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Abstract

1. Several key processes in freshwater ecology and evolution are governed by the connectivity inherent
to dendritic river networks. These networks have extensively been analyzed from a geomorpho-
logical and hydrological viewpoint, yet network structures classically used in modelling have only
been partially representative of the structure of real river basins, and have often failed to capture
well known scaling features of real river networks. Pioneering work has identified optimal channel
networks (OCNs) as spanning trees that reproduce all scaling features characteristic of real, natu-
ral stream networks worldwide. While these networks have been used to generate landscapes for
studies on metapopulations, biodiversity and epidemiology, their generation has not been generally
accessible.

2. Given the increasing interest in dendritic riverine networks by ecologists and evolutionary biolo-
gists, we here present a method to generate OCNs and, to facilitate its application, we also provide
the R-package OCNet. Owing to the random search process that generates OCNs, multiple network
replicas spanning the same surface can be built, allowing one to perform computational experiments
whose results do not depend on the particular shape of a single river network. The OCN construct
also enables the generation of elevational gradients derived from the optimal network configura-
tion, which can constitute three-dimensional landscapes for spatial studies in both terrestrial and
freshwater realms. Moreover, the OCNet package provides functions that aggregate the OCN into
an arbitrary number of nodes, calculate several metrics and descriptors of river networks, and draw
relevant features of the network.

3. We describe the main functionalities of the package and present how it can be integrated into other
R-packages commonly used in spatial ecology. Moreover, we exemplify the generation of OCNs and
discuss an application to a metapopulation model for an invasive riverine species.

4. In conclusion, OCNet provides a powerful tool to generate and use realistic river network analogues
for various applications. It thereby allows the design of spatially realistic studies in increasingly
impacted ecosystems, and enhances our knowledge on spatial processes in freshwater ecology in
general.

1 Introduction

The central goal of ecology is to causally understand patterns and processes in ecological systems, such
as species coexistence, biodiversity patterns, or the unfolding of species invasions [Gause, 1934; Elton,
1958]. Much of ecological theory and empirical work has either focused on local patterns and dynam-
ics or has taken a spatially implicit perspective. However, virtually all natural ecosystems are spatially
structured, and the relevance of the spatial dimension on ecological systems can hardly be overestimated
[Levin, 1992; Hanski and Gaggiotti, 2004; Holyoak et al., 2005]. Consequently, over the last decades, ecol-
ogists have started to account for spatial processes on population and community dynamics as well as
biodiversity. Theoretical, comparative and experimental studies have increasingly been done in a spatially
explicit perspective (e.g., Hanski and Ovaskainen [2000]; Cadotte and Fukami [2005]; Holyoak et al. [2005];
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Altermatt et al. [2011]; Gilarranz and Bascompte [2012]; Dale and Fortin [2014]), especially promoted by
theories on metapopulation and metacommunity dynamics.

A direct consequence of this spatial approach to ecology is the need to describe and understand the
spatial structure and layout of natural ecosystems. While initial models of spatial dynamics assumed
spatially implicit networks of populations or communities [Levins, 1970], all natural ecosystems follow
spatially explicit structures. These structures, such as those typically found in coral reefs and atolls,
mountainous landscapes and their elevational gradients, or tidal pools, are shaped by general geophys-
ical processes resulting in characteristic landscape structures. Arguably the most characteristic (but also
among the most widespread) landscape structure is found in riverine networks [Leopold et al., 1964;
Rodriguez-Iturbe and Rinaldo, 2001]: erosional forces balancing uplift create dendritic networks of rivers
and streams following universal patterns. These networks are characterized by their fractal, scale-free
structure, as well as by universally applicable laws regarding many geomorphological and hydrological
variables of direct relevance to ecology, such as catchment area, river bed width and depth, or variation in
discharge [Horton, 1945; Leopold and Maddock, 1953; Rodriguez-Iturbe and Rinaldo, 2001]. In contrast
to these specific features of natural landscape structures, much of ecological and evolutionary theory and
experiments, but also much of the species-distribution modelling still assumes either random networks or
simply structured linear, circular or Cartesian networks, in which local patches are connected to their 2, 4
or 8 nearest neighbours [e.g. Bascompte and Solé, 1996; Bell and Gonzalez, 2011; Holland and Hastings,
2008]. This oversimplification of spatial network structures may limit the plausibility and relevance of the
findings. An application to more realistic network structures has, however, often been hindered by the
lack of formalized, spatially correct and generalizable network structures as well as easily accessible tools
generating them.

Riverine ecosystems are not only of high interest to ecologists due to their universal network structure,
but also due to the considerable biodiversity inhabiting them [Balian et al., 2008; Altermatt, 2013]. River
networks cover less than 1% of the landmasses, but contain up to 10% of all species. However, this high
biodiversity, as well as the associated ecosystem functions, are threatened by various anthropogenically
induced causes, including pollution, biological invasions, or damming and modification of the network
structure [Vörösmarty et al., 2010; Darwall et al., 2018]. An understanding of many of these processes
requires a spatially explicit approach, such as how pollution and chemicals are transported in riverine
networks [Helton et al., 2018], how organisms spread along rivers and invade riverine ecosystems [Mari
et al., 2014; Giometto et al., 2017], or how the modification of network structures across drainage basins
affects local diversity [Leuven et al., 2009]. Consequently, there has been a rapid increase in ecological and
evolutionary studies considering the effect of river-like network structures on ecological dynamics over the
last two decades [Fagan, 2002; Campbell Grant et al., 2007], paralleled by an increase in methodological
tools to analyse such spatial datasets [Muneepeerakul et al., 2008; Rodriguez-Iturbe et al., 2009; Peterson
et al., 2013; Paz-Vinas and Blanchet, 2015; Welty et al., 2015; Duarte et al., 2019; Rinaldo et al., 2020].

While all of these works acknowledge the importance of studying rivers in a spatially explicit per-
spective, a large part of them is built on networks that do not factually capture many of the inherent
characteristics of true riverine networks. Notable examples range from the River Continuum Concept
[Vannote et al., 1980], which describes rivers as a single, linear array of patches, to slightly more complex
bifurcation networks or alterations thereof [Fagan, 2002; Morrissey and De Kerckhove, 2009; Chaput-Bardy
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a) b) c) d)

Figure 1: Examples of river network analogues with increasing level of resemblance with real river networks. Line
width increases towards the downstream direction. a) Linear array of patches [Vannote et al., 1980]. b) Binary-fission-
like tree [Fagan, 2002; Paz-Vinas et al., 2015]. c) An OCN spanning a 50x100 lattice, aggregated with a threshold area
equal to 25 pixels. d) A real river (Thur, Switzerland), spanning an area of 760 km2, extracted from a digital elevation
model with a threshold area equal to 4 km2.

et al., 2009; Brown and Swan, 2010; Yeakel et al., 2014; Seymour and Altermatt, 2014; Seymour et al., 2015;
Paz-Vinas et al., 2015; Anderson and Hayes, 2018]. All of these studies use networks that may at first
sight look like “river” networks, but do not satisfy the necessary constraint posed by draining a given
surface (Fig. 1). Furthermore, these constructs do not adequately represent the connectivity and several
geometric properties (like the distributions of upstream and downstream lengths, and of total contribut-
ing area at a point) inherent to natural river networks, and lack the space-filling attribute of small to
smallest streams not only incrementally flowing into larger streams, but also the common direct inflow
of very small streams into large streams. As such, all of this work has been ignoring the extensive and
long-lasting knowledge from geomorphology that has appropriately acknowledged and formalized the
spatial unfolding of dendritic river networks.

In particular, the fractal character of river networks, epitomized by Horton’s laws [Horton, 1945] on
bifurcation and length ratios, was observed with regards to several morphological and hydrological char-
acteristics of river basins and expressed by means of a number of power-law relationships, which are the
signatures of fractal behaviour [Mandelbrot, 1983; Maritan et al., 1996]. Notable examples are Hack’s law
[Hack, 1957] L ∼ Ah, linking the maximum upstream channelized length L at any location in the river with
the corresponding drainage area A; the slope-area relationship s ∼ Aγ−1, where s is the channel slope [Tar-
boton et al., 1989]; the scaling of the probability distribution of drainage areas P(A ≥ a) ∼ a−β [Rodriguez-
Iturbe et al., 1992a]. Typical values observed in real rivers for the scaling exponents are h ≈ 0.57, γ ≈ 0.5,
β ≈ 0.43 [Rinaldo et al., 2014]. From a hydraulic geometry viewpoint, Leopold’s relationships [Leopold
and Maddock, 1953] express how mean river depth, width and velocity change, both at-a-station and along
the river’s course, as power-law functions of discharge, which in turn scales linearly with drainage area
(strictly speaking, this applies to landscape-forming discharges [Rodriguez-Iturbe and Rinaldo, 2001]).
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Such scale-invariant properties of river networks prompted the development of a model of idealized
stream networks: optimal channel networks (OCNs). OCNs are ‘optimal’ inasmuch as their configura-
tion corresponds to a minimum of total energy expenditure and reproduces all scaling features of real
rivers [Rodriguez-Iturbe et al., 1992b; Rinaldo et al., 1992; Maritan et al., 1996; Rinaldo et al., 2014]. Im-
portantly, OCNs are exact stationary solutions of the general equation describing landscape evolution
[Banavar et al., 2001]. The OCN construct allows the generation of an unlimited number of different
network replicas spanning the same drainage domain, therefore enabling one to run computational ex-
periments and derive results that are independent of the shape of a single river network, which would
not be the case if real rivers were used as landscapes. Moreover, OCNs enable the investigation of spatial
processes occurring not only in dendritic river networks, but also along the elevational gradients of fluvial
landscapes [Bertuzzo et al., 2016; Giezendanner et al., 2019]. To this regard, it is worthwhile to note that
the elevational landscape generated by an OCN is such that the graph obtained by following the steepest
descent directions reproduces the OCN structure [Balister et al., 2018].

OCNs have been used to investigate a number of ecological issues, ranging from metapopulation
structure in riverine [Mari et al., 2014; Bertuzzo et al., 2015; Fronhofer and Altermatt, 2017] and terrestrial
landscapes [Bertuzzo et al., 2016; Giezendanner et al., 2019]; habitat fragmentation [Sarker et al., 2019];
spreading of human [Bertuzzo et al., 2010; Gatto et al., 2013; Mari et al., 2019] and animal [Carraro et al.,
2018] waterborne pathogens; ecosystem processes, such as carbon [Bertuzzo et al., 2017; Koenig et al.,
2019] and nitrogen cycling [Helton et al., 2018]; migration fronts of human populations [Campos et al.,
2006]; cross-ecosystem subsidies [Harvey et al., 2019]; riverine biodiversity patterns from a theoretical
viewpoint [Muneepeerakul et al., 2019] or by means of mesocosm experiments [Carrara et al., 2012, 2014;
Harvey et al., 2018].

Despite the longstanding establishment of the OCN concept, its application especially in ecology and
evolutionary biology has been lagging behind, likely because easily accessible code or appropriate tools
have been lacking. This is particularly regrettable considering the recent bloom of tools allowing the
statistical analysis of data from real dendritic networks (e.g. the R-package SSN [Ver Hoef et al., 2014]).
However, such tools are specifically designed for real river networks, while their applicability to virtually
generated networks is limited. To fill this gap, we here describe the methodological and mathematical
frameworks that underlies OCNet, an R-package for the generation and analysis of optimal channel net-
works, and provide guidelines and examples to facilitate the use of this tool.

2 The OCNet package

2.1 Theoretical background

The OCN concept is based on the assumption that river network configurations occurring in nature mini-
mize a functional describing total energy dissipation [Rodriguez-Iturbe et al., 1992b; Rinaldo et al., 1992].
This assumption, and the subsequent construction of OCNs, is well supported by a comparison with river
networks globally. Let us consider a regular lattice made up of N cells, where each cell represents the
generic node i of the network. Each node i is connected via a link to one of its nearest neighbours. The
energy dissipation across the ith network link is proportional to Qi∆hi, where Qi is the landscape-forming
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discharge in the link [Rinaldo et al., 2014], and ∆hi = siLi the corresponding elevation drop, with si iden-
tifying slope and Li link length. By assuming Qi ∼ Ai [Rodriguez-Iturbe and Rinaldo, 2001], where Ai is
the area drained by link i, and the slope-area relationship si ∼ Aγ−1

i [Tarboton et al., 1989], the functional
representing total energy expenditure across a landscape formed by N cells reads

H =
N

∑
i=1

Aγ
i . (1)

Note that link lengths do not appear in the above formula, as they can be considered constant with
no loss of generality. The OCN configuration is defined by an adjacency matrix W whose corresponding
set of drainage areas A = [A1, . . . , AN ] yields a local, dynamically accessible minimum of (1). Note that
the correspondence between A and the adjacency matrix W of a tree is subsumed by the relationship
(IN −WT)A = 1, where IN is the identity matrix of order N, and 1 a N-dimensional vector of ones
[Bertuzzo et al., 2015].

Minimization of (1) is operated by means of a simulated annealing technique: starting from a feasible
initial flow configuration (i.e., a spanning tree, see Fig. 2a, e), a link at a time is rewired to one of its
nearest neighbours; if the obtained configuration is a spanning tree, H is computed; the new configuration
is accepted if it lowers total energy expenditure; if this is not the case, the new configuration can still be
accepted with a probability controlled by the cooling schedule of the simulated annealing algorithm. Such
myopic search, which only explores close configurations, actually mimics the type of optimization that
nature performs, at least in fluvial landscapes [Rinaldo et al., 2014]. Notably, restricting the search of a
network yielding a minimum of Eq. (1) to spanning, loopless configurations entails no approximation,
because every spanning tree is a local minimum of total energy dissipation [Banavar et al., 2000]. The
shape of the so-obtained OCNs retains the heritage of the initial flow configuration, although the extent
to which this occurs is partly controlled by the cooling schedule adopted (Fig. 2). This underpins the
concept of feasible optimality, i.e., the search for dynamically accessible configurations.

2.2 Overall setup of the package

The OCNet package consists of a series of functions that allow constructing river-analogue networks as
well as calculating a number of metrics and descriptors commonly used in spatial ecology. The networks
constructed by the package are built at several levels of aggregation. At each level, they are generally
defined by a number of nodes, an adjacency matrix, a vector of contributing areas and two vectors with
longitudinal and latitudinal coordinates of the nodes. The functions constituting the OCNet package are
intended to be applied in sequential order, and the respective output can be directly used to visualize the
created networks and linked to other commonly used R-packages.

The first function, create OCN, only requires the longitudinal and latitudinal dimensions of the lattice
as necessary inputs, while several other parameters can be optionally tuned to obtain customized results.
Some examples are provided in the following section; extensive further information is given in the package
documentation. The output of create OCN is a list containing a sub-list termed FD that, in turn, encloses
key information on the topology of the network, among which the adjacency matrix (written in sparse
form via the spam format [Furrer and Sain, 2010]) and a vector of contributing areas. The subsequent
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Figure 2: Effect of initial network state (rows) and cooling schedule (columns) on the final OCN configuration. b, c, d)
OCNs on 250x250 lattices generated from the initial state shown in panel a. f, g, h) As above but with initial state as
shown in panel e. i) Dynamics of total energy expenditure H (Eq. (1)) and temperature T (i.e., cooling schedule of the
simulated annealing algorithm) for the 6 OCNs displayed above. Values of H and T are normalized by the energy of
the initial network state. Note that, for graphical reasons, the initial states shown in panels a, e refer to 25x25 lattices.
A script generating this figure can be found in the Supporting Information.

functions landscape OCN (generation of the three-dimensional landscape derived from the network con-
figuration), aggregate OCN (aggregation of the OCN at various levels – see Aggregation levels), paths OCN

(evaluation of paths among network nodes, and lengths thereof), rivergeometry OCN (hydraulic geometry
of the river network, following Leopold and Maddock [1953]) require as necessary input the output list
produced by the previous function, in the aforementioned order (except rivergeometry OCN, which can
be executed after aggregate OCN). The output of these functions is a list where all objects of the input list
are copied, and to which new objects are added. Note that output lists contain all input values, to avoid
inconsistencies in the sequential application of functions. A group of functions (identified by the prefix
“draw ”, see examples in Fig. 3) are devoted to graphical representations of the OCN.
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Figure 3: Examples of outputs from OCNet’s graphical functions. a) Representation of an OCN generated on a
250x250 lattice (draw simple OCN). Note that the network spans the whole lattice; for graphical reasons, the portion
of network exceeding a given AT is plotted in blue. b) Planar representation of the elevational landscape generated
by the OCN of panel a (draw elev2D OCN). c) Partitioning of the lattice into subcatchments for the OCN of panel a
(draw subcatchments OCN); blue dots indicate locations of the nodes at the AG level. d) Representation of an OCN
generated on a 400x400 lattice, with all perimetral pixels as outlets (draw contour OCN); black solid lines display par-
titioning among catchments; the grey background identifies the largest catchment. e) 3D representation of the largest
catchment within the OCN of panel d (draw elev3Drgl OCN). f) Strahler stream order values for the largest catchment
within the OCN of panel d (draw thematic OCN). g) Representation of an OCN generated on a 300x300 lattice, with
4 outlets (shown by black squares) and periodic boundaries (draw contour OCN). h) Perspective 3D representation of
the OCN of panel g (draw elev3D OCN). i) Real-shaped representation of the OCN of panel g (draw contour OCN). A
script generating this figure can be found in the Supporting Information.
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2.3 Aggregation levels

Before moving to the illustration of some possible applications of the package, we here clarify some
concepts and terminology with respect to the aggregation of OCNs. Additional details are provided
in the package documentation. Networks produced by the OCN algorithm can be used in a variety of
fashions (see Table 1 for a review) by exploiting different connectivity metrics that are embedded in the
OCN construct. At a first, non-aggregated level, each cell of the lattice (also termed as pixel) constitutes a
node of the network (see Fig. 4), and the connectivity among nodes is ruled by the flow direction pattern
(represented by the adjacency matrix) obeying the OCN principle. This is here referred to as the flow
direction level (FD).

As customary in hydrology when extracting a river network based on digital elevation models of the
terrain [O’Callaghan and Mark, 1984], a threshold AT on drainage area can be imposed to identify those
pixels of the lattice that constitute nodes of the river network (RN, second level – see Terui et al. [2018] for
an example of an ecological application of non-OCN synthetic networks akin to OCNs at the RN level). In
a third, aggregated level (AG), nodes correspond to sources, confluences and outlet(s) of the river network
identified at the RN level. The whole lattice is then partitioned into areas that directly drain into the
nodes at the AG level, or the edges departing from them, thereby constituting the fourth, subcatchment
level (SC).

A fifth level (catchment, CM) partitions the lattice into regions that are drained by different outlets,
when the multiple-outlet option in create OCN is enabled (see following section). Finally, in an optional,
zero-level spatial structure, all lattice pixels are treated as nodes, but connectivity follows the Von Neu-
mann (4 nearest neighbours, level N4) or Moore (8 nearest neighbours, level N8) neighbourhoods, as
in the green network described by Altermatt [2013]. In this case, the OCN was used to generate a re-
alistic elevation gradient governed by fluvial erosion, on which, for instance, the structure of terrestrial
metapopulations can be studied [Bertuzzo et al., 2016; Giezendanner et al., 2019].

The final output of the OCNet functions is a list of lists, each of which named after the corresponding
aggregation level (N4/N8, FD, RN, AG, SC, CM) and containing relevant topological and morphological
information for that level. Variables may vary in number, type and definition among the sub-lists, although
the adjacency matrix is defined for all levels, while the drainage area vector is defined for all levels but
N4/N8.

Table 1: Types of OCN aggregation schemes used in previous studies.

Aggregation References

N4/N8 Bertuzzo et al. [2016] (N4 neighbourhood); Giezendanner et al. [2019] (dispersal kernel)

FD Bertuzzo et al. [2010, 2015]; Campos et al. [2006]; Gatto et al. [2013]; Mari et al. [2014];
Muneepeerakul et al. [2019]; Sarker et al. [2019]

RN Bertuzzo et al. [2017]

AG Carrara et al. [2012, 2014]; Carraro et al. [2018]; Fronhofer and Altermatt [2017];
Harvey et al. [2018, 2019]; Helton et al. [2018]; Koenig et al. [2019]; Mari et al. [2019]

SC Helton et al. [2018]
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Figure 4: Representation of the different aggregation levels. Top row: example from a single-outlet 8x8 lattice describ-
ing how the aggregation procedure operated by aggregate OCN works. Letter ’O’ identifies the outlet pixel. Arrows
on the other pixels identify flow directions; note that the these are not representative of an OCN, but are here pre-
sented only for illustrative purposes. Numbers represent the cumulative drainage area (in number of pixels). At the
FD level, all 64 pixels belong to the network. To obtain the RN level, a threshold area AT = 5 pixels is applied to
distinguish pixels belonging to the river network. Bottom row: the same procedure is applied to a single-outlet, 20x20
OCN (obtained via the script presented in Generation of an OCN). Aggregation is performed with AT = 5 pixels. Note
that river width is proportional to the square root of drainage area [Leopold and Maddock, 1953]. A script generating
this figure can be found in the Supporting Information.

3 Overview of package features

3.1 Number of outlets, boundary types, and elevational gradients

Although the OCN principle is primarily intended to be applied to networks spanning the whole drainage
domain (where the area drained by the outlet is equal to the lattice area, see an example in Fig. 3a–c), the
generalization to the case of multiple networks—each of which subsumed by a different outlet—within the
same lattice is straightforward. Indeed, the very same mathematical formulation presented in Theoretical
background holds when multiple outlet pixels are imposed. Technically, this is done by preventing these
pixels to drain into their neighbouring pixels. In this case, the sum of the areas drained by all outlet pixels
is equal to the lattice area. In the package, the multiple-outlet option can be activated by means of the
optional input nOutlet of function create OCN. In the limiting case, all pixels at the lattice boundary can
be treated as outlets [Sun et al., 1994; Bertuzzo et al., 2017]. This is done by setting nOutlet = "All" in
create OCN. A graphical representation of an OCN obtained for the latter case is shown in Fig. 3d.

When a pixel’s flow direction is rewired during the search for an optimal network configuration,
possible directions are generally those towards the eight neighbouring pixels. This is not the case for the
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outlet pixels (which cannot be rewired) and the pixels at the lattice boundaries, which can be rewired
to either three (corner pixels) or five (side pixels) neighbouring cells. This latter assumption can be
relaxed by allowing pixels at the boundary to drain into eight neighbours, by also considering pixels at
the opposite sides as feasible directions. In OCNet, periodic boundaries can be enabled via the optional
input periodicBoundaries of create OCN. An example is shown in Fig. 3g–i. Such option can be useful
when the OCN lattice is to be considered as the periodic unit of an infinite landscape [Bertuzzo et al.,
2016; Giezendanner et al., 2019], or when one aims at building OCNs spanning domains that are not
lattice-shaped (see Fig. 3f, i).

Once an OCN has been created by the simulated annealing algorithm, the iterative application of the
slope-area relationship starting from the outlet node and moving in the upstream directions enables the
derivation of the elevation field subsumed by the OCN (up to two constants, e.g., the elevation and
slope of the outlet pixel). Some examples of elevational landscapes built on OCNs are provided in
Fig. 3b, e, h. Importantly, the slope-area relationship only holds for the channeled portion of the do-
main, which implies, strictly speaking, that the OCN must not be aggregated if one aims at making use
of a three-dimensional landscape generated by an OCN. Moreover, the slope-area relationship is actually
multiscaling [Tarboton et al., 1989], therefore the simple recursive application of si ∼ Aγ−1

i (as performed
by the function landscape OCN) to yield an elevational landscape is to be considered as a first approx-
imation, suitable for ecological applications. Methods to account for the scaling of the variance of the
slope-area relationship exist [Grimaldi et al., 2005], but are beyond the scope of this work.

3.2 Relationship between threshold drainage area and number of nodes

Owing to the somewhat heuristic procedure for the definition of an aggregated network based on a
threshold drainage area value AT , it is not possible to establish a priori how many nodes at the AG level
correspond to a given AT . This in fact depends on the configuration of the OCN at the FD level, which is
the result of a stochastic process. This issue is particularly relevant when OCNs are used in experiments
where practical reasons enforce a limitation on the number of nodes that can be handled, or when several
OCN replicas with the same number of aggregated nodes are required.

To help overcome this issue, OCNet includes the function find area threshold OCN, which requires as
input a non-aggregated OCN (produced by landscape OCN) and evaluates the number of nodes resulting
from the aggregation procedure for different values of AT . Such a function can therefore be used prior to
aggregate OCN to assess which threshold has to be used to obtain a network with the desired aggregation
structure. Additionally, find area threshold OCN also evaluates other variables that help characterize
the network structure from a hydrological perspective, such as maximum stream order and drainage
density. Maximum stream order can be of interest in some studies, when patch sizes need to be related
to the structure of the underlying network but only few discrete dimensions are available, so that it is
convenient to employ different patch sizes for different stream order values of the corresponding nodes
(e.g., Harvey et al. [2018]). Drainage density is relevant because it allows the assessment of hydrological
characteristics of the aggregated OCN for a given metric resolution (i.e., the length in meters attributed to
a pixel length—corresponding to the optional input cellsize of create OCN), such as aridity and timing
of the hydrologic response [Pallard et al., 2009].

Fig. 5 shows results from the application of find area threshold OCN to several OCNs built on large
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lattices. When AT is lower than 2% of the lattice size, the number of nodes scales fairly well as a power
law of the normalized threshold area (Fig. 5a). This relationship allows qualitatively assessing the relevant
range of AT corresponding to a sought number of nodes at the AG level, which can be used as input in
find area threshold OCN to speed up its execution, especially for large networks. Scaling relationships
with AT are also found for maximum Strahler stream order (Fig. 5b) and drainage density (Fig. 5c). To pro-
vide an example, if a threshold AT = 20 pixels is applied to a 200x200 OCN, the expected number of nodes
at the AG level is 1052.4, the expected maximum stream order is 5.56, and the expected drainage density
is Dd = 0.1454 inverse planar units, which corresponds to a relatively wet catchment (Dd = 2.91 km-1)
of area 100 km2 (when 1 planar unit represents 50 m), or to a rather arid catchment (Dd = 1.46 km-1)
of area 400 km2 (if 1 planar unit is equal to 100 m). Notably, the relationship between drainage density
and threshold area AT mirrors the scaling behaviour of drainage areas (Fig. 5d), which is characterized
by an exponent β in the range [0.42; 0.45] (see Introduction and Rinaldo et al. [2014]). Indeed, drainage
density for a given AT is roughly (i.e., if differences in lengths between vertical/horizontal and diagonal
flow directions are neglected) equal to the number of pixels whose area is greater than or equal to AT .
Fig. 5d also represents how the number of nodes at the RN level (NRN) scales with varying AT : to this
end, it suffices to replace a with AT and P(A ≥ a) with NRN/N.

The scaling behaviour of OCNs displayed in Fig. 5 can also provide useful information with respect to
the choice of values of relevant parameters N and AT that allow generating an OCN of adequate size for
practical applications. To this extent, it is worthwhile to note that the OCN construct is invariant under
coarse graining [Rodriguez-Iturbe and Rinaldo, 2001; Rinaldo et al., 2014], which means that the choice of
the lattice dimension N does not affect the scaling of drainage areas. As in the example above, such choice
should rather be based on geomorphological arguments, that is, the answers to the questions: What is the
area that the OCN is supposed to drain? What are the expected values of maximum stream order and
drainage density on this area? However, as a rule-of-thumb indication, we suggest to perform aggregation
with a threshold not greater than AT = 0.02 · N, such that the obtained configuration is not affected by
the finite-size scaling effect; this corresponds to an expected NAG ≥ 30 (see Fig. 5a).

3.3 Compatibility with existing R-packages

Specific functions of OCNet enable transformation of OCNs into objects that can be used by other com-
monly used R-packages in spatial ecology. In particular, compatibility with igraph [Csardi and Nepusz,
2006], a package for network analysis and visualization, is provided by function OCN to igraph. More-
over, function OCN to SSN transforms an OCN at a desired aggregation level into an object that can be read
by SSN, a package on spatial statistical modeling and prediction for data on stream networks [Ver Hoef
et al., 2014]. Examples for these functions are shown in Fig. 6. Finally, output from OCNet can be used
in combination with R-packages for geostatistical modelling such as gstat [Pebesma, 2004], based on the
coordinates of nodes of an OCN given at any aggregation level. Remarkably, adjacency matrices and other
information can easily be extracted as base R objects, which guarantees compatibility with virtually every
R-package and even other programming languages.
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Figure 5: Effect of choice of threshold area AT on OCN configuration. Aggregation of four large OCNs is per-
formed ∀AT = {1, . . . , N} via function find area threshold OCN. For all panels, vertical lines indicate the cutoff
value AT = 0.02 · N; only points corresponding to threshold area values below the cutoff are used to estimate the
(dashed) regression lines, whose equations and R2 values are reported. a) Number of nodes at the AG level scales
as a power-law function of the normalized threshold area aT = AT/N. b) Maximum Stahler stream order value as a
function of normalized threshold area aT . c) Drainage density scales as a power-law function of threshold area AT .
d) Scaling behaviour of OCNs: probability P(A ≥ a) of randomly sampling a pixel within the lattice whose drainage
area A is not greater than a given value a. A script generating this figure can be found in the Supporting Information.

4 Application example: a metapopulation model

In order to show a possible application of the OCNet package, we now apply a simple metapopulation
model for an invasive riverine species to an OCN.

4.1 Generation of an OCN

Let us build an OCN with the following assumptions: it spans a 20x20 lattice, with a single outlet located
close to the southwestern corner of the lattice, and each pixel represents a square of side 500 m (total size
of the catchment is therefore 100 km2); the elevation, slope and channel width of the outlet node are 0 m
a.s.l., 0.01, and 5 m, respectively; the threshold area used to aggregate the network is equal to 1.25 km2.
The code lines to build such network are the following:

set.seed(1) # use fixed random number generator

OCN <- create_OCN(20, 20, outletPos = 3, cellsize = 500)

OCN <- landscape_OCN(OCN, slope0 = 0.01)
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Figure 6: Compatibility of OCNet with packages igraph and SSN. Examples are built on the OCN obtained in Generation
of an OCN. a) The OCN, aggregated at the AG level, is transformed into an igraph object (via OCN to igraph), and
plotted via the function plot.igraph of igraph. b) The same OCN is plotted via draw thematic OCN. c) The same
OCN is transformed into an SSN object (via OCN to SSN) and plotted via the function plot.SpatialStreamNetwork

of SSN. Here, 50 observation points have been sampled along the network by means of a binomial design, and their
distance from the outlet is displayed. A script generating this figure can be found in the Supporting Information.

OCN <- aggregate_OCN(OCN, thrA = 1.25e6)

OCN <- paths_OCN(OCN, pathsRN = TRUE)

OCN <- rivergeometry_OCN(OCN, widthMax = 5)

The resulting OCN is shown in Fig. 4.

4.2 Metapopulation model

Let us build a discrete-time, deterministic metapopulation model on the previously built OCN, according
to the following assumptions: (i) the model is run on the OCN aggregated at the RN level (consisting of Nn

nodes); (ii) population growth at each node follows the Beverton-Holt model [Beverton and Holt, 1957],
with baseline fecundity rate r = 1.05 constant for all nodes, and carrying capacity Ki = 10 ·Wi, where Wi

is the river width of the network node i; (iii) at each time step t, the number of individuals moving from
node i is equal to gPi(t), where g = 0.1 is a mobility rate constant for all nodes, and Pi(t) is the (expected)
population size at node i and time t; (iv) at each time step, individuals at node i can only move to a
node that is directly connected to i, either downstream or upstream; (v) pd and pu = 1− pd identify the
probability to move downstream or upstream, respectively; (vi) if the indegree of node i is larger than 1
(namely the node has multiple upstream connections), individuals moving upstream are split among the
possible destination nodes into fractions Yi proportional to their drainage areas; (vii) as initial condition,
all network nodes are uninhabited barring the node f that is farthest from the outlet (where Pf ,1 = 1). The
model equation hence reads

Pi,t+1 =
rPi,t

1 + (r− 1)Pi,t/Ki
+ g

[
pd

Nn

∑
j=1

wjiPj,t + puYi

Nn

∑
j=1

wijPj,t − (pdDi + puUi)Pi,t

]
,
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Figure 7: Results from the application of a metapopulaton model on an OCN. a) Dynamics of local population size in
three nodes: green represents the headwater that is invaded at the beginning of the simulation; red, the outlet; blue,
the headwater that is farthest from the green node (see circles in the top-left corner of panel c). Coloured vertical lines
represent the time steps when the respective local population has reached the equilibrium (arbitrarily imposed as 99%
of the population size at t = 800). Black solid lines identify the time steps used in panel c. b) Dynamics of the overall
metapopulation size. Line styles as in panel a. c) Snapshots (obtained via draw thematic OCN) of spatial spread of the
metapopulation at 3 different time steps. A script generating this figure can be found in the Supporting Information.

where wij is a generic entry of the adjacency matrix W expressing OCN connectivity at the RN level;
Di (Ui) is equal to one if there is a downstream (upstream) connection available from node i and is null
otherwise. Weights Yi are defined as

Yi =
Ai

∑Nn
k=1 wki′Ak

,

where i′ is such that wii′ = 1, and Ai is the drainage area at node i. A code script performing model
simulations is reported in the Supporting Information.

We performed two model simulations to investigate the effect of parameters pd, pu on the time elapsed
until the system reaches a steady state; in a first (default) run, no preferential direction of movement was
assumed (pd = pu = 0.5); in the second run, a preference for downstream movement (pd = 0.7, pu = 0.3)
was hypothesized. Results are shown in Fig. 7. When pd = 0.5, the invading species rapidly reaches
the equilibrium in the initially occupied node, while colonization of the downstream patches is delayed.
When a preference for downstream movement is attributed (pd = 0.7), local population growth in the
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onset (green) node is slower, whereas invasion of the outlet node occurs faster, both in terms of initial
growth and establishment of the equilibrium (see coloured vertical lines in Fig. 7a). Colonization of the
headwater that is farthest from the onset node is also delayed with respect to the default case. As a result,
when pd = 0.7, the metapopulation size initially grows faster than when pd = 0.5, due to fast invasion
of the downstream nodes and growth of the local populations therein (see Fig. 7b); in a second phase,
the growth rate of the metapopulation is reduced, because invasion of the upstream nodes is hampered
by the low pu value, and the establishment of the equilibrium is delayed. As for the spatial spread of
the metapopulation, when a preference for downstream movement is adopted, local population sizes at
equilibrium tend to increase in the downstream nodes and decrease in the upstream nodes with respect to
the default case (Fig. 7a), resulting in a slightly lower overall metapopulation size at equilibrium (Fig. 7b).

5 Conclusions

The importance of adequately representing spatial processes in ecological and evolutionary studies cannot
be overstated. In the realm of freshwater ecology in particular, it is essential to consider how geomorphol-
ogy shapes the structure of dendritic river networks and the ensuing connectivity configuration, which
in turn control the variability of physical habitats and environmental variables, the dispersal of species
and pathogens, and the spatial patterns of biodiversity and ecosystem processes. To this end, we pre-
sented OCNet, an R-package that enables the generation of optimal channel networks, spanning trees that
reproduce all scaling features of real river networks throughout the globe. These can be used as realistic
riverine landscape analogues for a number of ecological, epidemiological, ecohydrological and evolution-
ary studies. We reviewed the theoretical background of the OCN concept and the existing applications
on problems of ecological relevance, provided an overview of the main functionalities of the package, and
proposed an example of application in the context of an invasive riverine species. We believe that this tool
will allow a leap forward in the way spatial processes in river networks are investigated.
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