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Abstract

Most models of neural responses are constructed to capture the average response to inputs but poorly
reproduce the observed response variability. The origins and structure of this variability have significant
implications for how information is encoded and processed in the nervous system. Here, we present a new
modeling framework that better captures observed features of neural response variability across stimulus
conditions by incorporating multiple sources of noise. We use this model to fit responses of retinal ganglion
cells at two different ambient light levels and demonstrate that it captures the full distribution of responses.
The model reveals light level-dependent changes that could not be seen with previous models. It shows both
large changes in rectification of nonlinear circuit elements and systematic differences in the contributions of
different noise sources under different conditions. This modeling framework is general and can be applied
to a variety of systems outside the retina.

Introduction

Variability in neural responses can lead to insights into circuit function not apparent from mean responses.
Most endeavors to elucidate the neural code, however, focus on a neuron’s typical, or average, response
to a stimulus. Variability can arise from noise – inconsistency that arises due to stochastic processes, such
as ion channel gating and neurotransmitter diffusion – or from uncontrolled experimental factors or from an
incomplete understanding of what is driving neural responses, such as an animal’s arousal state or attention
[1, 2, 3].

Study of response variability can lead to insights into the operation of a neuron or neural circuit from
both a mechanistic and functional point of view. First, the ability to tease apart different sources of variability
present in neural responses can guide the search into potential mechanisms that give rise to this variability
[4, 5]. Second, noise places fundamental limits on the information that can be encoded in single neurons
[1, 6] and populations [7, 8, 9, 10], and limits the accuracy of perception and behavior [11, 12, 13, 14].
Finally, understanding noise is important for understanding how information flows through neural circuitry,
including the strategies used by neural circuits to cope with it [15, 16, 17, 18, 19, 20]. Developing models
that better reflect biological realities and provide more accurate predictions of variability in neural responses
is therefore important to advancing our understanding of circuit function.

Despite this, the models we typically use for neural responses are not tailored to the statistics of the
neuron’s response beyond the mean. Most commonly, the generation of spikes from a neuron’s inputs is
described as a Poisson process [21, 22]. This is intended to reflect the fact that spike responses, partic-
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ularly in cortex, often have a variance-to-mean ratio near one [4, 23]. The assumption that variability in
neural responses takes the form of Poisson noise arising at the output has several limitations. First, it is
inconsistent with the fact that variability in neural circuits arises from multiple sources at different stages of
processing [24]. The Poisson assumption can also lead to systematic biases in the estimation of underlying
circuit computations, such as receptive fields and nonlinearities [25]. Finally, Poisson noise is of a particular
magnitude: the variance of responses is equal to the mean. Although this magnitude is roughly similar to
that commonly observed in several cortical areas, variability can deviate strongly from this magnitude de-
pending on stimulus conditions and the area in question, ranging from well sub-Poisson [26, 27] to strongly
super-Poisson [16, 5].

How can models better account for the variability we observe in neural responses? One avenue is to
incorporate into our models additional features that drive spiking, such as selectivity to additional stimu-
lus dimensions or effects of history dependence. These additional features can account for some amount
of apparent variability in neural responses. A large body of work has shown that autoregressive models,
in particular Poisson generalized linear models (GLMs), better capture neural responses by directly incor-
porating dependence on response history [28, 29, 30, 31]. These models are particularly successful at
better capturing fine temporal structure in responses. A second approach explicitly incorporates stochas-
tic elements into models, representing either truly noisy features of neural processing or circuit properties
sufficiently complex that we cannot disentangle them from noise [5, 15]. While much work has focused on
the first approach, here we take the latter, incorporating model features inspired by what is known about
the biological circuitry and likely sources of variability. Ultimately, these two lines of work ought to be unified
to produce more complete models that help us to better understand the contributions that each of these
factors plays in the variability observed in neural responses.

We present here a flexible model that incorporates multiple potential sources of variability, which arise at
different locations relative to a nonlinear processing element and have distinct effects on the observed vari-
ability in responses. We first demonstrate that this model can be tractably fit to a dataset of limited size with
known parameters and that we accurately recover both a nonlinearity and the strengths of different noise
sources in this dataset, unlike oft-used models that assume Poisson variability at the output. We then apply
our model to the responses of retinal ganglion cells at two different levels of illumination. The model cap-
tures response variability better than a linear-nonlinear-Poisson model, showing particular improvements at
the higher light level. The model further reveals consistent luminance-dependent changes in both the non-
linearities and inferred sources of noise, changes which have implications for different processing strategies
at different light levels.

Results

Observed variability in neural responses

In order to establish the response properties that need to be captured by a model, we first recorded re-
sponses from ON-alpha retinal ganglion cells (RGCs) of the mouse at two different levels of ambient il-
lumination while presenting spatially uniform Gaussian noise stimuli (Fig. 1A,D; 200 µm diameter spot,
50% Weber contrast, centered on the soma). At the lower level of illumination (10 R*/rod/s) responses
are primarily rod-mediated, while at the higher level of illumination (1,000 R*/rod/s) responses are primarily
mediated by cones [32, 33]. We characterize the ganglion cell responses as a function of linearly filtered
stimulus values, a common simplification that captures response selectivity in ganglion cells well [34, 35].
We used standard reverse-correlation methods to compute the linear filter that best relates the stimulus to
the observed responses. Applying this filter to the stimulus yields the best linear prediction of responses,
often called the “generator signal.” Fig. 1B,E show RGC responses in a short time window (∼100 ms) plot-
ted against the average filtered stimulus in the same time window at low and high light, respectively. In
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Figure 1: Recordings from retinal ganglion cells at two different light levels, with predictions from
LNP models. A: Example responses of an ON-alpha retinal ganglion cell to presentation of three different
noise sequences. Mean light level 10 R*/rod/s, 50% contrast. B: Neural responses plotted as a function
of generator signal (i.e., filtered stimulus values). Yellow line indicates best-fit parameterized nonlinearity
for the LNP model. C: Distributions of neural responses (gray) from corresponding gray boxes in B. Yellow
shows the distributions predicted by the LNP model. D-F: Same as A-C for an ON-alpha ganglion cell at a
mean light level of 1,000 R*/rod/s.

both cases, it is apparent that the average response increases as a function of the filtered stimulus values,
though there is a great deal of variability in responses to a given input.

The observed variability of the responses depends on both the filtered stimulus value and the stimulus
conditions. Fig. 1C shows distributions of responses at low light for different filtered stimulus values cor-
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responding to the gray boxes in panel B. Responses show more variability at higher input values. Fig. 1F
shows the same for high light. Comparing across the two light levels, it is also apparent that the distribution
of responses for a given filtered stimulus value is very different, even when the mean output of the nonlin-
earity is similar. (Compare, for example, panels Ciii and Fiii of Fig. 1.) Although the predicted output of the
nonlinearity is similar (∼5 spikes), the distributions of observed spikes in the data are quite different under
these two conditions. A suitable model thus ought to have the flexibility to capture different distributions of
responses for identical input values.

Linear-nonlinear-Poisson model compared to observed variability

The linear-nonlinear-Poisson (LNP) model is widely used to model neural responses, particularly in early
sensory systems such as the retina [34]. In this model, a filtered stimulus is passed through a nonlinearity,
the output of which gives the mean firing rate of a Poisson process. While it is well-documented that the
LNP model provides accurate predictions of a neuron’s trial-averaged response to a stimulus, we sought to
determine how well this model captures variability in the responses and use it as a benchmark to evaluate
candidate models.

In the LNP model, responses to repeated presentation of the same input follow a Poisson distribution. It
is therefore already clear that the LNP model will be unable to capture features of the response distributions
at low and high light: as noted previously, even when the predicted mean output of the nonlinearity is
similar across experimental conditions, the distributions of observed spikes are qualitatively different. Such
a difference cannot be accounted for by an LNP model, or by any other model in which spikes are taken to
follow Poisson statistics. Indeed, the failure of the LNP model to accurately capture statistics of firing in the
retina has been noted previously (e.g., [36, 29]).

Our goal was to improve upon the linear-nonlinear framework by adding additional sources of noise,
inspired by known locations of noise in biological circuits. While other model architectures might capture
some aspects of response variability more accurately, they do not necessarily reflect known sources of
variability in the circuitry. For example, while a GLM may be able to accurately fit responses of RGCs,
variability in responses to identical stimuli must necessarily be captured by effects of spike history in the
model. This does not reflect what we know about the circuitry, including for example that much variability
in RGC responses can be attributed to noise that arises within the photoreceptors [37]. Our goal here is to
develop a model that reflects known features of the circuit, incorporating stochastic elements where noise
is expected to be present.

We fit nonlinearities to responses at low and high light (Fig. 1B,E; see Methods for details) and used
them to predict average responses and response distributions. As in previous work, average responses to
repeated presentations of the same stimulus were well-predicted by the LNP model (R2 = 0.96 and 0.74
at low and high light respectively; see also Fig. 5D and Fig. 7D). Response distributions, however, were
generally poorly predicted. At low light, there are inconsistencies between the distribution observed in our
data and a Poisson distribution, particularly for filtered stimulus values near zero (Fig. 1Cii). (For a Gaussian
noise stimulus, these filtered stimulus values are also Gaussian distributed with mean zero, and thus the
most commonly occurring inputs are those near zero.) At high light, these inconsistencies are even more
striking, with very poor agreement between the observed distribution of responses and that predicted by
the LNP model (Fig. 1F). In particular, there is a far greater probability of observing zero spikes in the data
than predicted by the LNP model.

From these results, it is evident that the performance of the LNP model depends on the stimulus used to
probe the system. It shows better correspondence to the data at low light than high light, but demonstrates
shortcomings in capturing the full response distribution under both conditions. Any model in which the
response distribution is determined entirely by the mean response will suffer from this issue.
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Model of variable neural responses with multistage noise

Given these shortcomings, we sought a more complete model that would accurately capture the distribution
of observed data. One way to capture additional features of the response distribution that is motivated by
features of the biological circuitry is to incorporate noise at different locations within the model. Specifically,
we incorporated three potential sources of noise into a linear-nonlinear cascade framework (Fig. 2A). These
sources of noise are intended to capture different features of experimentally observed variability (stimulus-
dependence or -independence, additive or multiplicative effects), while remaining tractable to fit to data. Our
goal here is to better capture the distribution of responses by incorporating stochastic model elements that
represent plausible sources of variability in the biological architecture. Changes in the relative magnitude
of these different noise sources can give rise to models that produce different response distributions even
when the mean output is identical. We do not consider fine temporal structure in responses here, but future
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Figure 2: Model schematic. A: A linearly filtered stimulus is corrupted by additive noise, passed through
a softplus nonlinearity that experiences multiplicative noise, and finally subject to additional additive noise.
Spikes are generated by rectifying and rounding the result. B: Illustration of the effects of potential sources
of noise. Top: Gaussian additive noise upstream of the nonlinearity (purple) is smeared out by the nonlin-
earity (dashed line), resulting in greater noise in the responses for areas of greater sensitivity (higher slope)
in the nonlinearity. Middle: Gaussian multiplicative noise at the output (blue) of the nonlinearity scales with
the output of the nonlinearity. Bottom: In this work, we consider two potential distributions for additive noise
downstream of the nonlinearity (green). First, we consider simple Gaussian noise, which is the same mag-
nitude regardless of input value (left). Motivated by observations in the data, we also consider a mixture
model for the downstream noise, in which noise is drawn from a Gaussian distribution with probability pdown
or is zero otherwise (right).

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 17, 2020. ; https://doi.org/10.1101/2020.02.17.951830doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.17.951830


work building on the model presented here ought to improve temporal resolution and incorporate history
effects. We will return to these ideas in the Discussion.

Before proceeding, it is worth clarifying the distinction between “variability” and “noise.” Noise refers to
inconsistency in responses that arises due to stochastic processes and is considered to obscure the signal
of interest. Noise is therefore generally (though not always) unfavorable from the perspective of neural
coding. Noise can be considered a subset of variability, which more broadly refers to some inconsistency in
a neuron’s response and hence could include uncontrolled experimental variables, such as behavioral state
or temperature. In the work that follows, we refer to stochastic biological processes as producing noise but
generally discuss variability in neural responses, as the sources of the variation are not fully known at the
level of neural outputs. In models, we refer to the factors that produce variability as noise because they
arise from stochastic elements (random variables) in the model.

In this multistage noise model, the filtered stimulus first encounters additive noise, which we refer to as
upstream noise (nup) to indicate its position relative to the nonlinearity in the model. After the corrupted
input is passed through the nonlinearity, it encounters multiplicative noise (nmult), in which the output of
the nonlinearity is multiplied by a random noise value. This is followed by another source of additive noise
downstream of the nonlinearity (ndown). Responses are then generated by rounding and rectifying the
output to produce a spike count. This deterministic method of spike generation reflects the fact that spike
generation itself accounts for almost none of the variability observed in neural responses [38, 39, 40]. (See
Methods for additional model details.) Note that this model allows us to estimate both the shape of the
nonlinearity and the strengths of each noise source (unlike, for example, LNP models or GLMs).

The effects of each noise source on response variability are illustrated in Fig. 2. Each panel shows the
distribution of model outputs (shown prior to spike generation for clarity) when only a single source of noise
is present, with subpanels above illustrating the conditional distributions at filtered stimulus values marked
by dashed vertical lines. For the models we consider, upstream and multiplicative noise are Gaussian.
Although the magnitude of upstream noise is independent of the input, its effects are magnified by regions
of high sensitivity (high slope) in the nonlinearity and eliminated by flat regions (far left). The effects of
multiplicative noise scale with the output of the nonlinearity. Because the noise is multiplied by the output
of the nonlinearity, larger output values result in greater variability. Both upstream and multiplicative noise
therefore result in variability that depends on the input: response variability due to upstream noise scales
with the derivative of the nonlinearity, and response variability due to multiplicative noise scales with the
output value of the nonlinearity itself. We will consider two different distributions for downstream noise:
one purely Gaussian (Fig. 2B, bottom left) and another that is Gaussian with some probability and zero
otherwise (Fig. 2B, bottom right). We will return below to the conditions in which each of these distributions
is used. Downstream noise, regardless of its particular distribution, is independent of the input and thus
results in equally variable responses across all regions of the nonlinearity.

Comparison with LNP model

How does the location of the dominant noise source impact estimates of circuit parameters? One way
to assess this is to determine what estimates would look like for a variety of circuits with different noise
properties under a common framework. If a neuron’s variability is incorrectly assumed to arise from Poisson
noise at the output, we show that this can result in errors in both the predicted distributions of responses
and the inferred nonlinearity.

If only additive Gaussian noise upstream of the nonlinearity is present and an LNP model is fit to the
resulting responses (Fig. 3A-C), the inferred nonlinearity will be less sharply rectified (i.e., more linear)
than the true underlying nonlinearity that produced the data. Noise added to a filtered stimulus will make
responses to that input, on average, more similar to nearby inputs, having the effect of “smearing” out the
nonlinearity. Response distributions will be poorly fit across all filtered stimulus values.

If only multiplicative noise is present, the inferred nonlinearities and response distributions may be well
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Figure 3: Summary of the effects of different sources of noise. A: Model schematic as in Fig. 2, except
with only a single source of noise: Gaussian additive noise upstream of the nonlinearity. B: Left: Simulated
data (gray dots) with only additive Gaussian upstream noise. The mean responses predicted by the LNP
model (yellow) closely track the mean responses in the simulated data (gray). Right: The nonlinearity
inferred by the LNP model (yellow) is systematically biased from the nonlinearity used to generate the
data (black). C: Distributions of responses (gray) from corresponding gray boxes in B compared to those
predicted by the LNP model (yellow). D-F: Same as A-C, except with only multiplicative Gaussian noise at
the output of the nonlinearity. G-I: Same as A-C, except with only additive Gaussian noise downstream of
the nonlinearity.

approximated by Poisson noise (Fig. 3D-F). In both cases, the variance of responses scales with the output.
In the example depicted, the multiplicative noise scales with 1.5 times the output of the nonlinearity and is
thus slightly super-Poisson, hence the discrepancy in Fig. 3Fii.

If only downstream noise is present (Fig. 3G-I), the inferred nonlinearity will exhibit an offset due to the
fact that noise is rectified to produce non-zero spike counts. Response distributions can be relatively well
approximated at some higher output values where Poisson noise approaches Gaussianity but are poorly
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approximated at lower values.
In summary, these examples demonstrate the impact that assumptions about noise can have on the in-

ferred shape of the nonlinearity: incorrect assumptions can lead to strongly biased estimates of the nonlin-
earity operating in the circuit. Although the nonlinearity does not necessarily reflect a particular biophysical
feature of the circuit (e.g., a particular cell’s spike threshold), it nevertheless provides a useful description
of the circuit’s selectivity to the preferred stimulus feature: stronger nonlinearities and steeper slopes are
indicative of greater selectivity to the feature given by the linear filter. Improving the estimate of this nonlin-
earity is therefore informative of circuit function, even when it does not correspond to a particular location in
the circuit.

Estimating multistage noise model parameters

One key feature of the LNP model is its simplicity to fit to data, requiring only standard reverse correlation
methods to find the linear filter and least-squares estimate of the nonlinearity [34]. Given the relative
complexity of our proposed multistage noise model, it is unclear if it is tractable to fit to data or if there is a
unique set of parameters that best characterize a given dataset. To answer these questions, we generated
simulated data from the multistage noise model with known parameters and then estimated parameters of
the simulated data to determine if they were accurately recovered. We generated simulated datasets of a
size corresponding to only ∼8-10 minutes of data collection, generally shorter than the recordings we have
from retinal ganglion cells that we wish to fit the model to. (For results for datasets of different sizes, see
Supplementary information.)

We used a maximum likelihood approach to estimate model parameters. In order to reduce computation
time, we first approximated the likelihood function and then used standard optimization methods to find the
maximum of this function. (See Methods for details.) Importantly, parameters that characterize the shape
of the nonlinearity and parameters that characterize noise strengths are estimated simultaneously, as these
interact to determine the likelihood. As demonstrated above, incorrect assumptions about the structure of
noise in a circuit can bias estimates of the nonlinearity. Similarly, estimating the shape of the nonlinearity
first and then using this to infer the strengths of different noise sources can bias the estimates of those
strengths. It is therefore important to estimate both nonlinearity and noise parameters together.

Because the likelihood function is non-convex, optimization is not guaranteed to arrive at the maximum
likelihood set of parameters. We therefore begin our optimization at several different initial conditions and
select the parameters that result in the overall greatest likelihood. In practice, many initial conditions con-
verge to similar parameter estimates, suggesting that the likelihood does not have many deep local minima.
Using this procedure, we find that we are able to estimate model parameters with a high degree of accuracy.

We begin with a model in which all sources of noise are Gaussian distributed. Recall that the model
still produces highly non-Gaussian spike counts in this case. We will see later that some datasets call for
modifications to the Gaussian noise sources. Fig. 4A shows four example datasets: one where each source
of noise dominates (three total) and one where all sources of noise contribute. We are able to recover the
nonlinearity that generated the data with high precision, as well as the sources of noise present in the data.
We can therefore reconstruct with high precision the full distribution of responses at any given input value
(insets).

We generated 30 simulated datasets with varying parameters, including both steep and shallow non-
linearities and different combinations of dominant noise sources. Results for recovering these parameters
are summarized in Fig. 4C-D. In these datasets, we can recover the nonlinearity that produced the data
with a high degree of accuracy. The error in the recovered nonlinearities for the multistage noise model
is nearly always less than 0.3 spikes on average: that is, the absolute difference between the output of
the true nonlinearity and the recovered nonlinearity is on average less than 0.3 spikes across the range
of possible inputs. It is expected that the nonlinearity inferred for the LNP model will be confounded be-
cause the data are generated from models with different noise structure than the model. We present this
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Figure 4: Model parameters can be accurately recovered from simulated data. A: Nonlinearities
used to generate four example datasets (gray), nonlinearities for an LNP model (yellow), and nonlinearities
recovered by fitting the multistage noise model (red). Insets: Distributions of responses at the input value
indicated by the dashed vertical line for the dataset (gray), LNP model (yellow), and multistage noise model
(red). B: True (gray) and recovered (purple, blue, green) parameters for the four example datasets. The
upper limit on each vertical axis corresponds to a signal-to-noise ratio (SNR) of 0.5 when the respective
noise source is the only one present. (See Methods for additional details of this calculation.) C: Average
absolute error of inferred nonlinearities, weighted by the input distribution, for all 30 simulated datasets. D:
Error in estimated noise parameters for simulated datasets. Points are shown for all cases in which the
corresponding source of noise contributed at least 20% of the total noise.

error here as a benchmark comparison, since this is a model that is often used in practice for responses
with unknown noise structure. The large errors in the inferred nonlinearities for the LNP model underscore
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the challenges in interpreting this nonlinearity as representing an actual circuit feature (or combination of
circuit features) rather than a component of a descriptive model. In addition to recovering the nonlinearity,
the multistage noise model estimates the strength of each source of noise that contributes meaningfully to
response variability within 20% of its true value (Fig. 4D). (See Supplementary information for additional
tests.) In summary, for a range of parameter values with a modestly sized dataset, we can accurately
recover both the nonlinearity and the sources of noise that produced the data.

Application of multistage noise model to retinal ganglion cells: low light

How well does this model capture responses of actual neurons? We next fit the model to ganglion cell
responses at low light levels (10 R*/rod/s). For the example cell shown in Fig. 5, the mean responses pre-
dicted by the multistage noise model are nearly identical to those predicted by the LNP model, shown for
both for the full dataset as a function of filtered stimulus (Fig. 5A) and for responses to repeated presen-
tations of the same noise sequence (Fig. 5D). Nonlinearities extracted by the two models are also nearly
identical (Fig. 5B). Note that for the LNP model, the nonlinearity in the model is identical to the mean pre-
dicted response, so the yellow lines in Fig. 5A and B are identical. For the multistage noise model, the
nonlinearity does not necessarily trace out the mean responses predicted by the model, due to the struc-
ture of the noise and the rectification step. Thus, the mean response from the multistage noise model on
the left need not be identical to the nonlinearity on the right, though they are similar here.

When we consider the full distribution of responses, however, we see that the multistage noise model
outperforms the LNP model. More specifically, a Poisson approximation is somewhat suitable (although not
entirely without issue) at higher and lower filtered stimulus values (Fig. 5Ei,iii). The Poisson approximation
fails more obviously near the center of the input distribution (Fig. 5Eii), and, as noted earlier, this is in fact
where inputs are most probable (i.e., where most of the data lie).

We then applied this model to additional cells (n=8), all exposed to the same level of ambient illumination
(10 R*/rod/s). Results are summarized by plotting the Jensen-Shannon divergence (JSD) between the
predicted and actual response distributions at three different input levels. JSD is a measure of difference
between two probability distributions; lower JSD indicates better correspondence between two distributions.
Across all filtered stimulus values, the JSD between the data and predictions from the multistage noise
model is nearly always lower than the data and the LNP model (Fig. 5F). In other words, the multistage
noise model is a better predictor of the true response distributions than the LNP model.

Other model architectures are likely to outperform the LNP model in this regard, and we were interested
in how one widely used framework – Poisson GLMs – might perform. Attempts to fit a GLM to the data
often resulted in poor fits and runaway firing. This is a common problem when fitting a GLM to data with
high variability [41]. Although there is likely a way to parameterize the model’s filters such that stable fits
can be achieved, this requires hand-tuning of parameters and was outside the scope of the current work. It
is worth noting that even if a GLM were able to capture response distributions better than an LNP model, it
would necessarily do so by accounting for this variability via the spike history filter, as this is the only model
component that differs from the LNP model. In a circuit where noise is known to arise at multiple stages
unrelated to spike history (within the photoreceptors, for example [37]) we seek a model that accounts
for these known sources of variability with stochastic model components, rather than by substituting, for
example, spike history effects.

Different stimulus conditions produce qualitatively different response distributions

We next fit the model to ganglion cell responses at high light (1,000 R*/rod/s), finding a new set of nonlinear-
ity and noise parameters that best capture responses at this light level. We found that the model presented
above, with purely Gaussian sources of noise, could not account for the observed response distributions at
this light level (Supplementary Fig. 3). Specifically, occasional large responses were observed at low input
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Figure 5: Multistage noise model accurately captures responses of retinal ganglion cells at low
light. A: Mean responses predicted by both the LNP model (yellow) and multistage noise model (red) are
similar for this example cell and accurately predict the mean responses from the data (black). B: Model
nonlinearities for the LNP and multistage noise model are similar. Continued on next page.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 17, 2020. ; https://doi.org/10.1101/2020.02.17.951830doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.17.951830


Figure 5: Continued from previous page. C: Noise values for each noise source in the multistage noise
model. All noise sources contribute to observed variability, with upstream noise contributing most strongly.
D: Average responses of example cell from A for repeated trials of the same noise sequence (gray). Pre-
dictions of trial-averaged responses are similar for both models. E: Distributions of responses from gray
boxes in A. The multistage noise model captures the distribution of responses markedly better than the
LNP model. F: Jensen-Shannon divergence between the distributions of responses from data and the mul-
tistage noise model, plotted against JSD between distributions from data and the LNP model, plotted for
eight different ganglion cells (circles, square for example cell in A-E), with panels corresponding to gray
boxes in A.

values. The observed failures of the original model might be accounted for by incorporating missing model
components that drive spiking, such as selectivity to multiple stimulus features or spike-history dependence.
Alternatively, failures might arise from the way in which noise is incorporated in the model. We tested both
of these possibilities to develop a data-driven modification of the model that would account for the observed
response distributions at high light. The details of this modification are presented below.

We tested whether incorporating additional features that might drive spiking into the model could ac-
count for the observed response distributions. Previous work has reported that multiple stimulus features
drive spiking in salamander RGCs [42]. However, covariance analysis did not reveal selectivity to additional
stimulus features (Supplementary Fig. 4). Incorporating a term to account for response-history depen-
dence, as is done in a generalized linear model, also did not improve the model’s predictive ability (see
Supplementary information). We therefore sought to modify noise distributions in the model.

Motivated by features of the responses, particularly response distributions at low input values, we mod-
ified the distribution of downstream noise in the model. As was apparent in Fig. 1, the distributions of
responses for cells at high light levels differed markedly from those at low light levels, even for identical
output values of the nonlinearity. The model presented thus far has the flexibility to capture different re-
sponse distributions by changing the magnitudes of each of three Gaussian noise sources. However, even
with this flexibility, we found that the model with purely Gaussian noise sources did not adequately capture
responses at high light levels. In particular, it systematically overestimated baseline response levels and
variability (Supplementary Fig. 3). This held true for spiking responses, as well as excitatory input currents
of the ganglion cell (data not shown).

We used observed features of the responses to guide our choice of downstream noise distribution. At
low input values, where the nonlinearity is flat and produces an output near zero, nearly all noise is ex-
pected to be contributed by the downstream noise source. Whereas response distributions for these low
input values were approximately rectified Gaussian distributions at low light (corresponding to purely Gaus-
sian downstream noise), response distributions at high light were well described by a mixture distribution:
normally distributed N (0, σ2

down) with probability pdown and zero otherwise. This distribution can account for
the large number of zero responses present at low input values. The mixture distribution can be thought
of as representing an intermittent source of noise: some portion of the time (given by pdown) this source of
noise is present, while the remainder of the time it is absent. This might reflect the fact that this source of
noise is itself engaged by a noisy process that takes effect randomly throughout stimulus presentation, or
it might be caused by aspects of the stimulus that are not captured by this model. Results for this model
are presented below. (See Supplementary information for additional details.) Note that the original model,
with purely Gaussian downstream noise, is a subset of this model. The model with a mixture distribution for
downstream noise will therefore also be able to capture response distributions at low light levels and allow
for straightforward comparison of parameters across the two experimental conditions. In other circuits or
under different stimulus conditions, the experimenter can straightforwardly determine the most appropriate
shape of the downstream noise distribution by similarly finding the distribution that best matches responses
at input values where the nonlinearity is flat and produces output near zero.
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Figure 6: Model parameters can be accurately recovered from simulated data where downstream
noise is drawn from a mixture distribution. A: Nonlinearities used to generate three example datasets
(gray), nonlinearities for an LNP model (yellow), and nonlinearities recovered by fitting the multistage noise
model (red). Insets: Distributions of responses at the filtered stimulus value indicated by the dashed vertical
line for the dataset (gray), LNP model (yellow), and multistage noise model (red). B: True (gray) and
recovered (purple, blue, green) parameters for the three example datasets. C: Average absolute error of
inferred nonlinearities, weighted by the input distribution, for all 12 simulated datasets. D: Error in estimated
noise parameters for simulated datasets. Points are shown for all cases in which the corresponding source
of noise contributed at least 20% of the total noise.

Estimating parameters for model with mixture distribution

In order to determine if parameters of this modified model could also be recovered, we again generated sim-
ulated data from this model and used the same procedures to estimate model parameters. (The likelihood
function is slightly altered due to the change in downstream noise distribution, but model fitting procedures
are otherwise identical to the previous model.) Results for three example datasets and summary results
across 12 simulated datasets are presented in Fig. 6. As with the previous model, both nonlinearity and
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noise parameters can be recovered with high accuracy. For simplicity, we show the standard deviation of
the downstream noise distribution

(√
pdownσ2

down

)
, but both parameters can be individually recovered with

similar accuracy.

Application of model to retinal ganglion cells: high light

We next fit the model to retinal ganglion cell responses at high light levels (1,000 R*/rod/s). For this cell,
unlike that shown for low light levels, the nonlinearities inferred by the new model and the LNP model are
markedly different, with the multistage noise model inferring a much more sharply rectified nonlinearity
(Fig. 7B). Again, predictions of the average responses are nearly identical for both models (Fig. 7 A,D),
despite the differences in nonlinearities. This is possible due to differences in other features of the model,
particularly noise and spike generation. Note that although the mean responses predicted by both models
for large input values appear to fall below the cloud of points, these are actually accurate predictors of the
mean responses due to the number of zero responses at large input values (Fig. 7A). For the cell shown,
both upstream and downstream noise sources contribute to the observed variability (Fig. 7C). In the next
section, we will consider direct comparisons of noise values for individual cells across light levels.

The predicted distributions of responses for the multistage noise model are in close correspondence
with the data, whereas Poisson distributions provide a poor approximation across input values, particularly
larger input values (Fig. 7E). Across a population of cells (n=6), the multistage noise model predicts the
distribution of responses better than the LNP model across all input levels (Fig. 7E).

Throughout we have made the simplifying assumption that the input to the nonlinearity is well-characterized
by a filtered stimulus value and examined the ability of the model to capture response variability given a
particular filtered stimulus value. We also note that the model parameters estimated using this simplification
provide an improved estimate of the response variability across repeated presentations of the same noise
sequence, compared to the LNP model.

Comparison of model features at low and high light levels

We next sought to determine if the model revealed any systematic differences between ganglion cell re-
sponses – in either the nonlinearity or noise – when ambient illumination changes. In order to make fair
comparisons between the two conditions, we fit data at both light levels using the multistage noise model
with a mixture distribution for downstream noise. (For details on how inferred parameters depend on which
model is used, see Supplementary information.)

Nonlinearities were consistently more sharply rectified at high light compared to low light, both for indi-
vidual cells recorded at both light levels (Fig. 8A) and across the population of cells (Fig. 8B; average ratio
high-to-low 12.95; p<0.001, t-test). Curvature was quantified by taking the maximum of the the second
derivative of the nonlinearity. There is no possible scaling of the vertical or horizontal axis that overlays
the nonlinearities in the two cases, ruling out the possibility that this change is simply due to differences in
dynamic range or differences in the effective contrast experienced by the cell under these two conditions.
In comparison, nonlinearities found for the LNP model also show significantly stronger rectification at high
light but are far more similar under the two conditions (Fig. 8C-D; average ratio high-to-low 2.52; p=0.01,
t-test). Further, nonlinearities found using the LNP model are far less sharply rectified than those found
using the multistage noise model (compare vertical axes in panels B,D).

All three sources of noise present in the multistage noise model are needed to account for ganglion cell
responses (Fig. 8E). There are no systematic differences in the magnitude of the upstream noise source
across light levels (n=5 cells with data at both light levels; average ratio low-to-high 1.56; p=0.28, paired
t-test). Multiplicative noise, on the other hand, is lower at high light levels for all cells in which paired data
is available (average ratio low-to-high 6.15; p=0.05, paired t-test). The inferred strength of the downstream
noise source is higher across the population at high light levels (average ratio low-to-high 0.33; p<0.001,
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Figure 7: Data-driven modified model accurately captures responses of retinal ganglion cells at high
light. A: Mean responses predicted by the multistage noise model (red) and LNP model (yellow) are again
similar for this example cell. B: Model nonlinearities are markedly different. C: Upstream and downstream
noise both contribute to the observed variability. Continued on next page.
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Figure 7: Continued from previous page. D: Average responses of example cell from A for repeated trials
of the same noise sequence (gray). Predictions of trial-averaged responses are similar for the multistage
noise model and LNP model. E: Distributions of responses from gray boxes in A. The multistage noise
model captures the distribution of responses better than the LNP model. F: Jensen-Shannon divergence
between the distributions of responses from data and the multistage noise model, plotted against JSD
between distributions from data and the LNP model, for six different ganglion cells (circles, square for
example cell in A-E), with panels corresponding to gray boxes in A.
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Figure 8: Comparison of model parameters at low and high light levels. A: Nonlinearities at low (teal)
and high (orange) light for three example cells, estimated with the multistage noise model. B: Summary
of maximum nonlinearity curvature, as measured by the second derivative, across the population for the
multistage noise model. Data points for individual cells that were recorded from at both light levels are
connected by gray lines. Example cells from Fig. 5 and Fig. 7 are indicated by teal circles and orange
triangles, respectively. Nonlinearities at high light are consistently more sharply rectified than those at
low light. C-D: Same as A-B for LNP model. E: Inferred noise strengths at low and high light across the
population. Individual cells show consistent differences across light levels for multiplicative and downstream
noise. Note that a single SNR reference value cannot be shown in this case, as SNR will depend on the
shape of the nonlinearity, which is different across cells and in each condition.
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paired t-test). The model therefore reveals consistent changes in the nonlinearity as well as a subset of
noise parameters between low and high light levels.

Discussion

Variability in neural responses is often considered a nuisance that obscures a neuron’s selectivity to features
of the input. Accordingly, this variability is often averaged away when studying neural responses, and mean
responses (e.g., tuning curves) are considered the response feature of interest. However, there is a large
body of work that directly investigates the variability inherent in neural systems, with the perspective that this
variability can inform our understanding of circuit function [15, 5, 43, 19, 44, 45]. Here, we have presented
a new model that provides an improved representation of variability in a neuron’s response. This model
reduces bias in estimating circuit nonlinearities compared to oft-used models and provides estimates of
multiple sources of variability. Using this model, we found that changes in ambient light level produced
systematic differences in both circuit nonlinearities and sources of noise, changes which cannot be seen
using other commonly used models.

Comparison of inferred nonlinearities and noise with experimental observations

The changes we observe in nonlinearities across light levels are consistent with previous work, with increas-
ing rectification at higher light levels [46]. Yet the nonlinearities we infer with the multistage noise model are
generally more strongly rectified than those reported elsewhere and more strongly rectified than those found
with an LNP model. Without explicitly accounting for certain kinds of noise, observed nonlinearities will ap-
pear more linear than the actual nonlinearity operating in the circuit. For example, if there is noise present
upstream of a nonlinearity, it is expected that this noise will smear out the observed nonlinearity at the level
of the outputs (as in Fig. 3B). Other work has similarly pointed to this fact and suggested that observed
nonlinearities reflect sharp thresholds (e.g., spiking thresholds) smeared out by the presence of noise in
inputs [47]. Our results suggest that nonlinearities present in the retinal circuitry (e.g., at synapses) may
be more sharply rectified than expected from previous work. This, in turn, has implications for which circuit
mechanisms might underlie these nonlinear computations.

We focus our investigation on ON-alpha cells of the mouse retina, for which there is a large body of
existing work available for comparison. The model presented here is suitable for a variety of other cell
types, and we also used it to infer nonlinearities and noise parameters for a small number of OFF-sustained
cells. For these cells, the multistage noise model similarly revealed more sharply rectified nonlinearities at
high light compared to low light, and this change in nonlinearity is not apparent from the LNP model alone.
Unlike with the ON-alpha cells, we do not have prior results to directly compare to, and the finding of similar
changes in rectification across cell types is not necessarily expected.

Our model reveals meaningful contributions from all three noise sources included in the model in order
to account for ganglion cell responses. A great deal of work points to a variety of origins of the noise
in the retinal circuitry. Noise arising within the photoreceptors, and even in particular elements of the
phototransduction cascade, has been studied extensively [48, 37, 49, 50]. Other work points to several
pieces of the retinal circuitry, particularly the bipolar cell output synapses, as significant sources of noise
[51, 12, 52, 53].

It is expected that the relative contributions of different noise sources in the retinal circuitry change
with ambient light level, and we indeed see that the strength of different noise sources in the model varies
systematically with light level. The two light levels tested here engage different retinal circuits prior to
convergence at the retinal ganglion cell, which may change the relative contributions of noise sources
directly or by altering the location and degree of nonlinearities in the circuitry, thereby effectively changing
the location of noise relative to the nonlinearity [17, 46]. Although the sources of variability in our model do
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not directly correspond to elements of the retinal circuitry, making direct comparison difficult, the observation
of greater multiplicative noise at lower light levels is consistent with the fact that rod-mediated signals must
traverse an additional synapse. Multiplicative noise in our model, which is present at the output of the
nonlinearity and has strength that scales with nonlinearity output, is most similar to noise expected from
stochastic vesicle release at synapses. Synaptic noise, which results largely from randomness in vesicle
release, is often taken to be multiplicative or follow Poisson statistics [54, 55, 51]. In both cases, the variance
in output scales with the output strength.

Limitations and extensions

The LNP model has gained widespread use in part due to its simplicity to fit to data. The model presented
here is considerably more complex, although each of these additional components proved necessary to
capture the full distribution of neural responses. Model parameters must be found via optimization on a
relatively complex likelihood function and are not guaranteed to be unique. However, we find in practice that
many different initial conditions typically converge to the same set of parameters.

The work presented here captures the responses of a neuron to only a single temporal feature of the
stimulus. Ideally, one would hope for a model that captures general stimulus selectivity. Incorporating sev-
eral types of selectivity to spatiotemporal stimulus features can be achieved with straightforward extensions
of the model. For example, if pathways that result in selectivity to multiple temporal features are assumed
to converge prior to the nonlinearity, selectivity to these features can be incorporated by simply providing a
weighted combination of these two features as the input to the model, adding one additional model param-
eter. Although we do not see evidence in our data that multiple temporal features drive selectivity, this has
been observed in other systems [56, 57, 42]. Selectivity to spatial features of the stimulus are also relatively
straightforward to incorporate if one assumes that the receptive field is composed of multiple identical spa-
tial subunits (i.e., each subunit is characterized by the same nonlinear function). This model would require
additional parameters to characterize the relative weighting of each subunit. Subunit models of RGC re-
sponses typically require only 4-6 subunits to capture responses well, suggesting that this addition is likely
to be be computationally tractable [58, 59].

A useful extension of this model would also incorporate history-dependent effects. History dependence
has been shown to improve model accuracy in a number of contexts, including in the retina [26, 29, 60, 61].
Some models have even included two stochastic elements along with history dependence, though sim-
plifying assumptions about the shape of the nonlinearity and/or the timecourse of history dependence are
generally made [62, 63]. Incorporating history dependence is again a straightforward extension of the model
presented here, in which the input to the model would be provided by some linear combination of filtered
stimulus and filtered response history. We found the linear filter using standard reverse correlation methods
and divided our data into time windows of a size specifically chosen to avoid statistical dependence between
bins, simplifications that improved computational tractability. In order to build a model that captures the full
temporal features of responses, the model ought to operate at finer temporal resolution and optimize the
parameters of stimulus and spike history filters at the same time as nonlinearity and noise parameters. This
would require the addition of multiple new parameters to characterize these filters, which could dramatically
slow optimization. Careful parameterization of these filters, incorporation of statistical priors, or additional
simplifying assumptions may be required for this approach to be computationally tractable.

The general framework presented here could be easily modified to make use of different distributions
for each noise source. We presented two slightly different versions, which incorporated different but closely
related distributions for downstream noise. One could similarly modify upstream or multiplicative noise
distributions, as called for by different datasets. Parameter inference will to some extent depend on these
choices in model selection. We find, however, for the two models presented here that inferred nonlinearities
are generally robust to this distinction and that inferred noise parameters change in small but systematic
ways.
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Conclusions

The model presented here holds several advantages over models that include a single source of variability.
First, it is able to more accurately recover the nonlinearity in circuits in which noise is not dominated by
a single source. Second, it provides better predictions of overall variability and has the ability to attribute
variability to different sources. Given the importance of noise in shaping the flow of information through a
circuit, it is important that a model capture features of this variability in the neural responses. Two potentially
fruitful lines of future work are: (1) extending the model to include additional features of stimulus and history
dependence, and (2) conducting additional experiments to more closely link the sources of variability in the
model to features of the biological circuit.
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Methods

Experimental procedures

All procedures were approved by the Institutional Animal Care and Use Committee at the University of
Washington. Experiments were performed on whole mount preparations of retina from overnight dark-
adapted C57/BL6 mice (ages 5-20 weeks). All procedures were conducted under infrared illumination
to preserve dark adaptation. Retinas were mounted ganglion cell-side up onto a poly-D-lysine-coated
coverslip (BD Biosciences) before being placed in a recording dish that was continuously perfused at
7-9 mL/min with oxygenated Ames bicarbonate solution (Sigma) warmed to 31-34◦C. Spike responses
were recorded using extracellular or loose-patch recordings with an Ames-filled pipette. Visual stimuli
were presented on an OLED microdisplay monitor (eMagin) focused onto the photoreceptors. Stimuli
were presented and data acquired using custom-written stimulation and acquisition software packages
Stage (http://stage-vss.github.io) and Symphony (http://symphony-das.github.io). ON-alpha reti-
nal ganglion cells were targeted for recording based on their large soma size (>20 µm diameter) and re-
sponses to light increments. Only cells that responded reliably and robustly (>5 spikes) to 200 µm diameter
spots of 20% contrast at a background of 10 R*/rod/s were recorded from. Gaussian noise stimuli were
presented as spatially uniform spots 200 µm in diameter at 50% contrast. The contrast of the spot was
changed every 67 ms (4 frames at a monitor refresh rate of 60 Hz). Noise stimuli that were modulated at
higher temporal frequency did not robustly drive cells at 10 R*/rod/s. Cells were adapted to each new light
level for at least 8 minutes and until responses to flashed spots stabilized before recording. Five cells were
recorded at both light levels, three cells at only low light, and one cell at only high light.

Data analysis

Linear filters were found by standard reverse-correlation methods: calculating the spike-triggered aver-
age and correcting for autocorrelation in the stimulus. Filters were smoothed by low-pass filtering with a
frequency cutoff of 13 Hz. For each cell, the identical filter was used to filter the stimulus and provide
model input for the linear-nonlinear-Poisson model and the multistage noise model. For cells in which data
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was collected at two different light levels, separate filters were calculated at each light level, with filters at
higher light levels being faster and more biphasic than those at low light, consistent with previous work [64].
Throughout this work, filtered stimulus values are z-scored in order to make comparisons across cells and
conditions.

Both the filtered stimulus and responses were divided into time windows of ∼60-100 ms, in which the
average filtered stimulus was taken as the input to the model and the spike count was taken as the response.
The exact length of the time window for a cell at a given light level was determined by the shape of the linear
filter and corresponded to twice the width of the filter at half-max. This duration was chosen to produce
minimal correlation between filtered stimulus values in neighboring bins. Bins of this length also minimize
spike history effects due to refractoriness, which are expected on shorter timescales.

Linear-nonlinear-Poisson (LNP) models are given by:

rt = P (f (xt)) (1)

where rt is the neuron’s response (spike count) in time bin t, xt is the average filtered stimulus value in
time bin t, f is the nonlinearity, and P (λ) is a Poisson random variable with mean λ. The nonlinearity is
parameterized as a softplus function:

f(x) = β1 ln
(
1 + eβ2x+β3

)
+ β4 (2)

This is done for consistency with the multistage noise model presented below, in which the nonlinearity is
parameterized this way. This function was chosen because it can capture the range of desired features in
a nonlinearity, from highly rectified to effectively linear. We see little or no evidence of saturation in our data
and therefore did not choose a sigmoidal (saturating) nonlinearity. Model parameters for the LNP model are
found by maximum likelihood estimation, using the same routine described below for the multistage noise
model.

Multistage noise model details

The model we present here is:

rt = R [nmult,t · f (xt + nup,t) + ndown,t] (3)

rt is the spike count in time bin t, and xt is the average filtered stimulus in time bin t. R rounds and
rectifies to produce a spike count. The nonlinearity is a softplus function, parameterized as in Equation
2. There are three noise sources: two additive and one multiplicative. The two additive noise sources are
termed “upstream” and “downstream” noise to indicate their positions relative to the nonlinearity. In the
original model, all noise sources are taken to be Gaussian:

nup,t ∼ N
(
0, σ2

up

)
nmult,t ∼ N

(
1,

σ2
mult

f (xt + nup,t)

)
ndown,t ∼ N

(
0, σ2

down

)
(4)

When all sources of noise are Gaussian, the model has seven total parameters: four that determine the
shape of the nonlinearity and three that determine the strength of the noise sources. To fit data at high light,
downstream noise is taken as a mixture distribution:

ndown,t =

{
N ∼ N

(
0, σ2

down

)
with probability pdown

0 with probability 1− pdown
(5)

This adds one additional parameter to the model, for a total of eight parameters.
Let Pup, Pmult, and Pdown denote the probability distributions of each noise source. What follows is the

likelihood function for this model, broken down to reflect each step in the model for clarity. The full likelihood
function can be found by plugging functions from preceding steps into Equation 9.
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The distribution of outputs from the nonlinearity λ given an input xt plus upstream noise is:

PΛ(λ) = Pup
(
f−1(λ)− xt

)
· ∂f

−1(λ)

∂λ
(6)

After multiplicative noise is applied, the distribution is given by:

PY (y) =

∫ ∞
−∞

PΛ(λ) · Pmult(y − λ) ∂λ (7)

The distribution after downstream noise is applied is given by a simple convolution:

PZ(z) =

∫ ∞
−∞

PY (y) · Pdown(z − y) ∂y (8)

Finally, to produce spike counts, the output from the previous step is rounded and rectified:

PR(rt) =

{∫ 0.5

−∞ PZ(z) ∂z rt = 0∫ r+0.5

r−0.5
PZ(z) ∂z rt > 0

(9)

The full likelihood is the product of PR over all observed points (xt, rt).

Estimating model parameters from data

Code for model estimation can be found at https://github.com/aiweber/Multistage_noise_model.
In brief, a combination of C++ and MATLAB code was used to evaluate the likelihood function. A small

modification (described below) to MATLAB’s fminsearch function was used to find the maximum likelihood
estimate of parameters. As this problem is not guaranteed to have a unique solution, for each dataset
we began the optimization from 5-10 different randomized initial conditions. The solution with the highest
likelihood was reported. Generally, optimization runs beginning at different initial conditions converge to
similar solutions. Although it is not necessary to perform this procedure to estimate parameters of the
LNP model, the same procedure was used for the LNP model in order to make a fair comparison with the
multistage noise model.

Several steps were taken to speed evaluation of the likelihood function. Equation 7 was evaluated at
individual points using custom C++ code that makes use of the quadratic adaptive integration package
(integration qag) of the GNU Scientific library (https://www.gnu.org/software/gsl/). The full function
of Equation 7 was approximated with Chebyshev polynomials using the Chebfun package for MATLAB ([65],
http://www.chebfun.org/). The optimization routine was run on machines with multiple cores (16 or 40)
using the Parallel Computing Toolbox in MATLAB.

Several optimization routines were tested, with the Nelder-Mead method (implemented by MATLAB’s
fminsearch function) performing best. We made use of code written by John D’Errico (fminsearchbnd) to
impose upper and lower bound constraints on the parameters to ensure that impossible parameter regions
(e.g., negative values for standard deviations of noise) were not explored.

Calculation of signal-to-noise-ratio (SNR)

In Figs. 4-7, we report noise parameters on an axis relative to SNR in order to provide intuition for the
strength of each noise source. Because the contribution of a single noise parameter to the overall SNR
will depend on both the strength of other noise sources as well as the shape of the nonlinearity, here we
calculate SNR for each noise source individually (i.e., with other noise sources set to zero) and using either
the true nonlinearity (in the case of simulated data) or the estimated nonlinearity (in the case of retinal data).
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We calculate the SNR as follows:
SNR =

Vars [E [r |s] ]
Es [Var [r |s] ]

(10)

where the innermost expectation (numerator) and variance (denominator) are taken over all responses r,
conditioned on the stimulus s. The outer variance (numerator) and expectation (denominator) are then
taken over the stimulus distribution.

Jensen-Shannon divergence

The Jensen-Shannon divergence (JSD) is a measure of similarity of probability distributions [66]. It is
a symmetric modification of the Kullback-Leibler divergence and guaranteed to have finite value for all
probability distributions.

JSD(P,Q) =
1

2
[DKL(P,R) +DKL(Q,R)] (11)

where R = 1
2 (P +Q) and DKL is the Kullback-Leibler divergence:

DKL(Q,R) = −
∑
x

Q(x) log

(
R(x)

Q(x)

)
(12)
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Supplementary information

Estimating model parameters with different size datasets

In order to test how our ability to accurately recover parameters depends on the amount of available data,
we simulated datasets of different sizes and performed our fitting procedure on each of these datasets.
Supplementary Fig. 1 shows results for datasets of six different sizes, ranging from 156-5,000 data points,
all generated from the same set of underlying parameters (5 datasets at each size, for a total of 30 different
datasets). With the exception of downstream noise, parameter estimates have converged by 1,250 points.
Experimental datasets range from 1,369-11,856 points (mean: 6,388 points).
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Supplementary Figure 1: Convergence of parameter estimates with increasing amounts of data.
Each point represents a single dataset of the size indicated by its position on the horizontal axis. Parameter
values used to generate the data are indicated by dashed horizontal lines. Vertical axes are scaled to
show the range of parameters explored by the optimization procedure. Most parameters have converged
by ∼1,250 points.
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Supplementary Figure 2: Comparison of true and estimated model parameters for simulated
datasets. Data is plotted for all 30 simulated datasets, with point size indicating the relative contribution of
the corresponding noise source (smallest points: <1%; largest points: >99% of total noise).

Summary of all parameter estimates for simulated datasets

Supplementary Fig. 2 compares estimated and actual parameter values across all 30 test datasets for the
model with three purely Gaussian noise sources. Larger points indicate that the corresponding noise source
contributes a larger fraction of the total noise. Large points generally lie closer to unity, indicating that noise
parameters are estimated more accurately when a source of noise is relatively strong.

Failure of model with purely Gaussian noise at high light and modification of down-
stream noise

We found that a model with three purely Gaussian noise sources accurately fit retinal ganglion cell response
distributions under low light conditions. However, this model was unable to accurately capture response
distributions under high light conditions. In particular, maximum likelihood parameter estimates attributed
large amounts of variability to the downstream noise source. This results in elevated baseline firing rates
and set a high lower bound on the variability of the model (i.e., the minimum amount of variance possible
across filtered stimulus values is determined by the downstream noise source) (Supplementary Fig. 3).
We determined that infrequently occurring moderate to strong responses at low input levels (in the flat
portion of the nonlinearity) were driving the large estimates of downstream noise. As can be seen in Fig. 2,
downstream noise is the only noise source that can account for such points in the dataset.

Given this failure of the original model, we first sought to determine whether selectivity to additional
stimulus or response features could account for this issue. We performed covariance analysis to identify
additional features in the input that the neurons might be selective to (Supplementary Fig. 4). Only a single
meaningful feature was found from this analysis (blue), which was similar to the original linear filter (dashed
black in “feature 1” panel) and did not contribute additional predictive power. (The eigenvector correspond-
ing to the second-largest magnitude eigenvalue (red) lacks meaningful temporal structure and was therefore
not considered further.) We also added an additional input to the model that captured dependence on ac-
tivity in the previous time bin (∼100 ms of history dependence). This added one additional parameter to
control the strength of history dependence. This modification, however, did not result in improved fits to the
data either.

We next sought a model that might better capture the downstream noise apparent in our data. To this
end, we investigated the distribution of responses for very low filtered stimulus values (in the flat region of
the nonlinearity). For very low filtered stimulus values, there is expected to be nearly zero contribution from
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Supplementary Figure 3: Model with all Gaussian noise sources fit to data under high light condi-
tion. Top: Filtered stimulus (input to nonlinearity). Middle: Comparison of mean responses on repeated
trials of the same noise stimulus (gray) to model predictions. The LNP model accurately predicts mean
responses (red), while the model with multiple noise sources overestimates baseline firing rate (black).
Bottom: Standard deviation of responses with bootstrapped 98% confidence intervals. Neither model ac-
curately predicts the standard deviation over repeated trials. Again, the model with multiple noise sources
consistently overestimates the baseline variability.
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Supplementary Figure 4: A single feature of the stimulus drives spiking. Results of a covariance
analysis are shown for a representative cell. Only a single meaningful feature (blue) is extracted from the
analysis. It closely resembles the spike-triggered average (black, solid and dashed).
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upstream or multiplicative noise sources. These distributions had a preponderance of zero response values,
with a small number of nonzero responses. Even after rectification, a simple Gaussian distribution cannot
capture these responses. We therefore determined that a model in which there was zero noise with some
probability and noise drawn from some other distribution the remaining fraction of trials would capture this
distribution well. We tested a number of possible distributions and determined that a Gaussian distribution
best fit the trials with nonzero responses. We therefore determined that the modified downstream noise
distribution would be given by Equation 5.

This choice added one additional parameter to the model, which was simultaneously estimated with
the other parameters using the same optimization scheme described above. Although we did not directly
constrain the value of pdown or σdown when estimating model parameters, we found that the values inferred
by maximizing the likelihood closely matched those directly observed in distributions at low filtered stimulus
values (e.g., for the cell shown in Fig. 7, estimated pdown = 0.20 and observed pdown = 0.22, estimated σdown
= 6.2 and observed σdown = 7.1; these parameters also result in very similar probabilities of zero response:
estimated P (0) = 0.91 and observed P (0) = 0.89).

Parameter estimates from different models at low light

In order to test how inferred parameters depend on the structure of the model, we compared parameters
from the model with all Gaussian noise sources to the model with modified downstream noise fit to the
same data under low light conditions (Supplementary Fig. 5). (We did not do so under high light conditions
because the model with all Gaussian noise provides a poor fit to data under this condition.) The estimated

Supplementary Figure 5: Comparison of different models for identical datasets. Top: Nonlinearities
are shown for eight cells, each a different color, at low light for both models: one with purely Gaussian
noise (solid lines) and one with modified downstream noise (dashed). Bottom: Estimates of noise param-
eters across all cells for model with Gaussian noise (blue) and modified downstream noise (green). For
the model with modified downstream noise, the standard deviation of the downstream noise is plotted for
straightforward comparison with the original model.
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nonlinearities are similar regardless of which model is used. Inferred noise parameters show systematic
changes, with the all-Gaussian noise model inferring less downstream noise, but somewhat greater up-
stream and multiplicative noise. If parameters from the all-Gaussian model at low light were compared to
the modified model at high light, the changes discussed in the main text would be larger than reported.
However, identical models are used in the main text in order to make the most fair comparison.

Parameter estimates from different models at low light

We applied the model to two OFF-sustained ganglion cells recorded from at the same light levels as the
ON-alpha cells. Both of these cells showed stronger rectification at high light compared to low light, as in
the ON-alpha cells (Supplementary Fig. 6).
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Supplementary Figure 6: Comparison of model parameters at low and high light levels for OFF cells
Same as Fig. 8 for two OFF-sustained ganglion cells.
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Parameter estimates for all cells, both models

Note that filtered stimulus values were z-scored in all cases, such that input values of -1 represent filtered
stimulus values one standard deviation below the mean (0) and input values of +1 represent filtered stim-
ulus values one standard deviation above the mean. Nonlinearity parameters (β2,3)and upstream noise
parameters (σup) reflect this scaling.

cell ID σup σmult σdown β1 β2 β3 β4

1 1.4430 0.3505 0.2309 1.3397 1.6177 0.0743 0.0044
2 0.9964 0.4302 0.1670 0.2538 5.7871 -9.5703 0.0258
3 0.9287 0.5049 1.2539 0.1145 19.5609 -5.7078 0.0006
4 1.0992 0.9084 0.1924 21.0686 0.8497 -3.2940 0.0020
5 1.5595 0.0526 0.2441 0.0101 289.0966 -250.6689 0.0918
6 0.5554 1.0098 0.3139 1.0280 4.0583 3.2926 0.0098
7
8 1.076 0.3476 0.0964 0.6543 4.4295 -5.2317 0.1329
9 1.0632 0.7195 1.9507 51.8444 0.3755 -2.6105 0.0313

Table 1: Parameter estimates for Gaussian noise model at low light.

cell ID σup σmult σdown pdown β1 β2 β3 β4

1 0.9197 0.0747 4.2112 0.1624 0.9661 2.3160 0.5437 0.0301
2 1.0294 0.3931 0.2675 0.1164 0.0667 20.4050 -32.1316 0.0030
3 0.5827 0.9488 2.7782 0.2226 0.4910 3.8594 0.1721 0.0002
4 0.7651 1.0368 6.7110 0.0573 1.8495 1.6679 -0.9483 0.0691
5 1.1294 0.2698 6.0054 0.0425 0.4628 7.0258 -5.5032 0.2144
6 0.7108 0.0530 7.6518 0.0429 1.3418 3.4655 2.1397 0.0511
7
8 0.7689 0.2593 2.3585 0.1017 1.0602 3.4539 -4.1463 0.0296
9 1.3097 1.0425 1.5560 0.6201 5.1891 0.5319 -0.1325 0.5781

Table 2: Parameter estimates for mixture model at low light.

cell ID σup σmult σdown pdown β1 β2 β3 β4

1
2 0.4595 0.1973 3.9871 0.0984 0.1267 38.1398 -16.9661 0.2370
3 1.0047 0.1218 4.5385 0.4963 0.0970 36.6719 -11.7517 0.2836
4
5 0.7567 0.0522 6.4538 0.1983 0.1196 50.5104 -10.8949 0.1107
6
7 0.3096 1.1614 3.0043 0.2939 0.0128 189.4634 31.0058 0.0133
8 0.7480 0.0558 4.6205 0.2200 0.0285 159.2848 -47.4516 0.2485
9 0.5369 0.0933 5.7524 0.2784 0.5689 12.1538 -3.2291 0.0034

Table 3: Parameter estimates for mixture model at high light.
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