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ABSTRACT

The phenotypes of plants develop over time and change in response to the environment. New engineering and computer vision
technologies track phenotypic change over time. Identifying genetic loci regulating differences in the pattern of phenotypic
change remains challenging. In this study we used functional principal component analysis (FPCA) to achieve this aim.
Time-series phenotype data was collected from a sorghum diversity panel using a number of technologies including RGB and
hyperspectral imaging. Imaging lasted for thirty-seven days centered on reproductive transition. A new higher density SNP
set was generated for the same population. Several genes known to controlling trait variation in sorghum have been cloned
and characterized. These genes were not confidently identified in genome-wide association analyses at single time points.
However, FPCA successfully identified the same known and characterized genes. FPCA analyses partitioned the role these
genes play in controlling phenotype. Partitioning was consistent with the known molecular function of the individual cloned
genes. FPCA-based genome-wide association studies can enable robust time-series mapping analyses in a wide range of
contexts. Time-series analysis can increase the accuracy and power of quantitative genetic analyses.

Introduction
Quantitative genetic approaches are widely used across all domains of biology to identify genetic loci controlling variation in
target traits. Many genes where naturally occurring functionally variable alleles control variation in agronomically relevant
traits have been identified in crops using both QTL mapping (structured populations) or genome-wide association studies
(association panels)1–3. Collected phenotypic data from the hundreds to thousands of accessions required for QTL mapping or
genome-wide association study (GWAS) has historically been a time and resource intensive undertaking. Hence most attempts
to identify genes controlling variation in a target trait employ data from a single time point, usually either at maturity or a
fixed number of days after planting. However recent engineering – wearable devices, automated phenotyping greenhouses,
field phenotyping robots, and unmanned aerial vehicles (UAVs) – and computer vision advances are lowering the barriers and
activation energy requires to score traits from multiple points throughout development4–11. Plant growth and development is a
dynamic process, responding to environmental perturbations and regulated by different suites of genes at different times and in
different environments4, 10–15. The availability and use of time-series trait data from mapping and association populations has
the potential to increase both the accuracy and power of gene mapping studies4, 16. It may also provide greater insight into
the biologically distinct roles different loci pay in determining final phenotypes. However, integrating time-series data into
statistical frameworks originally envisioned for single trait measurements across large populations is not straightforward. A
range of differing approaches are currently being explored by the community.

There are several approaches to the use of time-series phenotypic data in mapping studies. The most straightforward is to
conduct QTL mapping or GWAS separately at each time point and then summarize the mapping results12, 17, 18. However, this
approach is not robust to missing data or subsets of the population being scored on alternating time points and requires complex
approaches to multiple testing correction given the partially correlated nature of both linked genetic markers and measurements
of the same trait in the same individuals at multiple time points. A second widely employed method is to summarize patterns of
change over time using pre-defined functions with discrete numbers of variables19–21. QTL mapping or GWAS can then be
conducted for the values of the different variables within the equation as that function is fit to observed data from different
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individuals. This approach can be powerful and is able to impute missing data points in individuals. However, this approach
can fail when the pattern of phenotypic change over time follows an unknown function, too complex to fit, or does not conform
to the expected function fit the observations11. Functional principal component analysis (FPCA) as a more general method
provides some of the strengths of fitting parametric functions – sharing data across time points, ability to impute missing values
– without requiring patterns of phenotypic change over time fit any particular function22–24. A variation of nonparametric
functional principal component based mapping has been successfully employed to identify loci controlling the gravitropism
response in A. thaliana seedlings4, 22. Kwak and coworkers concluded that dimensional reduction via FPCA may increase
power to detect QTL in recombinant inbred populations relative to prior approaches that include trait data from each time
point22. Muraya included an FPCA method adapted from Kwak22 to identify several trait associated SNPs for maize biomass
accumulation in vegetative development. This represented an advance over parametric regression, which had not been able to
identify any trait associated SNPs using the same trait and marker dataset. However, none of the identified loci coincided with
either markers identified in single time point analyses or known loci controlling the trait of interest.15.

Here we employ a new approach to functional principal component analysis of non-parametric regression data23 and
evaluate its effectiveness at both controlling false positives and identifying known true positives in sorghum. We employ a
phenotypically constrained subset of the sorghum association panel (SAP)25. This population was grown and imaged through
vegetative and reproductive development in a high throughput phenotyping facility. Organ level semantic segmentation from
hyperspectral images was employed to extract phenotypic values26. Three cloned sorghum genes controlling height – dwarf1,
dwarf2, and dwarf3 – are segregating in the Sorghum Association Panel. Dwarf1 (dw1, Sobic.009g229800) belongs to a
previously uncharacterized protein family in plants has been shown to influences plant height in sorghum, rice, arabidopsis
by reducing cell proliferation activity in the internodes and appears to act in the brassinosteroid signaling pathway27–29.
Dwarf2 (dw2, Sobic.006G067700) encodes a protein kinase30. Dwarf3 (dw3, Sobic.007G163800) encodes a MDR transporter
orthologous to brachytic2 in maize and appears to influence cell elongation through a role in polar auxin transport31. We
demonstrate that genome-wide association using the functional principal component scores derived from the approach described
in by Xu and co-workers23 can be used to successfully identify all three known true positive genes. Three novel signals were
also detected, one of which can be independently validated in data from study of a different sorghum population. These results
contrast favorably terminal phenotyping or time point by time point analyses in the same population, and to provide additional
insight into the distinct biological roles each of the three known genes play in determining sorghum height.

Results
Loss of association power in phenotypically constrained populations
The classical sorghum dwarfing genes have large effects on plant height and are segregating within the SAP32, 33. Field collected
plant height data for 357 lines from the SAP correctly identified both dw1 and dw2 [Figure 1A] as well as a third previously
reported locus known to influence variation in height in this population32, 33. Thirty-eight lines from the field study exceeded
the physical limit on maximum height for the imaging facility employed in this study [Figure 1B]. After the exclusion of these
38 lines as well as an additional 27 lines which failed to germinate or failed to thrive in the greenhouse, field measured height
data for the remaining 292 lines was still sufficient to identify dw1 – though with substantially reduced statistical significance –
however, after the removal of these phenotypically extreme lines, signals from dw2 and the other previously reported height
controlling loci were no longer statistically significant [Figure 1C]. Dwarf3, located on the long arm of chromosome 7, was not
identified in association analyses using either field data on terminal plant heights from complete set of 357 SAP lines, or in
analyses of data only from the phenotypically constrained subset of SAP lines employed for greenhouse experiments.

Genetic associations with sorghum height at different time points
The phenotypically constrained subset of 292 SAP lines were imaged at the University of Nebraska’s Greenhouse Innovation
Center (UNGIC). Imaging lasted approximately one month centered on reproductive development and each plant was imaged
using a set of five cameras including top views and side views from multiple angles and hyperspectral imaging from a single
side view perspective26, 34, 35. Two methods were employed to extract plant height at individual time points. The first was
whole plant segmentation, an approach widely used in plant image analysis36: segmentation of an image into plant pixels and
not plant pixels, and measuring height by the difference between the minimum and maximum y-axis values for plant pixels
[Figure 2A]. The second approach was a recently described method26 to semantically segment "plant pixels" of sorghum plants
into separate stalk, leaf, and panicle classes [Figure S1, 2B]. There are many different ways to measure the plant height26, 37.
Generally, researchers in the field have preferred to benchmark on the height of stalk, height to the uppermost leaf collar, or the
height to the tip of the inflorescence rather than the height to the highest leaf tip. An advantage of the latter method – semantic
segmentation – is that it can be used to measure a version of plant height which more closely approximates how height is
measured in the field26. Sorghum plant height measured by whole plant segmentation tended to oscillate over time as new leaves
emerged, while sorghum plant height measured via the semantic segmentation method tended to be monotonically increasing
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Figure 1. Reduced power to identify causal loci in phenotypically constrained populations. (A) A genome wide
association analyses for plant height, defined as the distance between the soil surface and the top of the panicle at maturity,
using field collected data for 357 lines from sorghum association panel and the set of genotype call data used in this study. The
location of dw1, dw2 and ma1 are indicated with dashed lines, as is an additional known height locus (KHL) identified in
multiple prior GWAS conducted on height in this population using different genetic marker data. (B) Distribution of observed
heights for the 357 lines employed for association analysis in panel A. The set of thirty eight lines above two meters in height
are marked in red. (C) An genome wide association analysis identical to that shown in panel A but with the exclusion of lines
with heights >2 meters (38 lines) and those which we were not able to successfully germinate and phenotype in this study (27
lines).

[Figure 2C]. Generally, researchers in the field have preferred to measure the height of stalk or the height of inflorescence
rather than the height to the highest point on the plant, which is often a leaf tip. The semantic segmentation approach makes it
possible measure height using a definition for plant height the corresponds to the definition of plant height used by sorghum
geneticists in the field26.

A second challenge faced by many time-series imaging studies is the maximum daily throughput provided by fixed imaging
infrastructure. In this particular study, individual plants were divided into two groups imaged on alternating days. Therefore
there was no single time point at which image or height data was available for all individual plants [Figure S2A]. In order to
estimate the height of each individual plant at each individual time point, nonparametric regression was employed to impute all
missing data points [Figure S2B]. To assess the accuracy of this imputation, the percent of variance in height explained by
genetic factors was assessed at individual time points for subsets of the population using either height measured directly from
images or height imputed from nonparametric curves. In most cases proportion of variance in imputed height which could
be explained by genetic factors matched or exceeded the equivalent value for directly measured height [Figure S3]. This is
consistent with previous work which found missing values in time-series plant phenomics data can be imputed accurately from
nonparametric curves24.

Independent genome-wide association analyses were conducted for imputed sorghum height – as measured via semantic
segmentation – on each day from 41 to 76 days after planting (DAP). Consistent with our observations from field collected
plant height data, almost no significant trait/marker associations were observed in the analyses for DAP 65-76 [Figure S5]. On
early days in the experiment statistically significant signals were identified all over the genome likely as a result of extreme
height values for a small number of lines which had experienced reproductive transition and panicle emergence prior to the
start of imaging [Figure S4]. Excluding extreme lines led to the identification of signals near dw1, dw3, and ma3 in data from
some early time points mixed in among approximately a dozen other repeatedly identified loci across the genome. A loss of
detectable genetic associations between days 54 and 66 after planting corresponded roughly to booting and panicle exertion in
many sorghum accessions. The peduncle length is under the control of a distinct set of genetic factors from plant height below
the flag leaf33, and the timing of panicle exertion is under the control of a third distinct set of factors, maturity genes38, 39. We
speculate that, once a large proportion of lines advanced to the booting stage or beyond, the role these three sets of genetic
factors played in determining plant height diluted the total variance attributable to any one single genetic locus, reducing power
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Figure 2. Different methods to define and measure plant height produce different outcomes. (A) Conventional RGB
images of a single sorghum plant (PI 576401) taken on eight different days spanning the transition from vegetative to
reproductive development. Pixels identified as "plant" through whole plant segmentation are outlined in red. Measured plant
height, defined as the distance between the plant pixels with the smallest and greatest y-axis value is indicated by the horizontal
blue bar in each image. (B) Semantically segmented images of same plant taken on the same day from a moderately different
viewing angle using a hyperspectral camera. Pixels classified as "leaf" are indicated in green, pixels classified as "stem" are
indicated in orange, and pixels classified as "panicle" are indicated in purple. Measured plant height, defined as the distance
between stem or panicle pixels with the smallest and greatest y-axis value is indicated by the horizontal red bar in each image.
(C) Observed and imputed plant heights for the same sorghum plant on each day within the range of phenotypic data collection.
Blue and red circles indicate measured height values from whole plant segmentation of RGB images and semantic
segmentation of hyperspectral images, respectively. Solid blue and solid red lines indicate height values imputed for
unobserved time points using nonparametric regression for whole plant and semantic height datasets, respectively.

to identify statistically significant associations.
A second set of analyses were conducted where nonparametric curves calculated for individual plants were aligned based on

time relative to panicle emergence (e.g Days After Panicle Emergence or DAPE) rather than time relative to planting (Days After
Planting or DAP) (Figure 3). Given variation in the date of panicle emergence and the dangers of extrapolating nonparametric
curves beyond the range of observed data points it must be noted that this approach meant that data were available only for
distinct subsets of the original 292 phenotyped sorghum lines at any given time point. Day by day genome-wide association
studies were conducted from 14 days prior to panicle emergence to 10 days after panicle emergence, as described above.
No known sorghum flowering time loci were identified using this approach, with the exception of ma1. However due to the
strong linkage between ma1 and dw2 genes based on previous studies we cannot exclude the possibility that the significantly
associated markers near ma1 reflect the effect of dw2 on plant height40, 41. The signal corresponding to dw2 was identified
in the DAPE GWAS analysis for six days between -14 to -5 DAPE with the signal 323 kilobases from the known locus. The
signal corresponding to dw1 was identified from -14 to +1 DAPE and was located only 15 kilobases away from the known
location of dw1 on sorghum chromosome 9. This was closer than the 114 kilobase distance between the gene and the closest
significant SNP identified in DAP GWAS results [Figure S5]. Dwarf3 did not show any statistically significant signal in the
DAPE based analysis but was identified in some time points when plant data was compared using DAP. Hence, while it was
possible to identify all three known true-positive genes controlling sorghum plant height through genome-wide association
analyses at individual time points, in no case were all three identified in a single analyses, across the approximately sixty total
genome-wide association studies conducted at different time points or using different developmental landmarks. Many other
confounding associations were also identified. In many cases both the single most significantly associated SNP and "hot zone"
of SNPs all showing strong significant association with trait variation was quite distant from the known causal locus although
still within the range expected given observed LD decay rates in sorghum32, 42

Mapping genes controlling variation in growth curves
All three known true positive height genes were identified by sequential time point based GWAS. However, there was no
single time point, nor in any single treatment of the data (DAP or DAPE) were all three ground truth genes were identified.
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Figure 3. Comparison of change in plant height over time for members of the SAP population when anchoring either
on planting date (DAP) or panicle emergence date (DAPE). (A) Growth curves imputed using nonparametric regression for
23 sorghum genotypes, anchored for comparison based on sharing the same date of planting. (B) Growth curves imputed using
nonparametric regression for same 23 sorghum genotypes shown in panel A, anchored for comparison based on sharing the
same date of panicle emergence.

Many other loci not previously reported to be linked to height were also identified with equal or greater statistical support to
known true positive genes across many time points. In order to conduct the individual time point analyses, it was necessary
to fit nonparametric curves to each individual plant to impute unobserved values. Functional principal component analyses
[Figure 5A] was employed to decompose variation among the curves into four functional principal components that combined
to explain >99% of the total variance in curve shape among the plants in the population. The first two functional principal
components were able to explain >97% of total variation [Figure 5B & C].

As the first two functional principal components described the vast majority of the variation in patterns of change in plant
growth over time, genome-wide association analyses were conducted to identify genes controlling variation in these two
phenotypic descriptors [Figure 6]. Sorghum lines with negative scores of the first functional principal component tended to be
taller overall and exhibited greater increases in height during panicle emergence than lines with positive scores of the second
functional principal component [Figure 6A & B]. Both dw1 and dw2 showed statistically significant associations with variation
in the first functional principal component, as did a single locus on the short arm of chromosome three [Figure 6E]. Sorghum
lines with negative functional principal component two scores tended to be taller prior to panicle emergence but exhibit limited
additional increases in height during panicle emergence, while lines with positive functional principal component two scores
started out shorter, but exhibited big increases in height during panicle emergence so that this second set of lines was taller at
the end of the experiment [Figure 6C & D]. Dwarf3 showed a statistically significant association with variation in the second
functional principal component, as did two other regions of the genome close to the centromeres of sorghum chromosomes 5
and 9 [Figure 6F].

The distance between the nearest SNP significantly associated with functional principal component one and dw1 (So-
bic.009G229800) is approximately 35 kilobases. The hot region of SNPs on chromosome 6 which are significantly associated
with functional principal component one spans both dw2 (Sobic.006G067700) and ma1 (Sobic.006G057866). The novel hit for
functional principal component one on chromosome three was also identified in sequential DAPE GWAS analysis [Figure 4].
This hit is associated with a large – 17 complete genes or gene fragments – tandem array of wall-associated kinase (WAK) genes
[Supplementary file]. WAKs play a role in cell elongation and expansion43, 44 and previous antisense experiments targeting
genes in this family in arabidopsis produced dwarf phenotypes43, 44. The distance between the nearest SNP significantly
associated with functional principal component two and dw3 (Sobic.007G163800) is approximately 39 kilobases. The other
two significant signals for functional principal component two on chromosome 5 and chromosome 9 were not associated with
any immediately obvious candidate genes, which may reflect the location of these hits in low recombination/high linkage
disequilibrium regions of the genome, expanding the potential distance between a trait associated genetic marker and the causal
locus.
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Figure 4. Several known causal loci show statistically significant associations with plant height when sequential
genome wide association studies are conducted using data anchored to the date of panicle emergence. A summary of
where statistically significant trait associated SNPs were identified in separate genome wide association studies conducted
using height data for each day between -14 to +10 days after panicle emergence (DAPE). Each vertical column summarizes the
results from one of the twenty five independently conducted genome wide association studies. Each sorghum chromosome is
divided into sixteen bins containing equal numbers of SNP markers. Each cell in each vertical column is color coded based on
the single most significant p-value observed for any marker within that bin on that day. Light pink cells indicate bins which
contain no markers which exceed the multiple testing corrected threshold for statistical significance. The locations of the two
cloned dwarf genes and the one cloned maturity gene which were successfully identified in analysis of data from at least one
time point are indicated with horizontal dashed lines.

Discussion

Engineering and computational advances are making it increasingly practical to dynamically monitor the trait values for
organisms across time and development. Time-series data provides opportunities to understand the role individual genetic
loci play in shaping phenotype. At the same time, extracting the greatest possible insight from time-series data requires
modifications to quantitative genetic approaches traditionally employed for linking genotypic variation to phenotypic variation
across an entire population at a single point in time. Above we have used time-series data from a phenotypically constrained
diversity population in sorghum to evaluate a number of approaches for leveraging time-series data to identify and characterize
how different loci play different roles in determining phenotype at different stages of development. A key feature which
enabled our analyses was that three known large effect loci controlling height were segregating in the population of plants
analyzed, yet these loci were not consistently identified in conventional single point GWAS given the phenotypically constrained
set of the plants employed in the study [Figure 1]. In field studies it is often necessary to restrict the range of phenotypic
diversity exhibited by an association population key traits in order to obtain meaningful and comparable trait data in a single
environment45. Artificial selection also tends to reduce the range of phenotypic variation present within elite populations used
for crop improvement46.

Different plants proceed through different stages of their life cycle at different rates. Comparisons across varieties must,
explicitly or implicitly, employ life cycle landmarks to enable comparisons across individuals. In many field studies, traits are
collected from terminal stage plants, using physiological maturity as the life cycle landmark for comparisons across individuals.
In many other studies, including many greenhouse or growth chamber based ones, comparisons are performed at a fixed
number of days after planting or days after germination, using planting or germination as the life cycle landmark. The sorghum
association population employed in this study is samples primarily from sorghum conversion lines collected from around the
world25. Despite the introgression of photoperiod insensitivity loci as part of the conversion process, lines vary significantly
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Figure 5. Two functional principal components explain >97% of variance in the sorghum growth curves observed in
this study. Functional principal component analyses seeks to describe the pattern of change in height over time of each
observed plant using a mean function combined with variable weightings of a set of eigenfunctions. (A) Comparison of the
empirical mean function (red) for all growth curves observed in this study (gray) and the mean function estimated using
functional principal component analysis (blue). (B) Illustration of how changing the score for functional principal component
one alters the resulting growth curve. (SD = Standard Deviation) (C) Illustration of how changing the score for functional
principal component two alters the resulting growth curve.

total days spent in vegetative development before transitioning to reproductive development. We experiment with using either
time of planting or time of panicle emergence as the life cycle landmark for phenotypic comparisons. For these particular
analyses using panicle emergence as a landmark provided significantly cleaner results with identification of known height
related loci [Figure 4]. In general time-series trait data enables researchers to experiment with using different landmarks for
comparisons across individuals in a population. The correct choice in any given case will depend on the specific goal of the
analyses.

Simulation studies based on fitting parametric models have demonstrated that integrating longitudinal measures of pheno-
types in a single population can provide increased resolution and power to identify quantitative trait loci16. Here we employed
nonparametric models which required fewer initial assumptions about the pattern of how phenotypes change over time47. Like
parametric models, nonparametric models can be used to accurately impute trait values at unobserved time points24 enabling
the combined analyses of time data from larger populations given a fixed capacity in terms of number of individuals phenotyped
per day. Relative to previously published functional principal component analyses, the statistical approach employed here is
robust to small and uneven numbers of time point observations per sample.

Genome-wide association studies based on functional principal component weightings assigned to the time-series data from
individual plants, collected on separate days, successfully identified all three known true positive genes controlling height in
sorghum. Both dw1 and dw2 were associated with variation in the first functional principal component of sorghum height,
which exhibited a consistent effect on height both before and after panicle emergence and exertion [Figure 6A, B & E]. Dwarf3
was instead associated with the second functional principal component of sorghum height, which exhibited opposite directions
of effect on height before and after panicle emergence and exertion [Figure fig:pcgwasC, D & F]. These patterns are consistent
with known phenotypic consequences and molecular functions of the three known true positive genes employed in this study.
Dwarf3 and its maize ortholog brachytic2 are involved in polar auxin transport and both reduce internode spacing31, 48 but
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Figure 6. Mapping genes associated with variation in functional principal component scores among sorghum
genotypes (A) Distribution of functional principal component one scores among the 292 genotypes phenotyped as part of this
study. Genotypes with the most negative values for functional principal component one are indicated in red, and genotypes with
the most positive values for functional principal component one are indicated in blue. (B) Growth curves for genotypes with the
most negative values for functional principal component one (red lines) and genotypes with the most positive values for
functional principal component one (blue lines). (C) Distribution of functional principal component two scores among the 292
genotypes phenotyped as part of this study. Genotypes with the most negative values for functional principal component two
are indicated in red, and genotypes with the most positive values for functional principal component two are indicated in blue.
(D) Growth curves for genotypes with the most negative values for functional principal component two (red lines) and
genotypes with the most positive values for functional principal component two (blue lines). (E) Results of conducting a
genome wide association analysis for functional principal component one scores. (F) Results of conducting a genome wide
association analysis for functional principal component two scores. In panels E and the positions of three cloned dwarf genes
dw1, dw2, and dw3 as well as the cloned maturity gene ma1 are indicated using vertical dash lines. Horizontal dash lines
indicate multiple testing corrected cutoff of a statistically significant association.

showed no evidence of an influence on plant height above the flag leaf33. Dwarf1 shows a strong effect on height below the flag
leaf but no detectable effect on height above the flag leaf33. Dwarf2 has been identified in GWAS studies using height below
the flag leaf32 but has not been reported to influence height above the flag leaf.

In addition to successfully identifying all three known true positive height genes in sorghum, functional principal component
based mapping for plant height exhibited much greater enrichment for these genes. Three statistically significant loci outside
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of our predefined known true positive set: a signal on the short arm of chromosome three for the first functional principal
component, and two signals in the pericentromeric regions of chromosomes five and nine for the second functional principal
component. Given the broader mapping intervals and slower LD decay in pericentromeric regions it was not possible to
confidently conclude whether the signals on chromosomes five and nine to specific previous reports from QTL mapping or
genome-wide association in sorghum. However, the chromosome three signal was validated as corresponding to a tightly
mapped height QTL identified in a separate recombinant inbred line population49.

Conclusions
Time-series trait data is rapidly becoming more probably available and collected in a broad range of contexts: model organisms,
crops, livestock, humans, etc. Here we have demonstrated that integrating functional principal component analyses into
genome-wide association studies allows the identification of known true positive genes controlling phenotypic variation in
populations where these genes cannot be confidently identified from data at any single time point. In addition, we show that the
association of different known true positive genes with different functional principal components describing variation in the
target trait are consistent with the known biological roles and previous quantitative genetic associations of those genes. This
in turn suggests that functional principal component based genome-wide association studies of time-series data can provide
greater insight into the distinct roles different trait associated loci play in determining variation in a single phenotype. We
employ a statistical approach to decomposing patterns of phenotypic variation over time into functional principal components
which is robust to incomplete and uneven observations of different subsets of the population at different time points. This
robust approach should aid the broader adoption of functional principal component based genome-wide association in a wider
range of quantitative genetics contexts.

Methods
Plant materials and growth conditions
357 sorghum lines from SAP were planted, grown and phenotyped at (Latitude: 41.162, Longitude: -96.407) part of the the
University of Nebraska-Lincoln’s Eastern Nebraska Research and Extension Center in 2016. Plant height, defined as the
distance from emergence from the soil to the top of the uppermost panicle was manually scored at maturity [Supplementary file
S1]. Due to the height limitation of the imaging chamber equipped in the high throughput phenotyping facility in the University
of Nebraska-Lincoln’s Greenhouse Innovation Center (UNL-GIC) (Latitude: 40.83, Longitude: -96.69). Thirty-eight lines
with heights in the field >2 meters were excluded from subsequent greenhouse experiments. Seeds from the remaining 319
sorghum SAP lines were sown in the greenhouse of UNL-GIC on June 15, 2016. Sorghum seeds were sown in 9.46 liter pots
with Fafard germination mix supplemented with 8.8Kg 3-4 month Osmocote and 8.8Kg 5-6 month Osmocote, 1 tablespoon (15
mL) of Micromax Micronutrients, and 1800g lime per 764.5 liter (1 cubic yard) of soil. Twenty-seven sorghum lines failed to
germinate or failed to grow healthily under greenhouse conditions were omitted from downstream analyses, leaving a total of
292 lines for phenotyping. Phenotyped plants were grown under a target photoperiod of 14:10 day:night with supplementary
light provided by light-emitting diode (LED) growth lamps from 07:00 to 21:00 each day. The target temperature of the growth
facility was between 20−28.3◦C. After growing in the greenhouse for 40 days, all the plants were moved on to the conveyor
belt which transferred each pot to the imaging chamber every two days and to the watering station each day to keep all the
plants growing under a good condition. At the watering station plants were weighed once per day and watered back to a target
weight, including pot, soil, carrier, and plant of 6,300 grams from July 25th to August 9th, 7,000 grams from August 9th until
the termination of the experiment August 31st – 76 days after planting.

Image data acquisition
The imaging of all phenotyped sorghum lines commenced on July 25th and continued until August 31st, 41 to 76 days after
planting (DAP). Image data was collected using a high throughput phenotyping facility in UNL-GIC previously described34.
Each plant was imaged every other day by a visible camera (piA2400-17gm, BASLER, Germany with PENTAX lens) and a
hyperspectral camera (Headwall Photonics, Fitchburg, MA, USA). The visible camera was used to capture RGB images with
the resolution 2,354 × 2,056 including two different zoom levels. The first zoom level was applied from 41 to 53 DAP with
each pixel represented an area of approximately .45mm2 for objects in the range between the camera and the pot containing the
plant. The second zoom level with each pixel representing an area of approximately 1.8mm2 was applied after 54 DAP until the
termination of the experiment (76 DAP). The hyperspectral camera has a spectral range from 546 to 1,700 nm and 243 image
bands. Plants were arranged so that most leaves perpendicularly face to the hyperspectral camera. A hyperspectral cube for
each plant were captured at a resolution of 320 × 560 pixels. For each hyperspectral cube, a total of 243 separate intensity
values were captured for each pixel spanning the range of light wavelengths between 546-1700 nm. A constant zoom level was
applied for all the hyperspectral images throughout the whole experiment with each pixel represents an area of approximately
8.8 mm2.
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Height extraction from RGB and hyperspectral images
The estimate of plant height in RGB images uses the green index threshold method based on the equation 2×Green /(Red +
Blue)35. In this study, the green index threshold 1.12 was applied to separate plant pixels from other background pixels. After
the whole plant segmentation was done, the number of pixels from the lowermost to the uppermost of the plant in the vertical
direction were counted to represent the plant height in the pixel unit. While the stalk + panicle height from hyperspectral images
were estimated using a semantic segmentation method based on the hyperspectral signatures of different sorghum organs26. A
Linear Discriminant Analysis (LDA) model was adopted from the previous sorghum semantic segmentation project to classify
each pixel to either background, leaf, stalk, and panicle26. After the semantic segmentation, the stalk + panicle plant height in
the pixel unit was estimated by counting the number of stalk and panicle pixels on the vertical direction. Then the real plant
height from RGB and hyperspectral image were obtained by using the pixel height multiply by the ratio of the real size and
pixel size based on the corresponding zoom level.

Nonparametric fitting of growth curves and missing heights imputation
The growth curve of each sorghum line was obtained by fitting the heights at different time points using the nonparametric
regression. Meanwhile, the missing heights were also imputed. Let Yi j be the jth observed phenotype of the ith plant, made
at day ti j, i = 1,2, . . . ,n, j = 1,2, . . . ,mi, where mi is the total number of days observed for the ith plant. To model the plant
growth, we propose to use the following non-parametric model

Yi j = µ(ti j)+ e(ti j) (1)

where µ(·) is a mean function of the phenotype development and e(ti j) is a zero-mean process associated with ith plant observed
at ti j. Let B(t) = (B1, . . . ,BK)

T (t) be a vector of B-spline basis functions, where K is the number of basis functions. The
estimated mean function can be expressed as µ̂(t) = BT (t)c = ∑

K
k=1 Bk(t)ck, where c is a vector of coefficients of length K

obtained using penalized least squares approach24, 50.

Functional principal component analysis (FPCA)
The plant growth curves over time were summarized using functional principle component scores. In FPCA, the process e(ti j)
in (1) is decomposed into two parts:

e(ti j) =
L

∑
l=1

ξi,lφl(ti j)+ εi j, (2)

where ξi,l are zero-mean principal components scores with variance λl , φl(ti j) are eigenfunctions corresponding to principal
components scores, and εi j are zero-mean measurement errors with constant variance. In FPCA, eigenfunctions are orthonormal,
namely ∫ φl1(t)φl2(t)dt = 0, for all l1 6= l2 and ∫ φ 2

l (t)dt = 1, so the characteristics of phenotype development for the ith genotype
can be represented by its principal components scores ξi,l , l = 1,2, . . . ,L. The variance of the principal components scores,
λl , l = 1,2, . . . ,L, are sorted in decreasing order, so the first few principal components scores usually capture the majority of
variation in the phenotype data. We also use B-spline bases for the approximation of eigenfunctions. The variance λl and
eigenfunctions φl(·) are estimated by eigenvalue decomposition and the principal components scores ξi,l , l = 1,2, . . . ,L are
estimated using best linear unbiased prediction23, 50.

Genotyping the SAP
DNA was extracted from seedling stage plants grown in the Beadle Center Greenhouse complex at UNL using the same
seed employed for phenotyping. Sequencing libraries generated using a modified tGBS protocol51 were constructed and
paired-end (151 bp read length) sequenced in 8 lanes of an Illumina HiSeqX instrument. This produced an average of 4
million paired end reads per sample. The quality of raw reads was controlled using the Trimmomatic/0.33 software with
the parameters ’TRAILING:20’, ’SLIDINGWINDOW:4:20’, and ’MINLEN:40’52. High quality reads were mapped to the
sorghum reference genome (V4)53 using the BWA/0.7.17 MEM algorithm with default parameters54. After the alignment, the
GATK/4.1 HaplotypeCaller function was used to perform SNP calling with default parameters55 and the raw VCF file including
358 samples was generated. Quality controls of the raw VCF including missing data rate (<0.7), minor allele frequency (MAF)
(>0.01), and heterozygous rate (<0.05) were applied using customized python scripts (https://github.com/freemao/schnablelab).
Missing data were then imputed using Beagle/4.1 with parameters ’window=6600, overlap=1320’56. The sizes of sliding
windows and the overlap windows were set to capture 10% of all SNPs on a given chromosome and 2% of all SNPs on a
given chromosome, respectively. A final set of 569,305 high confidence SNPs was generated and employed in all downstream
analyses.
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Genome-wide association study analyses
Three kinds of GWAS were conducted in this study: 1. Sequential GWAS of plant height based on days after planting (DAP
sequential GWAS); 2. Sequential GWAS of plant height based on days after panicle emergence (DAPE sequential GWAS); 3.
GWAS of the dynamic trait of the plant growth curve (FPCA GWAS).

For DAP sequential GWAS, the plant heights of 292 lines at each time point were used as the phenotypes. As different
subsets of the population were phenotyped on alternating dates, height values for all plants on individual data were drawn
from the values for the nonparametrically fit curves for that genotype (as described above). Genotype data of the 292 lines
were drawn the original genotype data including 358 lines from SAP. After the subsetting to data from the 292 phenotyped
SAP lines, any SNPs which now fell below the previous criteria used to filter SNPs for the full set of 358 lines – minor allele
frequency (MAF) (>0.01) and the heterozygous rate (<0.05) – were excluded. A total of 36 GWAS were conducted from 41
DAP to 75 DAP using the same genotype data. For the DAPE sequential GWAS, X-axis (time) values for individual plant
growth curves were recentered based on the date of panicle emergence. The panicle emergence was defined when the tip of
the panicle is visible from the sorghum flag leaf sheath in the image. As a result, the number of lines with observed data was
inconsistent across individual time points. Analyses were conducted between -14 and 10 DAPE. Within this interval, observed
height values were present for at least 235 lines at each time point. For each time point, genotype information was subset and
refiltered based on the set of lines with available trait data (as described above). A total of 25 GWAS were conducted from -14
to 10 DAPE using the corresponding customized marker datasets generated for phenotyped lines at each individual time point.
For the FPCA GWAS, the first and second principal component (PC) scores of each sorghum line were used as trait values. The
genotype data used was identical to that employed for the DAP sequential GWAS analyes.

All the GWAS were conducted using mixed linear models (MLM) implemented by GEMMA/0.9557. The first 5 principal
components derived from the genotype data using Tassel/5.058 were fitted to MLM as the fixed effect. Meanwhile, the kinship
matrix calculated using “gemma -gk 1” command were fitted to MLM as the random effect. All 63 GWAS jobs were run on the
Holland Computing Center’s Crane cluster at the University of Nebraska-Lincoln. The number of independent SNPs in each
genotype data was determined using the GEC/0.2 software59. A Bonferroni corrected p-value of 0.05 calculated based on the
number of independent SNPs in each specific analyses was applied as the cutoff for statistical significance in each separate
GWAS analysis60.

Data and code availability

Both imputed and unimputed genotype datasets used in this study have been deposited on Figshare61. Raw image data, including
RGB, hyperspectral, fluorescence, and thermal IR images collected from each plant at each time point are being deposited and
disseminated through CyVerse (XXXXX). The R code implementing the FPCA GWAS method used in this study has been
deposited on GitHub (https://github.com/freemao/FPCA_GWAS).
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Supplementary materials

Figure S1. Semantic segmentation of an example sorghum plant using a hyperspectral image. (A) One of 243 distinct
grayscale images necessary to summarize the information content of a hyperspectral data cube collected from imaging one
sorghum plant (PI 656024) at one time point. (B) Semantically segmented image created by assigning each pixel to leaf (green),
stalk (orange), panicle (purple), or background (white) classes based on intensity values for the 243 distinct wavelength
intensity values recorded for that pixel within a hyperspectral data cube.

Figure S2. Imputing unobserved height values for sorghum genotypes through nonparametric regression (A) Raw
heights extracted from hyperspectral images for two individual sorghum genotypes (PI 656027 in blue and PI 533824 in red).
Each open circle indicates a measurement extracted from an image collected on a separate day. For most time points either PI
656027 was imaged, or PI 533824 was imaged, but not both (vertical gray dashed lines) (B) Growth curves (solid lines) fit to
observed values using nonparametric regression, enabling direct comparison of height values for these two genotypes at
specific time points.
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Figure S3. Proportion of variance explained for observed and imputed plant heights Proportion of variance in height
which could be explained by genotype for a set of twenty three sorghum lines were replicated plants were growth and imaged
on the exact same set of days.

Figure S4. Manhattan plots for GWAS on height using height measured at 41 days after planting (Panel A) and 72
days after planting (Panel B).
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Figure S5. Summary of significant SNPs identified in independent GWAS for each time point anchoring on days
after planting rather than days after panicle emergence. Visualization follows the detailed description provided in the
legend of Figure 4.
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