth medium, which was composed of DMEM GlutaMAX (Gibco) and 10% (w/v) FBS.

146 TRICs were generated by exposing cochlear tissue to trypsin and screening for 147 trypsin-resistant cells. The mouse cochlear tissue (10-weeks-old) used for preparation of 148 the TRICs included the organ of Corti, basilar membrane, and lateral wall, and mainly 149 comprised supporting cells, hair cells, cochlear fibrocytes, and other cells in the basilar

150	membrane. This cell line was used as inner-ear derived feeder cells to proliferate the
151	otic progenitor cells. For the feeder cell layer, 3 \times 105/cm2 TRICs were seeded into
152	gelatin-coated wells of 24-well culture plates after mitomycin C (10 mg/ml) treatment
153	for 3 h.

154

155 qRT-PCR of Gjb2 and Gjb6 mRNA expression

156 Total RNA was isolated using reagents from an RNeasy Plus Mini kit (Qiagen) and reverse transcribed into cDNA using reagents from a Prime Script II first strand cDNA 157 158 synthesis kit (Takara). Real-time PCR was performed with the reverse transcription 159 products, TaqMan Fast Advanced Master Mix reagents (Applied Biosystems), and a 160 gene-specific TaqMan Probe (see below; Applied Biosystems) on a StepOne Real-Time 161 PCR system (Applied Biosystems). Each sample was run in triplicate. Applied 162 Biosystems StepOne software was used to analyze the Ct values of the different 163 mRNAs normalized to expression of the endogenous control, actin beta mRNA. 164 TaqMan Probes (Assay ID; Applied Biosystems) were used to detect the expression of 165 mouse Gjb2 (Mm00433643 s1), Gjb6 (Mm00433661 s1), and actin beta mRNAs 166 (Mm02619580 g1).

167

168 Immunostaining and image acquisition

169	Aggregates were fixed with 4% (w/v) paraformaldehyde in 0.01 M
170	phosphate-buffered saline (PBS) for 1 h at room temperature. For whole mounts, the
171	aggregates were permeabilized with 0.5% (w/v) Triton X-100 (Sigma-Aldrich) in 0.01
172	M PBS for 30 min. Then, the samples were washed twice with 0.01 M PBS and blocked
173	with 2% (w/v) bovine serum albumin in 0.01 M PBS for 30 min.
174	Cells from adherent cultures were fixed with 4% (w/v) paraformaldehyde in
175	0.01 M PBS for 15 min at room temperature and, then, permeabilized with 0.5% (w/v)
176	Triton X-100 in 0.01 M PBS for 5 min. Samples were washed twice with 0.01 M PBS
177	and blocked with 2% (w/v) bovine serum albumin in 0.01 M PBS for 30 min. For
178	immunofluorescence staining, 1% (w/v) bovine serum albumin in 0.01 M PBS was used
179	to dilute the primary and secondary antibody solutions. Each sample was incubated in a
180	primary antibody solution-CX26 or CX30 (mouse IgG, 33-5800 or rabbit IgG,
181	71-2200, respectively, Life Technologies)-for 1 h after blocking. The secondary
182	antibodies were Alexa Fluor 594-conjugated anti-mouse IgG (Invitrogen, A11032),
183	Alexa Fluor 488-conjugated anti-rabbit IgG (Invitrogen, A11070), and phalloidin FITC
184	(Invitrogen, A12379). Samples were washed twice with 0.01 M PBS and mounted with
185	mounting medium (VECTASHIELD Mounting Medium with DAPI, Vector).

186	Fluorescence confocal images were obtained with an LSM510-META confocal
187	microscope (Zeiss). Z-stacks of images were collected at 0.5 μm intervals, and the
188	single-image stacks were constructed using LSM Image Browser (Zeiss).
189	Three-dimensional images were constructed with z-stacked confocal images using
190	IMARIS (Bitplane).

191

192 Statistical analyses

193 The data were analyzed using Microsoft Excel software and are presented as the mean \pm

194 standard error. A two-tailed Student's *t*-test, with a significance criterion of p < 0.05,

195 was used to compare the GJP lengths. One-way ANOVA and multiple comparison test,

- 196 with a significance criterion of p < 0.05, was used to compare *Gjb2* and *Gjb6* mRNA
- 197 levels and the number of CX26+ vesicles.
- 198

199 **Results**

200 SB431542, an inhibitor of TGF-β signaling, promoted 201 BMP4-induced *Gjb2/Gjb6* mRNA expression in SFEBq 202 culture

203 CX26GJCs were induced from mouse ESCs using previously reported 204 method[26], and the conditions required for differentiation were then assessed. ESCs 205 were cultured in SFEBq medium containing BMP4, SB, or BMP4 plus SB. Aggregates were collected on day 7 and mRNA (Gjb2 and Gjb6) levels in the different culture 206 207 groups were measured. BMP4 and BMP4/SB treatments produced more Gjb2/Gjb6 208 mRNA than SB and control cultures (Fig 1B). BMP4 is a factor that induces Gjb2/Gjb6 209 mRNA expression during iPSC differentiation[26]. In addition, ESCs cultured in 210 differentiation medium supplemented with BMP4 and SB showed greater expression levels of mRNA (Gjb2, 1.8-fold greater; Gjb6, 1.7-fold greater) compared with the 211 212 BMP4 alone group.

213

SB431542 promoted formation of CX26-expressing small

vesicles in SFEBq culture

By day 7 of differentiation, the aggregates showed differentiated outer regions

217	with a morphology similar to that reported previously[26]. Clear outer epithelia and
218	small vesicles were observed beneath the outer epithelium of BMP4/SB-treated cells.
219	By contrast, no small vesicles were observed for the control or SB-treated cells (Fig 2A,
220	left column). To determine the location of CX26 in the cell aggregates,
221	immunohistochemistry was performed. In BMP4 or BMP4/SB-treated aggregates, small
222	vesicles containing CX26-GJP (hereafter called CX26+ vesicles) were observed (Fig
223	2A, right column). The aggregates were collected, and the numbers of CX26+ vesicles
224	were compared among the different treatment groups (Fig 2B).
225	
225 226	Fig 2. Stereomicroscopic images and immunostained aggregates derived from
	Fig 2. Stereomicroscopic images and immunostained aggregates derived from ESCs present on day 7. (A): Left column: stereomicroscopic images of cells on day 7.
226	
226 227	ESCs present on day 7. (A): Left column: stereomicroscopic images of cells on day 7.
226 227 228	ESCs present on day 7. (A): Left column: stereomicroscopic images of cells on day 7. Middle column: F-actin immunostained cells (green). Right column: magnification of

- 232 SB-, BMP4-, and BMP4/SB-treated, and untreated control cultures (n = 24 aggregates.
- 233 For assessments, the procedures were repeated three times to generate cells. Statistical

234	differences between samples were assessed by One-way ANOVA and multiple
235	comparison test; ** , $p < 0.01$. The data are expressed as mean \pm standard error.
236	
237	Cells treated with BMP4/SB had more CX26+ vesicles (mean = 5.08 ± 0.28)
238	than cells cultured only with BMP4 (mean = 1.6 ± 0.16). CX26+ vesicles were found to
239	exist separately from the BMP4/SB-treated aggregates (Fig 3A and 3B), suggesting that
240	they could be easily isolated. Numerous CX26+ vesicles were mechanically collected as
241	a purified CX26GJC population (Fig 3C).
242	
243	Fig 3. CX26+ vesicles in aggregates with BMP4 and SB supplementation. (A):
244	Merged images of CX26-immunostained (red) and phase-contrast microscopy-imaged
245	(PCM, white) ESC aggregates at day 7. Arrows point to CX26+ vesicles containing
246	CX26GJCs. The scale bar represents 50 µm. (B-C): Stereomicroscopic (SM) images of
247	isolated CX26+ vesicles from ESC aggregates at day 7. Arrowheads point to CX26+
248	vesicles. CX26+ vesicles were easily isolated from semi-dissected ESC aggregates (B)
249	and then mechanically collected (C).
250	

251 In the confocal analysis of the BMP4/SB-treated day-7 aggregates,

252	CX26-expressing cells were disseminated throughout the numerous CX26+ vesicles
253	(Fig 4A and S1 Video). These cells formed CX26-positive GJs at their cell-cell borders
254	(Fig 4B). In the 3D construction of the confocal images, we observed large planar
255	CX26-containing GJPs (Fig 4C and S2 Video) which, as we reported previously[24,
256	26], are characteristic of mouse cochlea.
257	
258	Fig 4. Confocal images of CX26+ vesicles in BMP4/SB-treated ESC aggregates.
259	(A): Merged image of CX26-immunostained (red) and DAPI-stained (blue) cells in
259 260	(A): Merged image of CX26-immunostained (red) and DAPI-stained (blue) cells in CX26+ vesicles. (inset in A) Magnification of a CX26+ vesicle. (B): Merged images of
260	CX26+ vesicles. (inset in A) Magnification of a CX26+ vesicle. (B): Merged images of
260 261	CX26+ vesicles. (inset in A) Magnification of a CX26+ vesicle. (B): Merged images of CX26-immunostainded (red) and F-actin stained (green) cells in the same region as in

265 ESC-derived CX26GJC co-expressed CX30 in adherent 266 cultures formed GJPs

Between day 7 and 9, BMP4/SB-treated aggregates were transferred onto cochlear-derived feeder cells, namely trypsin-resistant inner-ear cells (TRICs), as follows. The differentiated regions with CX26+ vesicles were separated from the day 7

270	aggregates and subcultured in Dulbecco's modified Eagle's medium (DMEM)
271	GlutaMAX, 10% (v/v) fetal bovine serum (FBS) on TRIC feeder cells. The subcultured
272	regions containing CX26+ vesicles colonized the TRIC feeder cells. In the adherent
273	culture at day 15, CX26-containing GJPs were preserved (Fig 5A-C), as found in
274	cochlear supporting cells. The mean length of the longest dimension of the GJPs along a
275	single cell border was 1.91 \pm 0.11 μm for BMP4/SB-treated aggregates, which was
276	significantly increased to 5.39 \pm 0.25 μm in the adherent culture on TRIC feeder cells
277	(Fig 5D). To assess the similarities between these cells and cochlear cells, we
278	characterized the expression of CX30, which is frequently absent in hereditary deafness.
279	CX30 co-localized with CX26 in most CX26-GJPs in the differentiated cells (Fig 5E-
280	H), suggesting that CX26 and CX30 were the two main components of these GJPs, as
281	was found for cochlear cells[26].

282

ESC-derived CX26GJC 283 Fig 5. formed large CX26GJPs and CX26/CX30-containing GJPs. (A): Merged images of CX26-immunostained (red) and 284 DAPI-stained (blue) cells from an adherent culture at day 15. (B): Magnification of the 285 boxed region in (A). Arrows point to GJPs. (C): The 3D image was reconstructed from 286the same region as shown in (B). (D): Mean lengths of the longest dimension of the 287

288	GJPs along a single cell border in SFEBq culture (3D) at day 7 and adherent culture
289	(2D) at day 15. (SFEBq culture, $n = 43$ cell borders from 5 aggregates; adherent culture,
290	n = 41 cell borders from 4 wells. For assessments, the procedures were repeated three
291	times to generate cells. Statistical differences between samples were assessed by
292	Student's <i>t</i> -test, **, $p < 0.01$. The data are expressed as mean \pm standard error. (E):
293	Merged images of CX26-immunostained (red), CX30-immunostained (green), and
294	DAPI-stained (blue) cells from the adherent culture at day 15. (F-H): Magnification of
295	the boxed region in (E). Staining for CX26 (red), CX30 (green), and DAPI (blue) was
296	as in (E). Arrows point to the large GJPs. Scale bars: 20 μ m (A and E), 10 μ m (F-H), 5
297	μm (B), and 3 μm (C).

298

The amount of mRNA expression and the number of CX26 positive small vesicles were increased by SB431542 addition in a dose-dependent manner

Finally, to produce a large number of CX26GJC in SFEBq culture, we examined whether the differentiation from ES cells to CX26GJC depends on the concentration of SB431542.

305 As a result of qRT-PCR analysis, in BMP4 and SB combination, 5 μ M and 10

306	μ M, SB-treated aggregates showed greater expression level of <i>Gjb2</i> mRNA (BMP4/SB
307	5 μ M, 1.7-fold greater; BMP4/SB 10 μ M, 1.7-fold greater) compared with the
308	BMP4/SB 1 μ M. The expression level of Gjb6 did not differ depending on the
309	concentration of SB (Fig 6A). In the SB alone group, there was no difference in the
310	expression level of Gjb2/Gjb6 depending on the concentration of SB (S1A Fig).
311	Thereafter, we determined the number of CX26 positive vesicles in day 7 aggregates by
312	immunohistochemistry. In BMP4 and SB combination, 5 μM and 10 $\mu M,$ SB-treated
313	aggregates showed greater numbers of CX26+ vesicles (BMP4/SB 5µM, 1.5-fold
314	greater; BMP4/SB 10 μ M, 1.3-fold greater) compared with the BMP4/SB 1 μ M (Fig 6B).
315	Conversely, in the SB alone group, there was no difference in the number of small
316	vesicles depending on the concentration of SB (S1B Fig).

317

Fig 6. Dose-dependent manner of SB concentration in SFEBq culture expression level of mRNA and the number of CX26 + vesicles.

320 (A): Relative expression of mRNA at day 7 for BMP4-treated (SB 0 μ M + BMP4 10

321 ng/ml), and BMP4/SB (SB 1–10 μM + BMP4 10 ng/ml) treated aggregates. The mRNA

- 322 expression levels were normalized to those of BMP4/SB 1 μ M (SB 1 μ M + BMP4 10
- 323 ng/ml) culture on day 7. (qRT-PCR, n = 5). For assessments, the procedures were

324	repeated five times to generate cells. Each experiment used 8 aggregates. Differences
325	between samples were assessed by the Scheffe multiple comparison test; **, $p < 0.01$.
326	The data are expressed as mean \pm standard error. (B): The average number of CX26+
327	vesicles per aggregate from BMP4-treated (SB 0 μM + BMP4 10 ng/ml), and BMP4/SB
328	(SB 1–10 μ M + BMP4 10 ng/ml) treated aggregates. (n = 9 aggregates). For
329	assessments, the procedures were repeated three times to generate cells. Statistical
330	differences between samples were assessed by One-way ANOVA and multiple
331	comparison test: *, p < 0.05; **, p < 0.01. The data are expressed as mean \pm standard
332	error.

335 **Discussion**

336	Several previous studies have reported BMP4 signaling-induced stem cell
337	differentiation[29, 51-53], differentiation into CX43-expressing cells as
338	cardiomyocytes[64], and CX43 expression in mouse embryonal cells[54-56, 65].
339	Although SB is reportedly involved in stem cell differentiation[29, 58-60, 66], it has not
340	been shown to promote CX expression or GJ formation during stem cell differentiation
341	or in mature cells. For the large-scale production of CX26GJCs, we evaluated the
342	necessary conditions for the differentiation of pluripotent stem cells using modified
343	SFEBq culture containing BMP4 and/or SB with ESC, which has a more stable
344	differentiation potential than iPSCs.
345	We found that BMP4/SB treatment resulted in significantly greater production of
346	CX26+ vesicles (Fig 2A and 2B) and significantly greater amount of Gjb2 and Gjb6
347	mRNAs (Fig 1B) than treatment with only BMP4 (Fig 7). Thus, these results suggest
347 348	mRNAs (Fig 1B) than treatment with only BMP4 (Fig 7). Thus, these results suggest that the increase in CX26+ vesicles is because of the upregulation of mRNA ($Gjb2$ and

Fig 7. A schematic illustration of the effect of SB431542 on CX26 GJ formation in
 BMP4-induced ESC differentiation.

353	In the BMP4-based inner-ear 3D differentiation from ESCs, SB431542 supplementation
354	was associated with significantly higher mRNA levels of Gjb2 (CX26) and Gjb6
355	(CX30) and CX26+ vesicle counts than under SB431542 absent condition. SB431542
356	was demonstrated to be an accelerator of gap junction formation.
357	
358	In the adherent culture that included TRIC feeder cells, we observed proliferation

of CX26GJCs (Fig 5A) and long CX26-containing GJPs (Fig 5D), similar to observations when iPSCs were used[26]. Because the differentiated, aggregated cells co-expressed CX30 and CX26 (Fig 5E–H), it is likely that some cells were cochlear non-sensory cells containing CX26/CX30 GJPs that proliferated on the cochlear feeder cells after isolation of CX26+ vesicles.

When BMP4 was present in the SFEBq culture, the addition of SB appeared to promote BMP4-mediated formation of CX26+ vesicles. After transferring the CX26+ vesicles onto cochlear feeder cells, the lengths of the GJPs of the proliferated CX26-expressing cells increased and the GJPs were observed to contain CX26/CX30. These results indicate that the number of CX26GJCs increased in adherent culture due to the increase in CX26+ vesicles by SB treatment. Therefore, we suggest that SB promotes BMP4-mediated formation of CX26+ vesicles in SFEBq culture. Mechanical

371	dissection of the aggregates (Fig 3B and 3C) suggested that CX26+ vesicles could be
372	easily purified and isolated for large-scale production of CX26GJCs after adherent
373	culture on feeder cells (Fig 5).
374	Furthermore, in the combination of BMP4/SB in SFEBq culture, increases in
375	mRNA expression and CX26 positive small vesicles were found to depend on the
376	concentration of SB. However, in the expression level of <i>Gjb2</i> and the number of CX26
377	positive vesicles, there was no significant difference between 5 μM and 10 μM SB
378	addition (Fig 6). These results indicated that CX26GJCs could be most efficiently
379	induced in the BMP4/SB 5 μ M combination.
380	These data suggest that SB promotes BMP4-mediated production of CX26+
381	vesicles in a dose-dependent manner, thereby increasing the yield of highly purified
382	CX26GJCs.
383	This is the first study to show that SB431542 accelerates BMP4-induced GJ
384	formation during in vitro differentiation of ESCs (Fig 7).
385	By controlling the timing and concentration of SB with CX26+ vesicle
386	purification, large-scale production of highly purified CX26GJCs for high-throughput
387	screening of drugs that target GJB2-related deafness should be possible.

388 Funding

389	This work was supported by grants from the JSPS KAKENHI (number
390	17H04348, 16K15725 to K.Kamiya, and number 17K16948, 15K20229 to I.Fukunaga),
391	Subsidies to Private Schools (to K.Kamiya and I.Fukunaga), Japan Agency for Medical
392	Research and Development, (AMED, number 15ek0109125h0001, 19ae0101050h0002
393	and 19ek0109401h0002 to K.Kamiya), and the Takeda Science Foundation (to
394	K.Kamiya).
395	

396 Acknowledgments

397 Kazusaku Kamiya: Conceptualization, Data Curation, Formal Analysis, Funding
398 Acquisition, Investigation, Methodology, Project Administration, Resources,
399 Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing –
400 Review & Editing

401 Ichiro Fukunaga: Data Curation, Formal Analysis, Funding Acquisition,

- 402 Investigation, Methodology, Resources, Validation, Visualization, Writing Original
- 403 Draft Preparation, Writing Review & Editing
- 404 Cheng Chen, Yoko Oe, Keiko Danzaki, Sayaka Ohta, Akito Koike, Ayumi
- 405 Fujimoto: Resources, Validation,

406 Katsuhisa Ikeda: Conceptualization, Resources

Competing interests

410 The authors declare no competing interests.

413 **References**

Chan DK, Schrijver I, Chang KW. Connexin-26-associated deafness: phenotypic
 variability and progression of hearing loss. Genet Med. 2010;12(3):174-81. doi:
 10.1097/GIM.0b013e3181d0d42b. PubMed PMID: 20154630.

417 2. Morton NE. Genetic epidemiology of hearing impairment. Ann N Y Acad Sci.418 1991;630:16-31. PubMed PMID: 1952587.

419 3. Petersen MB, Willems PJ. Non-syndromic, autosomal-recessive deafness. Clin Genet.
420 2006;69(5):371-92. doi: 10.1111/j.1399-0004.2006.00613.x. PubMed PMID: 16650073.

Birkenhager R, Lublinghoff N, Prera E, Schild C, Aschendorff A, Arndt S. Autosomal
 dominant prelingual hearing loss with palmoplantar keratoderma syndrome: Variability in
 clinical expression from mutations of R75W and R75Q in the GJB2 gene. Am J Med Genet A.
 2010;152A(7):1798-802. doi: 10.1002/ajmg.a.33464. PubMed PMID: 20583176.

425 5. Morton CC, Nance WE. Newborn hearing screening--a silent revolution. N Engl J
426 Med. 2006;354(20):2151-64. doi: 10.1056/NEJMra050700. PubMed PMID: 16707752.

427 6. Rabionet R, Zelante L, Lopez-Bigas N, D'Agruma L, Melchionda S, Restagno G, et al.
428 Molecular basis of childhood deafness resulting from mutations in the GJB2 (connexin 26) gene.
429 Hum Genet. 2000;106(1):40-4. PubMed PMID: 10982180.

Ahmad S, Chen S, Sun J, Lin X. Connexins 26 and 30 are co-assembled to form gap
junctions in the cochlea of mice. Biochem Biophys Res Commun. 2003;307(2):362-8. PubMed
PMID: 12859965.

8. Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G. Gap junctions in the
inner ear: comparison of distribution patterns in different vertebrates and assessement of
connexin composition in mammals. J Comp Neurol. 2003;467(2):207-31. doi:
10.1002/cne.10916. PubMed PMID: 14595769.

437 9. Kikuchi T, Kimura RS, Paul DL, Adams JC. Gap junctions in the rat cochlea:
438 immunohistochemical and ultrastructural analysis. Anat Embryol (Berl). 1995;191(2):101-18.
439 PubMed PMID: 7726389.

Liu YP, Zhao HB. Cellular characterization of Connexin26 and Connnexin30
expression in the cochlear lateral wall. Cell Tissue Res. 2008;333(3):395-403. doi:
10.1007/s00441-008-0641-5. PubMed PMID: 18581144; PubMed Central PMCID:
PMCPMC2548271.

11. Zhao HB, Yu N. Distinct and gradient distributions of connexin26 and connexin30 in
the cochlear sensory epithelium of guinea pigs. J Comp Neurol. 2006;499(3):506-18. doi:
10.1002/cne.21113. PubMed PMID: 16998915; PubMed Central PMCID: PMCPMC2553046.

447 12. Wingard JC, Zhao HB. Cellular and Deafness Mechanisms Underlying Connexin

448 Mutation-Induced Hearing Loss - A Common Hereditary Deafness. Front Cell Neurosci.

449 2015;9:202. doi: 10.3389/fncel.2015.00202. PubMed PMID: 26074771; PubMed Central
450 PMCID: PMCPMC4448512.

451 13. Zhao HB, Santos-Sacchi J. Auditory collusion and a coupled couple of outer hair cells.
452 Nature. 1999;399(6734):359-62. doi: 10.1038/20686. PubMed PMID: 10360573.

453 14. Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, et al. Cochlear gap junctions
454 coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric
455 counterparts. Am J Physiol Cell Physiol. 2005;288(3):C613-23. doi: 10.1152/ajpcell.00341.2004.
456 PubMed PMID: 15692151.

Yum SW, Zhang J, Valiunas V, Kanaporis G, Brink PR, White TW, et al. Human
connexin26 and connexin30 form functional heteromeric and heterotypic channels. Am J Physiol
Cell Physiol. 2007;293(3):C1032-48. doi: 10.1152/ajpcell.00011.2007. PubMed PMID:
17615163.

461 16. Koval M. Pathways and control of connexin oligomerization. Trends Cell Biol.
462 2006;16(3):159-66. doi: 10.1016/j.tcb.2006.01.006. PubMed PMID: 16490353.

463 17. Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC. Gap junction systems in the
464 mammalian cochlea. Brain Res Brain Res Rev. 2000;32(1):163-6. PubMed PMID: 10751665.

Inoshita A, Iizuka T, Okamura HO, Minekawa A, Kojima K, Furukawa M, et al.
Postnatal development of the organ of Corti in dominant-negative Gjb2 transgenic mice.
Neuroscience. 2008;156(4):1039-47. doi: 10.1016/j.neuroscience.2008.08.027. PubMed PMID:
18793701.

Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, et al.
Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing
impairment and cell death. Curr Biol. 2002;12(13):1106-11. PubMed PMID: 12121617;
PubMed Central PMCID: PMCPMC4030438.

20. Chen J, Chen J, Zhu Y, Liang C, Zhao HB. Deafness induced by Connexin 26 (GJB2)
deficiency is not determined by endocochlear potential (EP) reduction but is associated with
cochlear developmental disorders. Biochem Biophys Res Commun. 2014;448(1):28-32. doi:
10.1016/j.bbrc.2014.04.016. PubMed PMID: 24732355; PubMed Central PMCID:
PMCPMC4105360.

Chen S, Sun Y, Lin X, Kong W. Down regulated connexin26 at different postnatal stage
displayed different types of cellular degeneration and formation of organ of Corti. Biochem
Biophys Res Commun. 2014;445(1):71-7. doi: 10.1016/j.bbrc.2014.01.154. PubMed PMID:
24491564.

482 22. Wang Y, Chang Q, Tang W, Sun Y, Zhou B, Li H, et al. Targeted connexin26 ablation
483 arrests postnatal development of the organ of Corti. Biochem Biophys Res Commun.

484 2009;385(1):33-7. doi: 10.1016/j.bbrc.2009.05.023. PubMed PMID: 19433060; PubMed
485 Central PMCID: PMCPMC2713729.

Anzai T, Fukunaga I, Hatakeyama K, Fujimoto A, Kobayashi K, Nishikawa A, et al.
Deformation of the Outer Hair Cells and the Accumulation of Caveolin-2 in Connexin 26
Deficient Mice. PLoS One. 2015;10(10):e0141258. doi: 10.1371/journal.pone.0141258.
PubMed PMID: 26492081; PubMed Central PMCID: PMCPMC4619622.

490 24. Kamiya K, Yum SW, Kurebayashi N, Muraki M, Ogawa K, Karasawa K, et al. Assembly
491 of the cochlear gap junction macromolecular complex requires connexin 26. J Clin Invest.
492 2014;124(4):1598-607. doi: 10.1172/JCI67621. PubMed PMID: 24590285; PubMed Central
493 PMCID: PMCPMC3973107.

494 25. Iizuka T, Kamiya K, Gotoh S, Sugitani Y, Suzuki M, Noda T, et al. Perinatal Gjb2 gene
495 transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Genet.
496 2015;24(13):3651-61. doi: 10.1093/hmg/ddv109. PubMed PMID: 25801282.

497 26. Fukunaga I, Fujimoto A, Hatakeyama K, Aoki T, Nishikawa A, Noda T, et al. In Vitro
498 Models of GJB2-Related Hearing Loss Recapitulate Ca2+ Transients via a Gap Junction
499 Characteristic of Developing Cochlea. Stem Cell Reports. 2016;7(6):1023-36. doi:
500 10.1016/j.stemcr.2016.10.005. PubMed PMID: 27840044; PubMed Central PMCID:
501 PMCPMC5161531.

502 27. Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S. Mechanosensitive
503 hair cell-like cells from embryonic and induced pluripotent stem cells. Cell. 2010;141(4):704-16.
504 doi: 10.1016/j.cell.2010.03.035. PubMed PMID: 20478259; PubMed Central PMCID:
505 PMCPMC2873974.

506 28. Chen W, Jongkamonwiwat N, Abbas L, Eshtan SJ, Johnson SL, Kuhn S, et al.
507 Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature.
508 2012;490(7419):278-82. doi: 10.1038/nature11415. PubMed PMID: 22972191; PubMed
509 Central PMCID: PMCPMC3480718.

510 29. Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E. Generation of inner ear
511 sensory epithelia from pluripotent stem cells in 3D culture. Nature. 2013;500(7461):217-21. doi:
512 10.1038/nature12298. PubMed PMID: 23842490; PubMed Central PMCID:
513 PMCPMC3739998.

30. Ouji Y, Ishizaka S, Nakamura-Uchiyama F, Yoshikawa M. In vitro differentiation of
mouse embryonic stem cells into inner ear hair cell-like cells using stromal cell conditioned
medium. Cell Death Dis. 2012;3:e314. doi: 10.1038/cddis.2012.56. PubMed PMID: 22622133;
PubMed Central PMCID: PMCPMC3366087.

S1. Ronaghi M, Nasr M, Ealy M, Durruthy-Durruthy R, Waldhaus J, Diaz GH, et al. Inner
ear hair cell-like cells from human embryonic stem cells. Stem Cells Dev. 2014;23(11):1275-84.

520 doi: 10.1089/scd.2014.0033. PubMed PMID: 24512547; PubMed Central PMCID:
521 PMCPMC4028088.

32. Ohnishi H, Skerleva D, Kitajiri S, Sakamoto T, Yamamoto N, Ito J, et al. Limited hair
cell induction from human induced pluripotent stem cells using a simple stepwise method.
Neurosci Lett. 2015;599:49-54. doi: 10.1016/j.neulet.2015.05.032. PubMed PMID: 26003451.

S25 33. Chen JR, Tang ZH, Zheng J, Shi HS, Ding J, Qian XD, et al. Effects of genetic
correction on the differentiation of hair cell-like cells from iPSCs with MYO15A mutation. Cell
Death Differ. 2016;23(8):1347-57. doi: 10.1038/cdd.2016.16. PubMed PMID: 26915297;
PubMed Central PMCID: PMCPMC4947666.

529 34. Ding J, Tang Z, Chen J, Shi H, Chen J, Wang C, et al. Induction of differentiation of
530 human embryonic stem cells into functional hair-cell-like cells in the absence of stromal cells. Int
531 J Biochem Cell Biol. 2016;81(Pt A):208-22. doi: 10.1016/j.biocel.2015.11.012. PubMed PMID:
532 26615761.

533 35. Longworth-Mills E, Koehler KR, Hashino E. Generating Inner Ear Organoids from
534 Mouse Embryonic Stem Cells. Methods Mol Biol. 2016;1341:391-406. doi:
535 10.1007/7651_2015_215. PubMed PMID: 25822723.

536 36. Tang ZH, Chen JR, Zheng J, Shi HS, Ding J, Qian XD, et al. Genetic Correction of
537 Induced Pluripotent Stem Cells From a Deaf Patient With MYO7A Mutation Results in
538 Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells. Stem Cells Transl
539 Med. 2016;5(5):561-71. doi: 10.5966/sctm.2015-0252. PubMed PMID: 27013738; PubMed
540 Central PMCID: PMCPMC4835250.

541 37. Yoshikawa M, Ouji Y. Induction of Inner Ear Hair Cells from Mouse Embryonic Stem
542 Cells In Vitro. Methods Mol Biol. 2016;1516:257-67. doi: 10.1007/7651_2016_328. PubMed
543 PMID: 27032944.

544 38. Koehler KR, Nie J, Longworth-Mills E, Liu XP, Lee J, Holt JR, et al. Generation of
545 inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat
546 Biotechnol. 2017;35(6):583-9. doi: 10.1038/nbt.3840. PubMed PMID: 28459451; PubMed
547 Central PMCID: PMCPMC5462862.

39. Ouji Y, Sakagami M, Omori H, Higashiyama S, Kawai N, Kitahara T, et al. Efficient
induction of inner ear hair cell-like cells from mouse ES cells using combination of Math1
transfection and conditioned medium from ST2 stromal cells. Stem Cell Res. 2017;23:50-6. doi:
10.1016/j.scr.2017.06.013. PubMed PMID: 28689068.

40. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M,
et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation
by extrinsic signals. Cell Stem Cell. 2008;3(5):519-32. doi: 10.1016/j.stem.2008.09.002.
PubMed PMID: 18983967.

556 41. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al.
557 Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature.
558 2011;472(7341):51-6. doi: 10.1038/nature09941. PubMed PMID: 21475194.

42. Danjo T, Eiraku M, Muguruma K, Watanabe K, Kawada M, Yanagawa Y, et al.
Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed
and combinatory treatment with extrinsic signals. J Neurosci. 2011;31(5):1919-33. doi:
10.1523/JNEUROSCI.5128-10.2011. PubMed PMID: 21289201.

563 43. Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, et al.
564 Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad
565 Sci U S A. 2005;102(32):11331-6. doi: 10.1073/pnas.0500010102. PubMed PMID: 16076961;
566 PubMed Central PMCID: PMCPMC1183536.

567 44. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al.
568 Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem
569 Cell. 2012;10(6):771-85. doi: 10.1016/j.stem.2012.05.009. PubMed PMID: 22704518.

- Muguruma K, Nishiyama A, Ono Y, Miyawaki H, Mizuhara E, Hori S, et al.
 Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat
 Neurosci. 2010;13(10):1171-80. doi: 10.1038/nn.2638. PubMed PMID: 20835252.
- 46. Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is
 required for mesoderm formation and patterning in the mouse. Genes Dev. 1995;9(17):2105-16.
 PubMed PMID: 7657163.
- 576 47. Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T, et al. BMP type II
 577 receptor is required for gastrulation and early development of mouse embryos. Dev Biol.
 578 2000;221(1):249-58. doi: 10.1006/dbio.2000.9670. PubMed PMID: 10772805.
- 579 48. Mishina Y, Suzuki A, Ueno N, Behringer RR. Bmpr encodes a type I bone
 580 morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis.
 581 Genes Dev. 1995;9(24):3027-37. PubMed PMID: 8543149.
- 582 49. Wilson PA, Hemmati-Brivanlou A. Induction of epidermis and inhibition of neural fate
 583 by Bmp-4. Nature. 1995;376(6538):331-3. doi: 10.1038/376331a0. PubMed PMID: 7630398.
- 584 50. Grocott T, Tambalo M, Streit A. The peripheral sensory nervous system in the 585 vertebrate head: a gene regulatory perspective. Dev Biol. 2012;370(1):3-23. doi: 586 10.1016/j.ydbio.2012.06.028. PubMed PMID: 22790010.
- 587 51. Wiles MV, Johansson BM. Embryonic stem cell development in a chemically defined
 588 medium. Exp Cell Res. 1999;247(1):241-8. doi: 10.1006/excr.1998.4353. PubMed PMID:
 589 10047466.
- 590 52. Park C, Afrikanova I, Chung YS, Zhang WJ, Arentson E, Fong Gh G, et al. A 591 hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and

endothelial progenitors from embryonic stem cells. Development. 2004;131(11):2749-62. doi:
10.1242/dev.01130. PubMed PMID: 15148304.

53. Czyz J, Wobus A. Embryonic stem cell differentiation: the role of extracellular factors.
595 Differentiation. 2001;68(4-5):167-74. PubMed PMID: 11776469.

596 54. Schalper KA, Riquelme MA, Branes MC, Martinez AD, Vega JL, Berthoud VM, et al.
597 Modulation of gap junction channels and hemichannels by growth factors. Mol Biosyst.
598 2012;8(3):685-98. doi: 10.1039/c1mb05294b. PubMed PMID: 22218428.

- 599 55. Chang HM, Cheng JC, Leung PC. Theca-derived BMP4 and BMP7 down-regulate 600 connexin43 expression and decrease gap junction intercellular communication activity in 601 immortalized human granulosa cells. J Clin Endocrinol Metab. 2013;98(3):E437-45. doi: 602 10.1210/jc.2012-3851. PubMed PMID: 23386650.
- 56. Boswell BA, Lein PJ, Musil LS. Cross-talk between fibroblast growth factor and bone
 morphogenetic proteins regulates gap junction-mediated intercellular communication in lens
 cells. Mol Biol Cell. 2008;19(6):2631-41. doi: 10.1091/mbc.E08-02-0124. PubMed PMID:
 18400943; PubMed Central PMCID: PMCPMC2397318.
- 57. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L.
 Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD
 signaling. Nat Biotechnol. 2009;27(3):275-80. doi: 10.1038/nbt.1529. PubMed PMID:
 19252484; PubMed Central PMCID: PMCPMC2756723.
- 58. Chambers SM, Qi Y, Mica Y, Lee G, Zhang XJ, Niu L, et al. Combined small-molecule
 inhibition accelerates developmental timing and converts human pluripotent stem cells into
 nociceptors. Nat Biotechnol. 2012;30(7):715-20. doi: 10.1038/nbt.2249. PubMed PMID:
 22750882; PubMed Central PMCID: PMCPMC3516136.
- 59. Li W, Li K, Wei W, Ding S. Chemical approaches to stem cell biology and therapeutics.
 616 Cell Stem Cell. 2013;13(3):270-83. doi: 10.1016/j.stem.2013.08.002. PubMed PMID:
 617 24012368; PubMed Central PMCID: PMCPMC3898630.
- 618 60. Koehler KR, Hashino E. 3D mouse embryonic stem cell culture for generating inner ear
 619 organoids. Nat Protoc. 2014;9(6):1229-44. doi: 10.1038/nprot.2014.100. PubMed PMID:
 620 24784820.
- 621 61. Niwa H, Masui S, Chambers I, Smith AG, Miyazaki J. Phenotypic complementation
 622 establishes requirements for specific POU domain and generic transactivation function of
 623 Oct-3/4 in embryonic stem cells. Mol Cell Biol. 2002;22(5):1526-36. PubMed PMID: 11839818;
 624 PubMed Central PMCID: PMCPMC134688.
- 625 62. Ogawa K, Matsui H, Ohtsuka S, Niwa H. A novel mechanism for regulating clonal
 626 propagation of mouse ES cells. Genes Cells. 2004;9(5):471-7. doi:
 627 10.1111/j.1356-9597.2004.00736.x. PubMed PMID: 15147275.

628 Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. The ground 63. 629 2008;453(7194):519-23. state of embryonic stem cell self-renewal. Nature. doi: 630 10.1038/nature06968. PMID: 18497825; PubMed PubMed Central PMCID: 631 PMCPMC5328678.

632 64. Takei S, Ichikawa H, Johkura K, Mogi A, No H, Yoshie S, et al. Bone morphogenetic
633 protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in
634 serum-based embryoid body development. Am J Physiol Heart Circ Physiol.
635 2009;296(6):H1793-803. doi: 10.1152/ajpheart.01288.2008. PubMed PMID: 19363129.

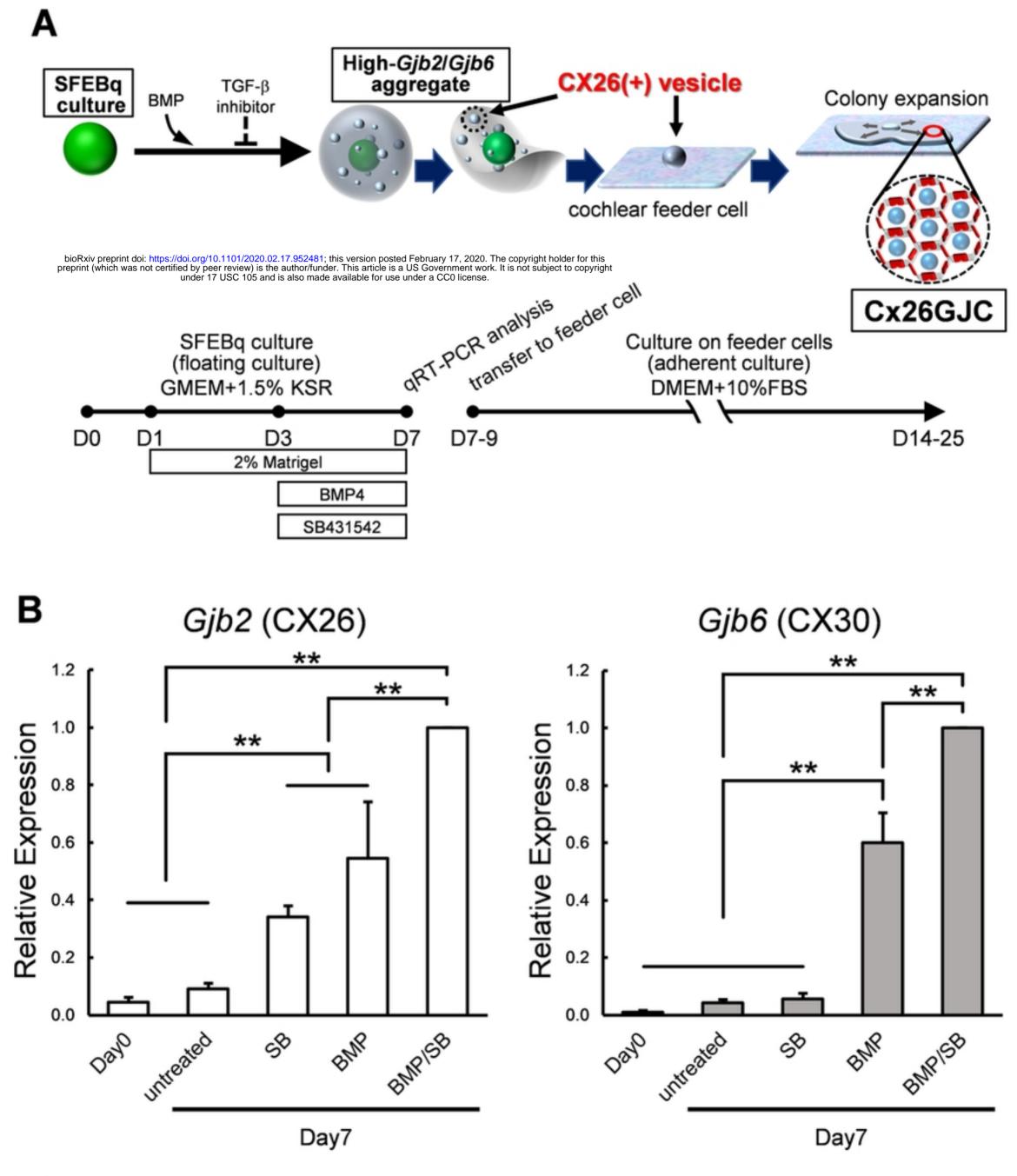
636 65. Bani-Yaghoub M, Felker JM, Sans C, Naus CC. The effects of bone morphogenetic
637 protein 2 and 4 (BMP2 and BMP4) on gap junctions during neurodevelopment. Exp Neurol.
638 2000;162(1):13-26. doi: 10.1006/exnr.2000.7294. PubMed PMID: 10716885.

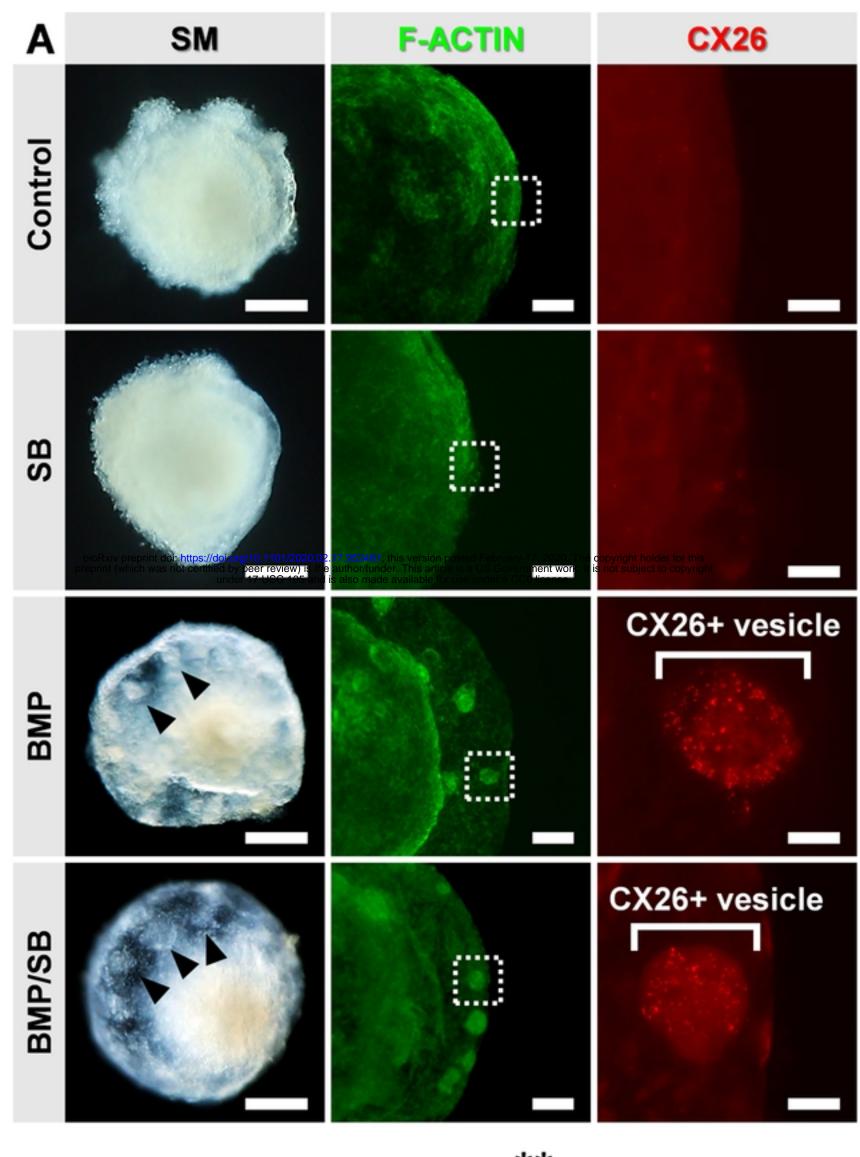
639 66. Xu JG, Gong T, Wang YY, Zou T, Heng BC, Yang YQ, et al. Inhibition of TGF-beta
640 Signaling in SHED Enhances Endothelial Differentiation. J Dent Res. 2018;97(2):218-25. doi:
641 10.1177/0022034517733741. PubMed PMID: 28972822.

644 Supporting information

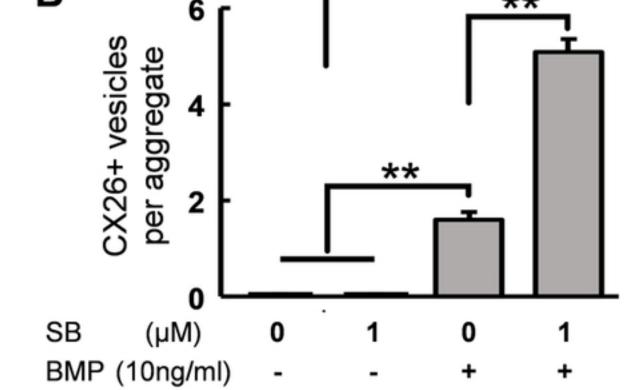
645

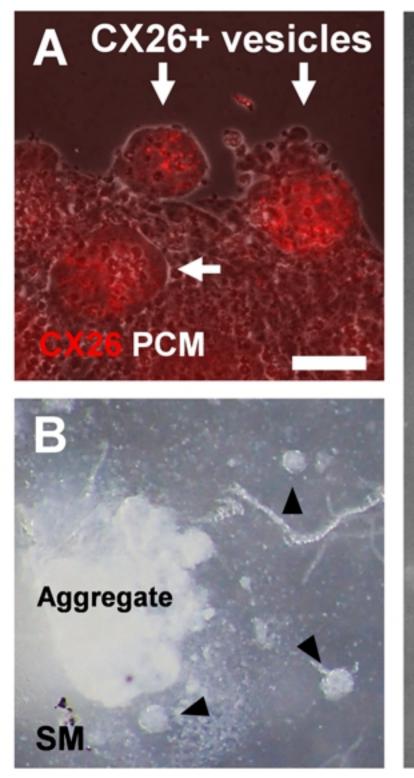
646	S1 Fig. Effects of the addition of various concentrations of SB on the expression
647	level of mRNA and the number of CX26 + vesicles. (A): Relative expression of
648	mRNA at day 7 for SB-treated (SB 1-10µM), and BMP4/SB (SB 1µM+BMP4 10ng/ml)
649	treated aggregates. The mRNA expression levels were normalized to that of BMP4/SB
650	$1\mu M$ (SB $1\mu M$ +BMP4 $10ng/ml$) culture on day 7. (qRT-PCR: $n = 5$. For assessments,
651	five time procedures were repeated to generate cells. Each experiment with 8
652	aggregates.). Differences between samples were assessed by the Scheffe multiple
653	comparison test; ** , $p < 0.01$. The data are expressed as mean ±standard error. (B): The
654	average number of CX26+ vesicles per aggregate from SB-treated (SB 1-10 μ M), and
655	BMP4/SB (SB 1 μ M+BMP4 10ng/ml) treated aggregates. (n = 9 aggregates. For
656	assessments, three time procedures were repeated to generate cells.). Statistical
657	differences between samples were assessed by the One-way ANOVA and multiple
658	comparison test: *, p < 0.05; **, p < 0.01. The data are expressed as mean \pm the
659	standard error.
660	

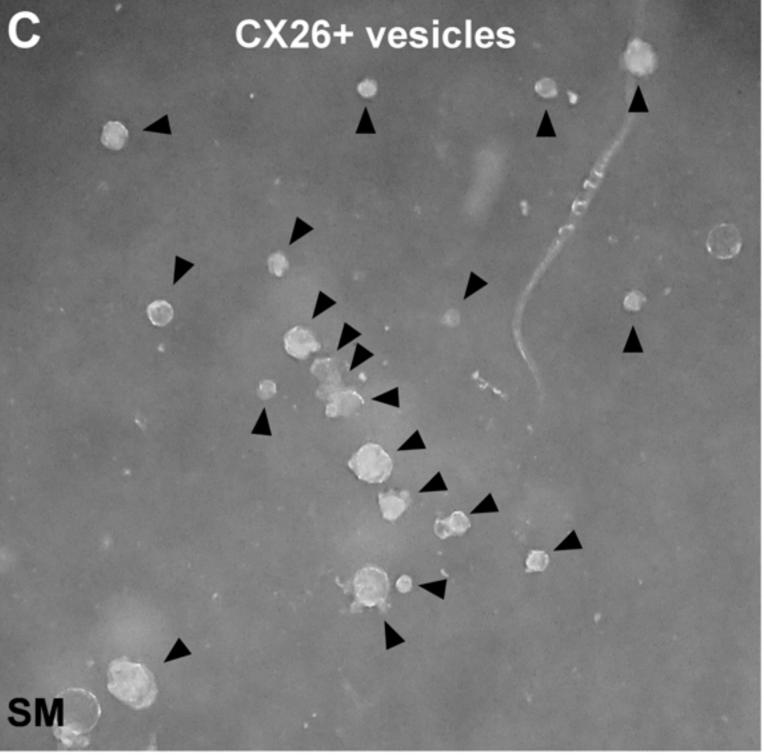

661 S1 Video. The three-dimensional (3D) image of whole CX26(+) vesicle in Day 7

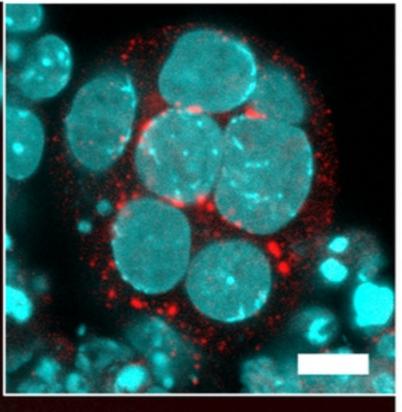

- aggregate. The 3D image was reconstructed from consecutive slices of CX26(+)
- vesicle in (Figure 4A). Confocal stacks of CX26 (red), F-actin (green), and DAPI (blue)
- stain showing CX26-GJP-forming cells within the clear small vesicle.

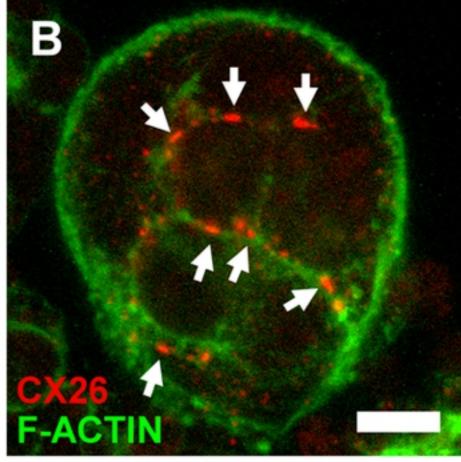
665

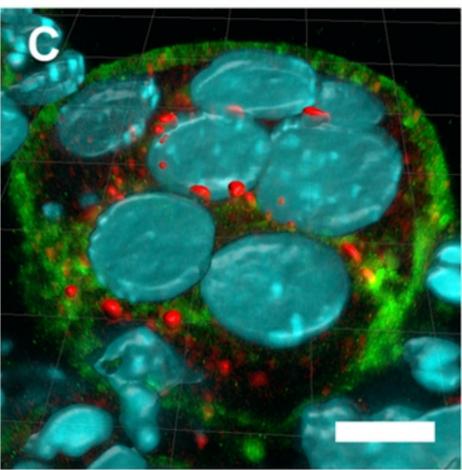

666 S2 Video. The three-dimensional (3D) image of CX26-GJP forming cells in

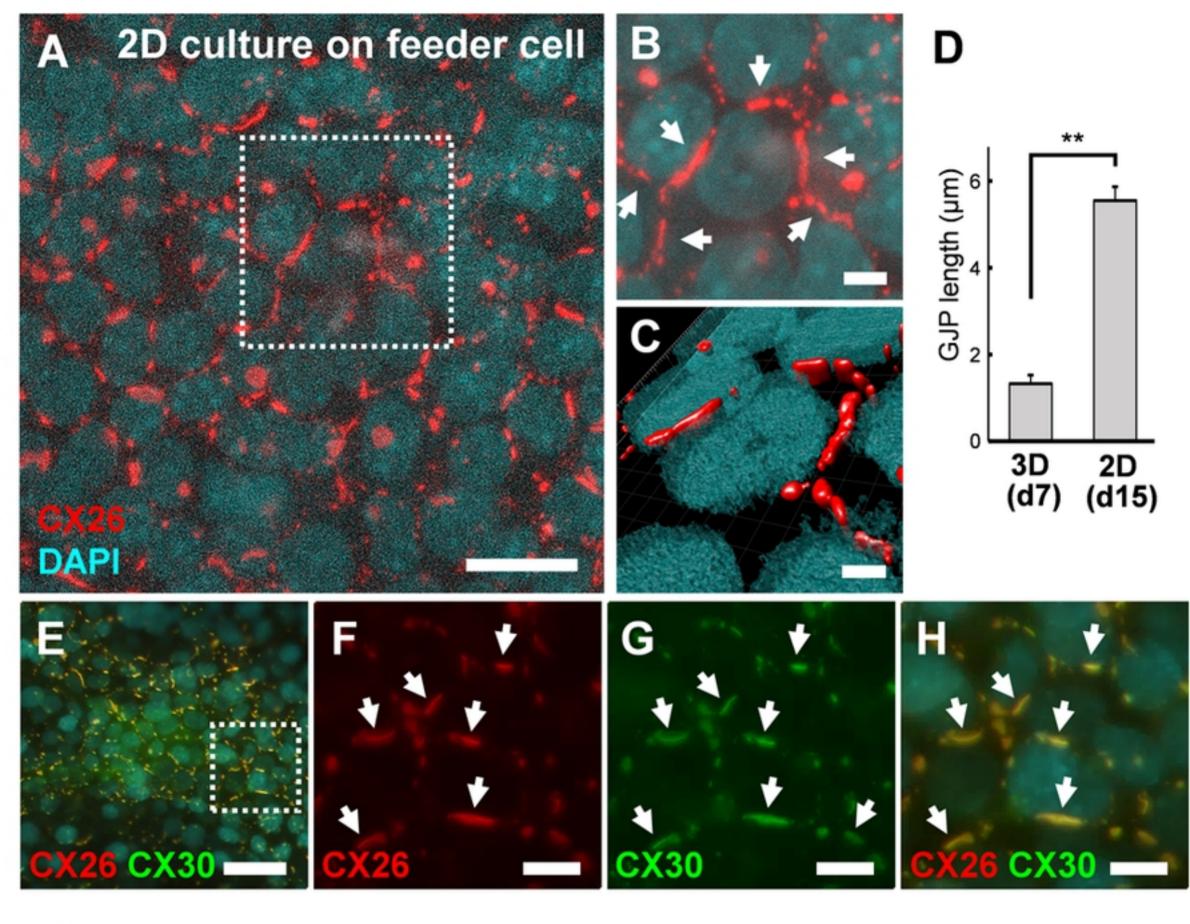

- 667 CX26(+) vesicle. The 3D image was reconstructed from consecutive slices of (Figure
- 4B). Confocal stacks of CX26 (red), F-actin (green), and DAPI (blue) stain showing
- that CX26 formed gap junction plaques at the cell-cell border.

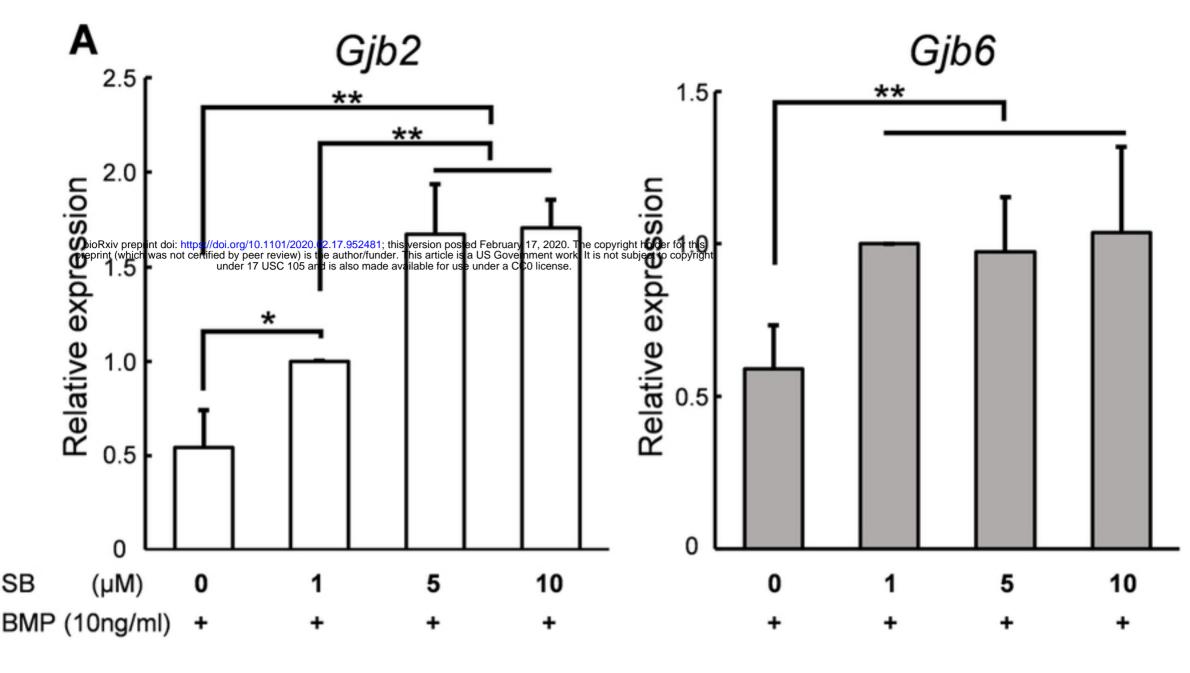



B 6c **








CX26+ vesicle

