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 3 

Abstract 43 

Six heavy metals (Hg, Cu, Cd, Cr, Pb, Zn) and 1 metalloid (As) in surface soils of Hong 44 

Kong were investigated in 10 land use categories (urban park, greening area, country 45 

park, rural area, restored landfill, agricultural farmland, orchard farm, crematorium, 46 

industrial and near highway area).  Edaphic Hg concentration in Hong Kong was firstly 47 

reported here.  Clustering of land uses was observed based on total pollutants 48 

concentrations (sum of 7 metals).  The most polluted cluster consisted of industrial and 49 

highway areas (median: 617 to 833 mg kg-1) and the runner-up cluster included urban 50 

park, greening area and restored landfill (median: 400 to 500 mg kg-1).  However, this 51 

general finding was not observed for Hg, where higher concentration was found in 52 

agricultural farmland (median 109 µg kg-1).  The use of low quality fertilizers, together 53 

with the contribution from exhausts and wearable parts from automobiles were believed 54 

to be the major sources of Cr, Cu and Zn in Hong Kong, while the application of Hg-55 

containing agrochemicals maybe the main mechanism of Hg contamination in 56 

agricultural soil.  Based on the daily intake assumption of 0.2 g d-1 of soil particles by 57 

USEPA, direct ingestion of Hg-containing soils is not a major exposure pathway for 58 

population in Hong Kong.  When comparing the edaphic heavy metal concentrations 59 

with Dutch soil quality guidelines demonstrated that Hg, Cd and Pb were not in level 60 

of health concerns, while Cu, Cr and Zn in less than 6% of total samples were found to 61 

exceed the Dutch intervention values sporadically.  In contrast, suburban soils from 62 

northern and northeastern Hong Kong were mostly contaminated with As (10% of total 63 

samples) at concentration that could be potentially causing adverse health impacts to 64 

the nearby population. 65 

 66 

 67 

 68 

 69 
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1. Introduction  72 

Environmental contamination of heavy metals has been reported world-wide, and 73 

excessive exposure to toxic metals has been commonly known to be hazardous to 74 

human health (Agency for Toxic Substances and Disease Registry, 2006).  Among 75 

these toxic metals, Hg is of particular in concern as it is characterized by high vapour 76 

pressure. This unique feature makes it ubiquitous in the environment and become a 77 

global pollutant. In addition, its toxicity to human, especially childbearing women, also 78 

highlighted the concern from government agency to work on Hg reduction (Srivastava 79 

et al., 2006).  In countries under the European Union, Hg is classified as a dangerous 80 

chemical because of its mobility, volatility and its bioaccumulative properties within 81 

organisms and along the food chains (Mukherjee et al., 2004). 82 

 83 

A recent review on Hg contamination in China (Zhang and Wong, 2006) revealed that 84 

soil Hg contents in most cities (70 to 700 µg kg-1, 12 out of 14 cities reviewed) exceeded 85 

the background edaphic Hg value in China (65 µg kg-1) (State Environmental Protection 86 

Administration of China, 1990).  Enrichment of Hg and other metals was observed in 87 

agricultural crop soils (Wong et al., 2002) and sediments (Cheung et al., 2003) around 88 

the Pearl River Delta. This led to higher concentrations of all the toxic metals found in 89 

bivalves and freshwater fish collected (including from the field and available in 90 

markets) within the region (Fang et al., 2001, 2003; Kong et al., 2005; Zhou and Wong, 91 

2000), including seafood in Hong Kong (Tam and Mok, 1991).   92 

 93 

In Hong Kong, it has been observed that Hg was bioaccumulated in cetaceans and Indo-94 

Pacific hump-backed dolphins (Sousa chinensis) (Parsons, 1998, 1999). It was noted 95 

that the mean value of Hg in adult human hair was 3.3  µg g-1 which was higher the 96 
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mean value for US counterpart (1.5 µg g-1) (Dickman and Leung, 1998), also the  97 

recommended limit for Hg in hair set by USEPA is 1 µg g-1 (Gallagher, 2006). It was 98 

indicated that the elevated Hg levels were linked to subfertility in Hong Kong males 99 

(Dickman et al., 1998). In addition, higher Hg levels in blood and hair of children in 100 

Hong Kong were also observed to be correlated with the frequency of fish consumption 101 

(Ip et al., 2004).  102 

 103 

Soils can act as both sinks, via dry atmospheric deposition; as well sources of tosic 104 

metals, via re-emission of semi-volatile pollutants and wind-blown of contaminated 105 

soil materials.  By direct contact and inhalation of soil particles, toxic metals would 106 

pose risks to human health. In addition, leaching is also one of the important pathways 107 

to transfer toxic metals to water bodies and therefore accumulate in various aquatic 108 

organisms.  Ultimately the toxic metals can enter human via consumption of food such 109 

as crops and fish, and thus understanding the levels and potential sources of toxic metals 110 

are essential to secure public health.  Modeling of exposure mechanisms such as dermal 111 

contact and inhalation of dust of soil pollutants for risk assessment requires intensive 112 

data (U.S. Environmental Protection Agency, 1996c), and there is a lack of data on 113 

toxic metals especially Hg in Hong Kong soils.  A more comprehensive survey of toxic 114 

metals (except Hg) in Hong Kong soils was conducted almost 10 years ago  (Chen et 115 

al., 1997), and therefore there seems to be a need to provide update information for all 116 

the toxic metals contained in soils.    117 

 118 

The present study was aimed to address the concerns mentioned above by providing 119 

current status of heavy metal and metalloid concentrations (Hg, As, Cu, Cd, Cr, Pb and 120 

Zn) in Hong Kong soils, with a special focus on Hg.  To our knowledge, this is the first 121 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.16.951558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.16.951558
http://creativecommons.org/licenses/by-nc/4.0/


 6 

report on edaphic Hg levels in Hong Kong and the nearby Pearl River Delta.  Results 122 

are valuable as they partially filled the lacking edaphic metals (especially Hg) 123 

information in the Delta and can act as reference for other studies in the region where 124 

contamination of Hg is in raising concern by the public.  Potential sources of these toxic 125 

metals are also discussed. 126 

 127 

2. Materials and Methods 128 

1. Sampling and Analysis 129 

The sampling was based on 10 different land uses in Hong Kong: urban park, country 130 

park, rural area, restored landfill, agricultural farmland, orchard farm, crematorium, 131 

industrial area and nearby highway.  All together there were 138 composite soil samples 132 

that taken from the depth of 0 to 5 cm from surface by a stainless steel soil core.  133 

Samples were stored in plastic bags and subsequently air-dried for 2 weeks and sieved 134 

through a 2-mm mesh. 135 

 136 

Chemical analyses of metal contents in soils were based on standard method.  0.25 g of 137 

soil sample was mixed with 9 mL nitric acid, 3 mL hydrofluoric acid and 1 mL 138 

hydrochloric acid and subjected to microwave-assisted acid digestion (USEPA 3052) 139 

(U.S. Environmental Protection Agency, 1996a).  The solutions were then filtered 140 

through Advantec 5C filter paper, diluted and made up with deionized water in a 50-ml 141 

plastic volumetric flask.  Concentrations of As, Cu, Cd, Cr, Pb, and Zn were determined 142 

by inductively coupled plasma - optical emission spectrometry (ICP-OES) (Perkin-143 

Elmer Optima 3000 DV), while Hg was quantified by Flow Injection Mercury System 144 

(FIMS) (Perkin-Elmer FIMS-400) based on the cold-vapor atomic absorption 145 

spectrometry (CVAA) (U.S. Environmental Protection Agency, 1996b).  Limit of 146 
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detection (LOD) for Hg was 0.5 µg kg-1, while 50 µg kg-1 for Cd, Cr, Cu and Zn, and 147 

100 µg kg-1 for As and Pb.  148 

  149 

2. Quality assurance and Data analysis 150 

Standard Reference Material (SRM) 2711 was obtained from National Institute of 151 

Standards and Technology (NIST, USA).  An analytical blank and the SRM were 152 

included in every batch of microwave acid digestion to assess the recoveries and 153 

performance of extraction.   154 

 155 

Mean individual recoveries were: 83 ±  2% (Hg), 102 ±  5% (As), 88 ±  1% (Cd), 97 ±  156 

1% (Cu), 107 ±  4% (Pb) and 89 ±  2% (Zn).  On average, the recoveries of all the 157 

investigated elements in SRM were all > 94%.  Statistical analyses including 158 

descriptive statistics, correlation analysis, and PCA analysis were conducted with 159 

Statistica (version 6.0 from StatSoft).  Not detected values were substituted with half 160 

of lowest limit of detection (LOD) only for descriptive statistics. 161 

 162 

3. Results and Discussion 163 

1. Concentration of pollutants in Hong Kong 164 

Kriged maps were constructed to show the spatial distribution of investigated pollutants 165 

(Figure 1), and it is observed that most of the hotspots for pollutants were found in the 166 

northern part of Hong Kong.  In addition, clustering of soil pollutant concentrations in 167 

land uses was also observed (Table 1).  Total heavy metal concentrations were highest 168 

in industrial area and area nearby highway (median 617 and 833 mg kg-1); while similar 169 

for urban park, greening area and restored landfill (median 400 to 500 mg kg-1), and the 170 

rest of the land uses are least contaminated (median 200 to 350 mg kg-1).  The general 171 
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findings that soils in industrial area and adjacent to highways were most contaminated 172 

can also be observed when considering the pollutant individually, but excluding Hg. 173 

Variations in pollutant concentration were usually greatest in urban park, which 174 

spanned up to 3 orders of magnitude, and large variations were found in most of the 175 

land uses, which reflects the heterogeneity of pollutants concentrations is under the 176 

strong influence of local activities or pollution sources. 177 

 178 

Hg concentration was ranged from non detectable (N.D.) to 3790 µg kg-1, and the 10 179 

most contaminated soil samples were found in urban parks, greening areas and farms 180 

(29 and 3790 µg kg-1).  The 5 locations with highest Hg levels were: urban parks in 181 

Kwun Tong (633 µg kg-1), Central (985 µg kg-1) and Tuen Mun (3785 µg kg-1) and 182 

agricultural farm in Sha Tin (762 µg kg-1) and Tai Po (2196 µg kg-1).  The usual contents 183 

of Hg in soils are in the range of 0.01 to 0.03 µg kg-1 (Senesi et al., 1999).  For 184 

contaminated areas such as Hg mine, Hg concentrations in soils were a thousand folds 185 

more (Loredo et al., 1999).  Median Hg levels in urban soil in Korea and Norway were 186 

45 and 130 µg kg-1 respectively (Kim and Kim, 1999; Reimann and Caritat, 1998).  The 187 

mean and median Hg concentrations in Hong Kong were 135 and 70.5 µg kg-1 188 

respectively, which were broadly in line with the Hg concentrations observed in major 189 

cities in China (Beijing: 509 µg kg-1, Chongqing: 319 µg kg-1, Wuhan: 314 µg kg-1) 190 

(Liu et al., 1998; Wang, 2001; Wang et al., 2005).  In addition, the concentration ranges 191 

of Cd (N.D. to 4.11 mg kg-1), Cr (N.D. to 2500 mg kg-1), and Pb (11 to 490 mg kg-1) in 192 

the present study (Table 1) were similar to those reported in Shenyang, Beijing, Nanjing 193 

and Xi’an, China (Fang et al., 2004; Wang et al., 2001).  However, the range of As 194 

(N.D. to 336 mg kg-1) was generally higher for an order of magnitude when compared 195 

with those reported in major cities in China (Wang et al., 2001).  This implied that there 196 
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are significant sources of As in Hong Kong that are absent from the aforementioned 197 

cities.  Mean concentrations of Cu (37.2 mg kg-1) and Zn (276 mg kg-1) in Hong Kong 198 

were closed to those found in Nanjing (Cu: 40.4 mg kg-1, Zn: 280 mg kg-1) (Wu et al., 199 

2003), but higher than those reported in Guangzhou (Cu: 9.62 mg kg-1, Zn: 115.4 mg 200 

kg-1) (Guan et al., 2001). 201 

 202 

2. Statistical analyses among pollutants and their potential sources 203 

The correlations among Cu, Cr and Zn were also identified by principal factor 1 (PC 1) 204 

in the PCA plots shown in Figure 2a.  Cadmium was excluded for PCA because of a 205 

large set of not-detected value.  PC 1 was able to explain 56% of the variance while PC 206 

2 explained 16%.  Together they extracted 72% of the total variance from the present 207 

study.  However, PC2 represented an antagonistic relationship between Hg and As.  208 

Figure 2b shows the projection of sampling points to the factor plane.  Samples from 2 209 

different urban parks in New Territories contained very high level of metals (Cu, Cr 210 

and Zn) and Hg.  Certain agricultural farms and soils from rural and adjacent to highway 211 

in the New Territories were best explained by PC2, implied that they are either high in 212 

Hg or As concentration. Arsenic level was reported to be higher in industrial and heavy 213 

traffic sites (Deb et al., 2002), and the present study also indicated higher level of 214 

edaphic As in the vicinity of highways.   215 

 216 

Arsenic has both natural and anthropogenic sources, and their anthropogenic origins 217 

included agrochemicals such as herbicides and pesticides (in form of monosodium 218 

methanearsonate), and wood preservative (arsenic trioxide) (USGS, 2006).  Since high 219 

levels of As (>100 mg kg-1) were found chiefly in soil samples collected nearby 220 

highways, it is expected that automobiles could be the major contributor of As through 221 
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burning of fossil fuel and wearing of the As-containing babbitt bearings.  Many of the 222 

soil samples with As ranged from 30 to 100 mg kg-1 were collected in the northern rural 223 

part of Hong Kong, in which historical use of agrochemicals containing As would be 224 

the main contributor of As in soils. 225 

 226 

Higher Hg levels were observed in soils of parks and farms with plantation (Table 1).  227 

Similar to As, the origin of Hg can be both anthropogenic and natural, such as ore 228 

mining and forest fire.  Certain fertilizers, pesticides and fungicides are known to 229 

contain Hg (Matthews et al., 1995; Nakagawa and Hiromoto, 1997).  Therefore, the Hg 230 

concentrations found in farmlands, orchard farms and urban parks maybe due to the use 231 

of agrochemicals.  The world-wide average of Hg content in coal is 0.1 ± 0.01 mg kg-232 

1, whereas coals from southern China were enriched in Hg by 1 to 2 orders of magnitude 233 

(Yudovich and Ketris, 2005).  Due to the fact that Hong Kong is located at the southern 234 

tip of PRD, which is known for its electrical and electronic manufacturing industry, the 235 

high power demand and the associated emission of Hg is likely to create a regional Hg 236 

problem (Wang et al., 2006), and hence contributes to Hg level in Hong Kong soils. 237 

 238 

Higher levels of Hg in human hair leading to subfertility in males have been suspected 239 

to link with higher rates of fish consumption in Hong Kong (Dickman et al., 1998; 240 

Dickman and Leung, 1998).  The average consumption rate of seafood is about 60 kg 241 

yr-1 person-1, which is equivalent to 167 g d-1 person-1, and the mean Hg levels in marine 242 

and freshwater fish available in markets were 120 and 80 µg kg-1 respectively (Dickman 243 

and Leung, 1998).  The present study showed that the average Hg level of 135 µg kg-1 244 

in Hong Kong soils is slightly higher than those reported in fish.  However, the assumed 245 

ingestion amount of soil particles for children (15 kg in weight) is 0.2 g d-1 when 246 
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calculating the soil screening level for residential exposure of soil pollutants (U.S. 247 

Environmental Protection Agency, 1996c), which is 833 folds less than the average 248 

intake rate of fish (167 g d-1).  It is therefore believed that the direct ingestion of Hg-249 

contaminated soils is not a major health concern in Hong Kong. 250 

 251 

Table 2 shows the most prominent correlations were Cu-Cr, Cu-Pb and Cu-Zn, which 252 

were found in 5 out of 10 different land uses.  Soil samples collected adjacent to 253 

highway, country park, agricultural farmland, crematorium and industrial area did not 254 

show more than 2 significant correlations.  It is a common practice to use compost as 255 

soil conditioner in urbanized areas.  In Hong Kong, the sources for composting are 256 

largely derived from livestock wastes from pig and poultry farms under the free 257 

livestock waste collection service provided by the government.  Pig manure contains 258 

high levels of Cu and Zn (Bowland, 1990) as common additives in pig feed to increase 259 

the feed conversion efficiency and economic returns (Jin et al., 1995).  Cases of 260 

excessive addition of Cu and Zn in feeds were noted (Kessler et al., 1994), and 261 

considerable amounts of these metals were also reported in local composts (Wong, 262 

1990).  Apart from compost, fertilizers are also known to contain As, Cd, Cr, Pb and 263 

Zn (Guan et al., 2001; Renner, 2004).  Land application of sewage sludge was also 264 

reported to be the principle sources of heavy metals, especially Cd and As (Chu and 265 

Wong, 1984; Elinder, 1985), but this possibility can be ruled out since sludge is 266 

commonly dumped in domestic landfills in Hong Kong.  In England and Wales soil, 267 

greatest inputs of Zn and Cu were from animal manure and greatest inputs of Cr were 268 

from industrial wastes (McGrath, 2000).  The significant correlations of Cu-Cr, Cu-Pb 269 

and Cu-Zn implied that they are derived from the same sources, and the most likely 270 

source of these metals in Hong Kong soil is from low quality fertilizers, because of its 271 
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ease of application and more stable quality than compost.  In addition, Zn and Cu are 272 

pollutants associated with automobiles (Viklander, 1997).  Approximately 3% of ZnO 273 

is commonly added to the tyres of vehicles as a vulcanization agent and the wear of 274 

tyres can be a significant source of Zn in urban areas (Friedlander, 1973).  Other heavy 275 

metal compounds including Cu, Cd and Pb (~0.002%, <0.001% and <0.005% 276 

respectively) are identified in tyres (UNEP, 2000).  Other wearable parts of vehicles 277 

such as brake and brake lining also contained high contents of Cu, Pb and Zn (80 to 24 278 

000 mg kg-1) (Westerlund, 2001) and therefore contribute a significant portion of heavy 279 

metals in soils. 280 

 281 

Lead pollution in cities was commonly recognized as one of the major pollutants caused 282 

by vehicle emissions (Yang et al., 2000).  Hong Kong government introduced unleaded 283 

petrol (ULP) in 1991 and banned the supply, sale and dispensing of leaded petrol as 284 

well as any fuel additives containing Pb in 1999 (Hong Kong Environmental Protection 285 

Department, 1999), resulting in a decline of Pb concentration in street dust of Hong 286 

Kong from 1300 ± 1400 mg kg-1 (Yim and Nau, 1987) to 180 ± 93 mg kg-1 (Li et al., 287 

2001). 288 

 289 

Atmospheric deposition from nearby regions also represents another important input of 290 

heavy metals such as Cr, Cu, Pb and Zn to surface soils.  According to a quality 291 

monitoring program in China (General Administration of Quality Supervision 292 

Inspection and Quarantine of the People's Republic of China, 2004), only about 70% 293 

of the unleaded petrol samples in China was found to comply with the national standard.  294 

In some cases, Pb level was exceeded more than 200 times to the standards.  Study on 295 

atmospheric deposition in the PRD revealed that the deposition of Cr, Cu, Pb and Zn 296 
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(6.43 ± 3.19, 18.6 ± 7.88, 12.7 ± 6.72 and 104 ± 36.4 mg m-1 yr-1) was significantly 297 

higher when compared with Europe and North America (Wong et al., 2003).  Long-298 

range transport of air-borne pollutants or wind-blown contaminated soil particles from 299 

Mainland China by the northeast monsoon was reported (Lee and Hills, 2003).  300 

Moreover, atmospheric input was reported to be the major contributor of Pb, Cd, As 301 

and Hg in agricultural soils in England and Wales (Nicholson et al., 2006), and thus 302 

atmospheric deposition, either locally or regionally, may play a significant role for the 303 

presence of particle-bound pollutants in soils. 304 

 305 

3. Comparison of soils cleanup criteria 306 

The soil quality guideline values on the various pollutants investigated imposed by 307 

Netherlands (Dutch Guidelines) (Ministry of Housing Spatial Planning and 308 

Environment, 2000), Sweden (Soil Remediation Goals) (Swedish Environmental 309 

Protection Agency, 2002), England (Kelly Indices) (Contaminated Land Assessment & 310 

Remediation Research Centre, 2004) and China (Environmental Quality Standard) 311 

(State Environmental Protection Administration of China, 1995) are summarized in 312 

Table 3.  As Dutch guideline is the most comprehensive and commonly used, 313 

comparisons the present findings are made chiefly with the Dutch values.  Mercury, Cd 314 

and Pb in 138 samples were below the Dutch intervention values, suggesting that the 315 

concentrations of these metals in soils were not hazardous to human.  In terms of As, 316 

Cu, Cr and Zn, most of their levels did not exceed the Dutch intervention values, but 317 

there were sporadic soil samples containing levels of As, Cu, Cr and Zn exceeded the 318 

intervention values (14, 3, 2, and 8 out of 138 samples correspondingly).  Nine out of 319 

10 suburban samples from the northern and northeastern New Territories contained As 320 

concentrations greater than the Dutch intervention value.  Thus, it is suspected that a 321 
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large part of northern and northeastern in Hong Kong is contaminated with As at 322 

concentration that can impose adverse effects on human health.  Soil samples with Zn 323 

concentration greater than the intervention value were mainly noted in industrial areas, 324 

and this is also true for Cu and Cr.  For the scarcity and remoteness of the hotspots (Cr, 325 

Cu, and Zn), their potential adverse impacts to the general public were kept to 326 

minimum.  In England, soil remediation is often required before further development 327 

on brownfield soils as they are typically contaminated with high levels of heavy metals 328 

due to past industrial activities (French et al., 2006).  Although leaching of toxic metals 329 

to underground water is not a major concern as Hong Kong relies mainly on river water 330 

transported from the mainland as well as rainwater collected locally, the fact that more 331 

than 10% of the soil samples were highly contaminated with As warrants further 332 

investigation. This is especially true if any of these sites (north and north-east of the 333 

New Territories) are used for residential development in the future. 334 

 335 

4. Conclusions 336 

In terms of total concentrations of all the metals (metalloids), industrial and highway 337 

areas were the most contaminated.  This finding is also true for individual elements 338 

(As, Cd, Cr, Cu, Pb and Zn) other than Hg.  It was found that Hg concentration was the 339 

highest in soil collected from agricultural farmland, which could be attributed to the 340 

application of Hg-containing agrochemicals.  The use of low quality fertilizers is also 341 

believed to be the main source of As, Cu and Zn, while substantial contributions of 342 

pollutants by exhausts and wearable parts from automobiles are also suspected.  343 

Atmospheric deposition from local and nearby regions is also believed to be a major 344 

source of edaphic metals in Hong Kong.  A reduction of Pb in soils during the past 10 345 

to 15 year was chiefly due to the use of Pb-free petrol.  It is expected all the metals 346 
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(metalloids) would not cause any potential health impacts to the general public, except 347 

As, due to its high concentrations in northern and northeastern suburbs in Hong Kong. 348 

 349 
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Figure Captions: 364 

Figure 1.  Kriged maps of pollutants (As, Cd, Cr, Cu, Hg, Pb, and Zn) concentrations 365 

(mg kg -1) in surface soils of Hong Kong. 366 

 367 

Figure 2.  Plots with PC 1 and PC 2 from principal component analysis as X and Y 368 

axis on various pollutants and sampling points.  PC 1 was able to explain 49% while 369 

PC 2 accounted for another 19% of the total variance.  Note that Cd were excluded 370 

from PCA because of a large set of not-detected value.  A: Biplot showing the loading 371 

of 6 pollutants on PC 1 and PC 2.  B: Scatter plot of sampling points projecting on the 372 

PC 1 and PC 2 plane. 373 

 374 
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Table 1. Mean, median, and range of concentration of studied pollutants (mg kg-1) in Hong Kong soils.Note that concentration unit of Hg µg kg-1. 398 

 399 

Classified soil 
categories 

Sample Hg As Cu Cd 

 no. Mean Median Range Mean Median Range Mean Median Range Mean Median Range 

    Concentration in soils (µg/kg) Concentration in soils (mg/kg) 

Urban park 39 232 75.0 [N.D. - 3785] 19.4 16.5 [N.D. - 122] 81.41 13.0 [N.D. - 2129] 0.56 0.01 [N.D. - 2.93] 

Greening area 14 104 66.0 [N.D. - 311] 26.6 26.6 [N.D. - 97] 21.46 15.1 [N.D. - 59] 0.50 0.01 [N.D. - 2.25] 

Country park 9 52 25.0 [N.D. - 128] 36.1 20.3 [3.6 - 95] 11.0 0.01 [N.D. - 93] 0.36 0.01 [N.D. - 2.42] 

Rural area 19 75 81.0 [N.D. - 202] 27.6 20.5 [3.2 - 143] 7.32 6.08 [N.D. - 28] 0.37 0.01 [N.D. - 2.91] 

Restored landfill 11 50 25.0 [N.D. - 119] 22.0 22.8 [N.D. - 47] 19.3 11.0 [N.D. - 62] 0.85 0.01 [N.D. - 2.86] 

Agricultural farmland 9 402 109 [N.D. - 2196] 27.2 15.2 [N.D. - 109] 12.0 6.61 [N.D. - 66] 0.14 0.01 [N.D. - 0.77] 

Orchard farm 5 154 72.0 [N.D. - 555] 34.3 30.4 [7.3 - 93] 8.86 5.60 [N.D. - 27] 0.56 0.01 [N.D. - 1.6] 

Crematorium 10 75 78.0 [N.D. - 146] 13.8 11.5 [N.D. - 50] 4.29 0.61 [N.D. - 16] 0.13 0.01 [N.D. - 1.21] 

Industrial area 18 74 73.0 [N.D. - 237] 25.5 25.4 [N.D. - 61] 52.34 33.3 [N.D. - 396] 1.19 0.67 [N.D. - 4.11] 

Nearby highway  4 134 117 [N.D. - 277] 174.6 141 [80.5 - 336] 18.75 15.4 [3.62 - 41] 0.01 0.01 [N.D. - N.D.] 

Classified soil 
categories 

Sample Cr Pb Zn Total pollutants 

 no. Mean Median Range Mean Median Range Mean Median Range Mean Median Range 

    Concentration in soils (mg/kg) 

Urban park 39 50.5 21.9 [1.85 - 601] 141 130 [11 - 305] 293 197 [13 - 3508] 586 401 [29 - 6553] 

Greening area 14 20.8 18.2 [1.23 - 44] 142 144 [104 - 188] 367 300 [114 - 1182] 578 540 [300 - 1351] 

Country park 9 7.18 2.00 [N.D. - 23] 75 68 [56 - 115] 75 85 [38 - 110] 204 204 [101 - 357] 

Rural area 19 17.0 12.1 [0.81 - 57] 136 124 [53 - 244] 183 135 [43 - 555] 371 377 [155 - 763] 

Restored landfill 11 25.1 24.9 [11.8 - 37] 189 180 [47 - 393] 170 146 [79 - 347] 426 425 [221 - 680] 

Agricultural farmland 9 22.7 17.9 [7.36 - 54] 121 120 [79 - 161] 197 152 [63 - 564] 380 303 [234 - 845] 

Orchard farm 5 16.3 12.4 [5.73 - 34] 104 91 [64 - 186] 116 95 [45 - 243] 280 236 [145 - 479] 

Crematorium 10 27.3 21.1 [11.5 - 88] 118 96 [65 - 277] 140 126 [89 - 221] 304 263 [180 - 515] 

Industrial area 18 167 29.1 [11.3 - 2486] 221 183 [92 - 493] 529 298 [75 - 1631] 996 617 [214 - 3033] 

Nearby highway  4 35.5 35.4 [15.7 - 55] 147 134 [115 - 205] 556 349 [158 - 1367] 932 833 [409 - 1653] 
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Table 2.  Correlation matrix of investigated metals in different land uses in Hong Kong. 400 

 401 

   Urban park    Agricultural farmland 

    Hg As Cu Cd Cr Pb Zn       Hg As Cu Cd Cr Pb Zn 

G
re

e
n

in
g

 a
re

a
 Hg  -0.06 0.04 0.2 0.01 0.12 0.03  

O
rc

h
a

rd
 f
a

rm
 Hg  -0.2 0.16 -0.23 0.13 0.25 0.08 

As 0.46  -0.04 0.12 -0.07 -0.16 -0.76  As -0.61  -0.15 0.36 -0.45 -0.55 -0.43 

Cu 0.13 0.54*  -0.09 0.87* 0.47* 0.98*  Cu -0.19 0.83  -0.21 0.62 0.53 0.86* 

Cd 0.14 0.47 0.53*  -0.17 0.15 -0.08  Cd 0.4 0.84 0.73  -0.2 -0.65 -0.18 

Cr 0.14 0.46 0.80* 0.26  0.49* 0.82*  Cr -0.14 0.15 0.66 0.15  0.48 0.90* 

Pb -0.4 -0.16 0.53 0.19 0.35  0.54*  Pb -0.1 -0.35 0.23 -0.27 0.87  0.6 

Zn -0.08 -0.2 0.1 -0.23 0.33 0.13   Zn -0.17 0.82 0.99* 0.74 0.62 0.2  

  Country park    Crematorium 

    Hg As Cu Cd Cr Pb Zn       Hg As Cu Cd Cr Pb Zn 

R
u

ra
l 
a

re
a
 

Hg  -0.32 -0.21 -0.51 0.67* 0.52 0.18  

In
d

u
s
tr

ia
l 
a

re
a
 Hg  -0.08 0.25 0.18 0.33 -0.16 0.07 

As 0.31  0.3 0.44 0.03 0.09 0.18  As 0.05  0.09 0.85* 0.1 0.14 -0.04 

Cu 0.41 0.49*  0.01 0.43 0.51 0.1  Cu 0.78* -0.08  -0.18 0.82* 0.13 0.72* 

Cd 0.02 0.70* 0.43  -0.23 -0.31 0.47  Cd 0.17 0.08 -0.19  -0.05 -0.16 -0.35 

Cr 0.37 0.4 0.27 -0.03  0.79* 0.6  Cr 0.07 -0.42 0.02 0.22  -0.05 0.53 

Pb -0.16 -0.22 -0.08 -0.28 -0.1  0.29  Pb -0.26 -0.14 0.14 -0.11 -0.15  0.61 

Zn 0.48* -0.03 0.12 -0.2 0.27 0.14   Zn 0.2 -0.31 0.43 -0.21 -0.06 0.4  

  Restored landfill           

    Hg As Cu Cd Cr Pb Zn                     

N
e

a
rb

y
 h

ig
h
w

a
y
 Hg  0.07 -0.36 -0.62* -0.21 -0.23 0.39           

As -0.76  -0.43 -0.09 -0.79* -0.54 -0.4           

Cu -0.68 0.77  0.27 0.80* 0.61* 0.51           

Cd Nil Nil Nil  0.35 0.39 -0.55           

Cr -0.84 0.75 0.96* Nil  0.80* 0.47           

Pb -0.67 0.84 0.99* Nil 0.92  0.19           

Zn 0.07 -0.42 0.25 Nil 0.27 0.11                       

Pearson correlation coefficients were shown.  Values with * indicated that significant correlations were found at p=0.05. 402 
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 403 

 404 

 405 

Table 3. Soil quality guidelines from Netherlands, Sweden, United Kingdom and China, and their recommended values for Hg, As, Cu, Cd, Cr, Pb and 406 

Zn in soils. 407 

Country of 
Quality guidelines Hg As Cu Cd Cr Pb Zn 

implementation 

    Concentration in soils (mg/kg) 

Netherlands Dutch target value 0.3 29 36 0.8 100 85 140 

 Dutch intervention value 10 55 190 12 380 530 720 

Sweden Soil remediation goals for sensitive land use N.A. 15 100 0.4 120 80 350 

 Soil remediation goals for less sensitive land use N.A. 40 200 12 250 300 700 

United Kingdom Kelly 1 30 N.A. 1 100 500 N.A. 

China Environmental quality standard 0.5 30 200 0.6 300 300 250 

 408 
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 410 

Figure 1.  Kriged maps of pollutants (As, Cd, Cr, Cu, Hg, Pb, and Zn) concentrations 411 

(mg kg -1) in surface soils of Hong Kong. 412 
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 413 

Figure 2.  Plots with PC 1 and PC 2 from principal component analysis as X and Y axis on various pollutants and sampling points.  PC 1 was able to 414 

explain 49% while PC 2 accounted for another 19% of the total variance.  Note that Cd were excluded from PCA because of a large set of not-detected 415 

value.  A: Biplot showing the loading of 6 pollutants on PC 1 and PC 2.  B: Scatter plot of sampling points projecting on the PC 1 and PC 2 plane.416 

a b 
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