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ABSTRACT  
Summary  
Recombinant  protein   production   is   a   widely   used   technique   in   the   biotechnology   industry   and  
biomedical   research,   yet   only   a   quarter   of   target   proteins   are   soluble   and   can   be   purified.  
Failures   are   largely   due   to   low   protein   expression   and   solubility.   We   have   discovered   that  
global   structural   flexibility,   which   can   be   modeled   by   normalised   B-factors,   accurately  
predicts   the   solubility   of   12,216   recombinant   proteins   expressed   in    Escherichia   coli .   We   have  
optimised   B-factors,   and   derived   a   new   set   of   values   for   solubility   scoring   that   further  
improves   the   prediction   accuracy.  We   call   this   new   predictor   the   ‘Solubility-Weighted   Index’  
(SWI).   Importantly,   SWI   outperforms   many   existing   protein   solubility   prediction   tools.   We  
have   developed   ‘SoDoPE’   (Soluble   Domain   for   Protein   Expression),   a   web   interface   that  
allows   users   to   choose   a   protein   region   of   interest   for   predicting   and   maximising   both   protein  
expression   and   solubility.  
 
Availability  
The   SoDoPE   web   server   and   source   code   are   freely   available   at    https://tisigner.com/sodope  
and    https://github.com/Gardner-BinfLab/TIsigner ,   respectively.  
The   code   and   data   for   reproducing   our   analysis   can   be   found   at  
https://github.com/Gardner-BinfLab/SoDoPE_paper_2019 .  
 
 
 

INTRODUCTION  
High   levels   of   protein   expression   and   solubility   are   two   major   requirements   of   successful  
recombinant   protein   production    (Esposito   and   Chatterjee   2006) .   However,   recombinant  
protein   production   is   a   challenging   process   because   almost   half   of   the   proteins   fail   to   be  
expressed   and   half   of   the   successfully   expressed   proteins   are   insoluble  
( http://targetdb.rcsb.org/metrics/ ).   These   failures   hamper   protein   research,   with   particular  
implications   for   structural,   functional   and   pharmaceutical   studies,   that   require   soluble   and  
concentrated   protein   samples    (Kramer    et   al.    2012,   Hou    et   al.    2018) .   Therefore,   predicting  
solubility,   and   engineering   protein   sequences   for   enhanced   solubility   is   an   active   area   of  
research.   Notable   protein   engineering   approaches   include   mutagenesis,   truncation   (i.e.,  
expression of partial protein sequences), or fusion with a solubility-enhancing tag (Waldo
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2003,   Esposito   and   Chatterjee   2006,   Trevino    et   al.    2007,   Chan    et   al.    2010,   Kramer    et   al.  
2012,   Costa    et   al.    2014) .   
 
Protein   solubility   depends   on   extrinsic   factors   such   as   ionic   strength,   temperature   and   pH,   as  
well   as   intrinsic   factors—the   physicochemical   properties   of   the   protein   sequence   and  
structure—molecular   weight,   amino   acid   composition,   hydrophobicity,   aromaticity,   isoelectric  
point,   structural   propensities   and   the   polarity   of   surface   residues    (Wilkinson   and   Harrison  
1991,   Chiti    et   al.    2003,   Tartaglia    et   al.    2004,   Diaz    et   al.    2010) .   Many   solubility   prediction   tools  
have   been   developed   around   these   features,   ranging   from   the   use   of   simple   statistical  
models   (e.g.,   linear   and  logistic   regressions)   to   sophisticated   machine   learning   models   (e.g.,  
support  vector   machines   and   neural   networks)    (Hirose   and   Noguchi   2013,   Habibi    et   al.    2014,  
Hebditch et al. 2017, Sormanni et al. 2017, Heckmann et al. 2018, Wu et al. 2019, Yang et
al.    2019) .   
 
In   this   study,   we   investigated   the   experimental   outcomes   of   12,216   recombinant   proteins  
expressed   in    Escherichia   coli    from   the   ‘Protein   Structure   Initiative:Biology’   (PSI:Biology)  
(Chen    et   al.    2004,   Acton    et   al.    2005) .   We   showed   that   protein   structural   flexibility   is   more  
accurate   than   other   protein   sequence   properties   in   predicting   solubility    (Vihinen    et   al.    1994,  
Craveur    et   al.    2015) .   Flexibility   is   a   standard   feature   that   has   previously   been   overlooked   in  
solubility   prediction.   On   this   basis,   we   derived   a   set   of   20   values   for   the   standard   amino   acid  
residues   and   used   them   to   predict   solubility.   We   call   this   new   predictor   the  
‘Solubility-Weighted   Index’   (SWI).   SWI   is   a   powerful   predictor   of   solubility,   and   a   good   proxy  
for   global   structural   flexibility.   In   addition,   SWI   outperforms   many   protein   solubility   prediction  
tools.  
 
 
 

RESULTS  
Global   structural   flexibility   performs   well   at   predicting   protein   solubility  
To   determine   which   protein   sequence   properties   can   accurately   predict   protein   solubility,   we  
examined   the   experimental   outcomes   of   12,216   recombinant   proteins   expressed   in    E.   coli  
(the   PSI:Biology   dataset;   see   Supplementary   Table   S1A)    (Chen    et   al.    2004,   Acton    et   al.  
2005) .   These   proteins   were   expressed   either   with   a   C-terminal   or   N-terminal   6xHis   fusion  
tag   (pET21_NESG   and   pET15_NESG   expression   vectors,   N=8,780   and   3,436,  
respectively).   They   were   previously   curated   and   labeled   as   ‘Protein_Soluble’   or  
‘Tested_Not_Soluble’    (Seiler    et   al.  2014) ,   based   on   the   soluble   analysis   of   cell   lysate   using  
SDS-PAGE    (Xiao    et   al.    2010) .   A   total   of   8,238   recombinant   proteins   were   found   to   be  
soluble,   in   which   6,432   of   them   belong   to   the   pET21_NESG   dataset.   
 
We   first   computed   the   standard   protein   sequence   properties,   namely   molecular   weight,  
isoelectric   point,   secondary   structure   composition   (sheet,   turn,   and   helix),   aromaticity,   Grand  
Average   of   Hydropathy   (GRAVY),   global   structural   flexibility   and   instability   index   using   the  
ProtParam   module   of   Biopython    (Kyte   and   Doolittle   1982,   Guruprasad    et   al.    1990,   Bjellqvist  
et   al.    1993,   1994,   Lobry   and   Gautier  1994,   Vihinen    et   al.    1994,   Cock    et   al.    2009) .   We  
compared   the   prediction   accuracy  of   these   features   using   Receiver   Operating   Characteristic  
(ROC)   analysis.   To   our   surprise,   flexibility   outperformed   other   features   in   predicting   protein  
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solubility   [Fig   1,   Area   Under   the   ROC   Curve   (AUC)   =   0.67].   We   then   calculated   9,920  
miscellaneous   protein   sequence   properties   using   the   ‘protr’   R   package    (Xiao    et   al.    2015) ,  
which   include   amino   acid   composition,   pseudo-amino   acid   composition,   autocorrelation,  
CTD   (Composition,   Transition,   Distribution),   conjoint   triad   descriptors,   quasi-sequence-order  
descriptors   and   profile-based   descriptors    (Xiao    et   al.    2015) .   Among   these   features,   the  
amphiphilic   pseudo-amino   acid   composition   for   cysteine   residues   showed   the   highest   AUC  
score,   which   is   still   lower   than   the   AUC   score   for   flexibility   (Supplementary   Fig   S1   and   Table  
S2,   AUC   =   0.65).  
 
 

 
 
Fig   1.   Global   structural   flexibility   outperforms   the   other   standard   protein   sequence  
properties   in   protein   solubility   prediction.    ROC   analysis   of   the   standard   protein  
sequence   features   for   predicting   the   solubility   of   12,216   recombinant   proteins   expressed   in  
E.   coli    (the   PSI:Biology   dataset).   AUC   scores   (perfect   =   1.00,   random   =   0.50)   are   shown   in  
parentheses.   The   ROC   curves   are   shown   in   two   separate   panels  for   clarity.   Dashed   lines  
denote   the   performance   of   random   classifiers.   AUC,   Area   Under   the   ROC   Curve;   GRAVY,  
Grand   Average   of   Hydropathy;  PSI:Biology,   Protein   Structure   Initiative:Biology;   ROC,  
Receiver   Operating   Characteristic.  
 
 
The   Solubility-Weighted   Index   (SWI)   is   an   improved   approach   to   score   solubility  
Protein   structural   flexibility,   in   particular,   the   flexibility   of   local   regions,   is   often   associated  
with   function    (Craveur    et   al.    2015) .   The   calculation   of   flexibility   is   usually   performed   by  
assigning   a   set   of   20   normalised   B-factors—a   measure   of   vibration   of   C   alpha   atoms   (see  
Discussion)—to   a   protein   sequence   and   averaging   the   values   by   a   sliding   window   approach  
(Karplus   and   Schulz   1985,   Ragone    et   al.    1989,   Vihinen    et   al.    1994,   Smith    et   al.    2003) .   We  
reasoned   that   such   sliding   window   can   be   approximated  by   a   more   straightforward  
arithmetic   mean   for   calculating   global   structural   flexibility,   which   is   analogous   to   the  
computation   of   GRAVY.   We   applied   this   arithmetic   mean   approach   to   the   PSI:Biology  
dataset   and   compared   different   sets   of   published,   normalised   B-factors    (Bhaskaran   and  
Ponnuswamy   1988,   Ragone    et   al.    1989,   Vihinen  et   al.    1994,   Smith    et   al.    2003)    as   follows:  
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                                                                                                             (1)  1
L (∑L

i=1
Bi)  

 
where     is   the   normalised   B-factor   of   the   amino   acid   residue   at   the   position   ,   and     is   the Bi i L  

sequence   length.   Among   these   sets   of   B-factors,   solubility   scoring   using   the   most   recently  
published   set   of   normalised   B-factors   produced   the   highest   AUC   score   (Supplementary   Fig  
S2,   AUC   =   0.66).  
 
To   improve   the   prediction   accuracy,   we   initialised   an   iterative   refinement   method   with   the  
most   recently   published   set   of   normalised   B-factors.   This   was   done   by   maximising   AUC  
scores   with   the   Nelder-Mead   optimisation   algorithm    (Nelder   and   Mead   1965) .   In   order   to  
account   for   phylogenetic   relationships   between   proteins   we   clustered   all   12,216   PSI:Biology  
protein   sequences   by   10%   similarity   using   USEARCH   (Fig   2A   and   Supplementary   Fig   S3).  
Cross-validations   were   conducted   in   a   way   that   ensures   training   and   testing   is   performed   on  
unrelated   sequences.   We   calculated   the   solubility   scores   for   the   optimised   weights   using  
Equation   1   and   the   AUC   scores   for   each   cross-validation   step.   Our   training   and   test   AUC  
scores   were   0.72     ±     0.00   and   0.71     ±   0.03,   respectively,   showing   an   improvement   over  
flexibility   in   solubility   prediction   (mean   ±   standard   deviation;   Fig   2B   and    Supplementary  
Table   S3).  
 
The   final   weights   were   derived   from   the   arithmetic   means   of   the   weights   for   individual   amino  
acid   residues  obtained   from   the   cross-validation   step   (Supplementary  Table   S4).  
Interestingly,   we   observed   over   a   20%   change   on   the   weights   for   cysteine   (C)   and   histidine  
(H)   residues   (Fig   2C   and   Supplementary   Table   S4).   These   results   were   in   agreement   with  
the   contributions   of   cysteine   and   histidine   residues   as   shown   by   the   AUC   scores   of   the  
amphiphilic   pseudo-amino   acid   compositions   for   cysteine   and   histidine   residues  
(Supplementary   Fig   S1B).   To   ensure   that   these   results   are   not   artifacts,   in   particular   due   to  
the   presence   of   polyhistidine-tags   in   all   the   sequences,   we   repeated   the   iterative   refinement  
method  using   the   same   cross-validation   sets   without   His   tag   sequences.   The   final   weights  
with   and   without   His   tags   are   nearly   identical,   suggesting   that   the   approach   is   not  
confounded   by   tag   use   (Supplementary   Table   S4,   Spearman’s   rho   =   1).  
 
 

4  
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2020. ; https://doi.org/10.1101/2020.02.15.951012doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.951012
http://creativecommons.org/licenses/by/4.0/


 

157

158
159
160
161
162

163
164
165
166
167
168
169
170
171
172
173
174

175
176
177
178

 
 
Fig   2.   Derivation   of   the   Solubility-Weighted   Index   (SWI).   (A)    Flow   chart   shows   an  
iterative   refinement   of   the   most   recently   published   set   of   normalised   B-factors   for   solubility  
prediction    (Smith    et   al.    2003) .   The   solubility   score   of   a   protein   sequence   was   calculated  
based   on   an   arithmetic   mean   of   the   optimised   weights   as   Equation   1   (using     instead   of   W B

).   These   scores   were   used   to   compute   the   AUC   scores   for   training   and   test   datasets.    (B)  
Training   and   test   performance   of   solubility   prediction   using   the   optimised   weights   for   20  
amino   acid   residues   in   a   10-fold   cross-validation   (mean   AUC   ±   standard   deviation).   Related  
data   and   figures   are   available   as   Supplementary   Table   S3   and   Supplementary   Fig   S3.    (C)  
Comparison   between   the   20   initial   and   final   weights   for   amino   acid   residues.   The   final  
weights   are   derived   from   the   arithmetic   mean   of   the   optimised   weights   from   the  
cross-validation   step.   These   weights   are   used   to   calculate   SWI,   the   solubility   score   of   a  
protein   sequence,   in   the   subsequent   analyses.   Filled   circles,   which   represent   amino   acid  
residues,   are   colored   by   hydrophobicity    (Kyte   and   Doolittle   1982) .   Solid   black   circles   denote  
aromatic   amino   acid   residues   phenylalanine   (F),   tyrosine   (Y),   tryptophan   (W).   Dotted  
diagonal   line   represents   no   change   in   weight.   Related   data   is   available   as   Supplementary  
Table   S4.   AUC,   Area   Under   the   ROC   Curve;   ROC,   Receiver   Operating   Characteristic;   , W  

arithmetic   mean   of   the   weights   of   an   amino   acid   residue   optimised   from   1,000   bootstrap  
samples   in   a   cross-validation   step.  
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To   validate   the   cross-validation   results,   we   used   an   independent   dataset   known   as   eSOL  
(Niwa    et   al.    2009) .   This   dataset   consists   of   the   solubility   percentages   of    E.   coli    proteins  
determined   using   an    E.   coli    cell-free   system   (N   =   3,198).   Solubility   scoring   using   the   final  
weights   showed   a   significant   improvement   in   correlation   with    E.   coli    protein   solubility   over  
the   initial   weights   (normalised   B-factors)   [Spearman’s   rho   of   0.50   (P   =   9.46   x   10 -206 )   vs   0.40  
(P   =   4.57   ✕   10 -120 )].   We   call   the   solubility   score   of   a   protein   sequence   calculated   using   the  
final   weights   as   the   Solubility-Weighted   Index   (SWI).  
 
We   performed   Spearman’s   correlation   analysis   for   both   the   PSI:Biology   and   eSOL   datasets.  
SWI   shows   the   strongest   correlation   with   solubility   compared   to   the   standard   and   9,920  
protein   sequence   properties   (Fig   3   and   Supplementary   Fig   S1).   SWI   also   strongly   correlates  
with flexibility, suggesting that SWI is still a good proxy for global structural flexibility.
 
 

 
 
Fig   3.   SWI   strongly   correlates   with   solubility.   (A)    Correlation   matrix   plot   of   the   solubility   of  
recombinant   proteins   expressed   in    E.   coli    and   their   standard   protein   sequence   properties  
and   SWI.   These   recombinant   proteins   are   the   PSI:Biology   targets   (N   =   12,216)   with   a  
solubility   status   of   ‘Protein_Soluble’   or   ‘Tested_Not_Soluble’ .     Related   data   is   available   as  
Supplementary   Table   S5.    (B)    Correlation   matrix   plot   of   the   solubility   percentages   of    E.   coli  
proteins   and   their   standard   protein   sequence   properties   and   SWI.   The   solubility   percentages  
were   previously   determined   using   an    E.   coli    cell-free   system   (eSOL,   N=3,198).   Related   data  
is   available   as   Supplementary   Table   S6.   GRAVY,   Grand   Average   of   Hydropathy;  
PSI:Biology,   Protein   Structure   Initiative:Biology;   Rs ,   Spearman’s   rho;   SWI,  
Solubility-Weighted   Index.  
 
 
Next,   we   asked   whether   protein   solubility   can   be   predicted   by   surface   amino   acid   residues.  
To   address   this   question,   we   examined   a   previously   published   dataset   for   the   protein   surface  
‘stickiness’   of   397    E.   coli    proteins    (Levy    et   al.    2012) .   This   dataset   has   the   annotation   for  
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surface   residues   based   on   the   protein   crystal   structures.   Interestingly,   we   observed   no  
correlation   between   the   protein   surface   ‘stickiness’   and   the   solubility   data   from   eSOL  
(Spearman’s   rho   =   0.05,   P   =   0.34).   Optimising   weights   for   surface   residues   as   above   led   to  
no   further   improvements   (i.e.,   the   approach   used   to   derive   SWI;   Spearman’s   rho   =   0.05,   P   =  
0.31).   In   contrast,   the   SWI   for   these   sequences   has   a   significant   correlation   with   solubility  
(Spearman’s   rho   =   0.45,   P   =   3.88   ✕   10 -19 ).   These   results   suggest   that   full-length   sequence  
should   be   taken   into   account   when   predicting   protein   solubility.  
 
To   understand   the   properties   of   soluble   and   insoluble   proteins,   we   determined   the  
enrichment   of   amino   acid   residues   in   the   PSI:Biology   targets   relative   to   the   eSOL   sequences  
(see   Methods).   We   observed   that   the   PSI:Biology   targets   are   enriched   in   charged   residues  
lysine (K), glutamate (E) and aspartate (D), and depleted in aromatic residues tryptophan
(W),   albeit   to   a   lesser  extend   for   insoluble   proteins   (Fig   4A).   As   expected,   cysteine   residues  
(C)   are   enriched   in   the   PSI:Biology   insoluble   proteins,   supporting   previous   findings   that  
cysteine   residues   contribute   to   poor   solubility   in   the    E.  coli    expression   system    (Wilkinson   and  
Harrison   1991,   Diaz    et   al.    2010) .   
 
In   addition,   we   compared   the   SWI  for   random   sequences   with   the   PSI:Biology   and   eSOL  
sequences.   In   general,   soluble   proteins   have   higher   SWI   than   insoluble   proteins   (Fig   4B).  
Interestingly,   true   biological   sequences   tend   to   have   higher   SWI   than   random   sequences,  
highlighting   a   clear   evolutionary   selection   for   solubility.  
 
 

 
 
Fig   4.   Properties   of   soluble   and   insoluble   proteins.   (A)    Enrichment   of   amino   acid  
residues   in   the   PSI:Biology   targets   relative   to   eSOL   sequences   (N   =   12,216   and   3,198,  
respectively).    (B)    Distribution   of   the   SWI   for   soluble   and   insoluble   proteins,   and   random  
sequences.   eSOL   sequences   were   grouped   into   soluble   and   insoluble   proteins,   i.e,   <30%  
and   >70%   solubilities,   respectively    (Niwa    et   al.    2009)    (Supplementary   Table   S1B).   Random  
sequences   were   generated   from   a   length   of   50   to   6,000   amino   acid   residues,   with   an  
increment   of   50   residues.   A   total   of   12,000   random   sequences   were   generated,   100  
sequences   for   each   length.   PSI:Biology,   Protein   Structure   Initiative:Biology;   SWI,  
Solubility-Weighted   Index.  
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SWI   outperforms   many   protein   solubility   prediction   tools  
To   confirm   the   usefulness   of   SWI   in   solubility   prediction,   we   compared   it   with   the   existing  
tools   including   Protein-Sol    (Hebditch    et   al.    2017) ,   CamSol   v2.1    (Sormanni    et   al.    2015,   2017) ,  
PaRSnIP    (Rawi    et   al.    2018) ,   DeepSol   v0.3    (Khurana    et   al.    2018) ,   the   Wilkinson-Harrison  
model    (Wilkinson   and   Harrison   1991,   Davis    et   al.    1999,   Harrison   2000) ,   and   ccSOL   omics  
(Agostini    et   al.    2014) .   SWI   outperforms   other   tools   except   for   Protein-Sol   in   predicting    E.   coli  
protein   solubility   (Table   1).   SWI   is   also   the   fastest   solubility   prediction   algorithm   (Table   1,   Fig  
5   and   Supplementary   Table   S7).  
 
 
Table 1. Comparison of protein solubility prediction methods and software.

Approaches  Features  Runtime a  
(s   per  
sequence)  

PSI:Biology b  
(AUC)  

eSOL b  

  [R s    (P-value)]  

SWI  ● Arithmetic   mean   (this  
study).  

● A   set   of   20   values   for  
amino   acid   residues  
derived   from   normalised  
B-factors    (Smith    et   al.  
2003)    by   the   Nelder-Mead  
simplex   algorithm.  

● Trained   and   tested   using  
the   PSI:Biology   dataset  
curated   by   DNASU    (Seiler  
et   al.    2014) .  

● Available   at  
https://tisigner.com/sodope  

1  0.00   ±  
0.00  

0.71   ±   0.03 c  

 
0.50  
(9.46   x   10 -206 )  

Protein-Sol  ● Linear   model    (Hebditch    et  
al.  2017) .  

● Trained   and   tested   using  
eSOL   dataset    (Niwa    et   al.  
2009) .  

● Available   at  
https://protein-sol.manches 
ter.ac.uk/  

10  1.16   ±  
0.75  

0.68  0.54  
(2.37   x   10 -240 )  

Flexibility  ● A   sliding   window   of   9  
amino   acid   residues  
(Vihinen    et   al.    1994) .  

● Normalised   B-factors  
derived   from   PDB.  

● Available   at  
https://github.com/biopytho 
n/biopython  

1  0.38   ±  
0.04  

0.67  0.37  
(7.73   x   10 -106 )  

DeepSol  
S2  

● Neural   network   models  
(Khurana    et   al.    2018) .  

● Trained   and   tested   using   a  
PSI:Biology   dataset  
curated   by   ccSOL   omics.  

57   (11  
types)  

2069.77   ±  
1613.63  

0.67 d  0.23  
(5.82   x   10 -41 ) d  
 

DeepSol  2075.93   ±  0.66 d  0.35  
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258
259
260
261
262
263
264

S3  ● Available   at  
https://github.com/sameerk 
hurana10/DSOL_rv0.2  

1613.80  (7.48   x   10 -91 ) d  

DeepSol  
S1  

2081.93   ±  
1612.71  

0.64 d  0.39  
(9.52   x   10 -116 ) d  

CamSol  
intrinsic  
web   server  

● Linear   and   logistic  
regression   models  
(Sormanni    et   al.    2015,  
2017) .  

● Trained   and   tested   using  
previously   published  
datasets    (Família    et   al.  
2015) .  

● Available   at  
http://www-vendruscolo.ch. 
cam.ac.uk/camsolmethod.h 
tml  

4  NA  0.66  0.43  
(4.53   x   10 -148 )  

PaRSnIP  ● Gradient   boosting   machine  
model    (Rawi    et   al.    2018) .  

● Trained   and   tested   using   a  
PSI:Biology   dataset  
curated   by   ccSOL   omics.  

● Available   at  
https://github.com/RedaRa 
wi/PaRSnIP  

8,477  
(14  
types)  

2055.50   ±  
1621.11  

0.61  0.29  
(3.57   x   10 -65 )  

Wilkinson-  
Harrison  
model  

● Linear   model   using   charge  
average   and   turn-forming  
residue   fraction    (Wilkinson  
and   Harrison   1991,   Davis  
et   al.    1999,   Harrison   2000) .  

● Available   at  
https://github.com/brunoV/b 
io-tools-solubility-wilkinson  

2  0.09   ±  
0.00  

0.55  -0.06  
(1.16x   10 -4 )  

ccSOL  
omics   web  
server  

● Support   vector   machine  
model    (Agostini    et   al.  
2014) .   

● Trained   and   tested   using   a  
PSI:Biology   dataset  
curated   in-house.  

● Available   at  
http://s.tartaglialab.com/ne 
w_submission/ccsol_omics 
_file  

5  NA  0.51  -0.02  
(0.18)  

Boldface   values   are   the   best   results.  
a The   runtime   was   reported   at   the   level   of   machine   precision   (mean   seconds   ±   standard  
deviation).   A   total   of   10   sequences   were   chosen   from   the   PSI:Biology   and   eSOL   datasets,  
related   to   Fig   5   (see   Methods).  
b The   sample   sizes   for   PSI:Biology   and   eSOL   datasets  are   12,216   and   3,198,   respectively.  
c Mean   AUC   ±   standard   deviation   calculated   from   a   10-fold   cross-validation   (see   Methods).  
d DeepSol   reports   solubility   prediction   as   probability   and   binary   classes.   The   probability   of  
solubility   was   used   to   calculate   AUC   and   Spearman’s   correlation   due   to   better   results.  
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AUC,   Area   Under   the   ROC   Curve;   NA,   not   applicable;   PDB,   Protein   Data   Bank;   PSI:Biology,  
Protein   Structure   Initiative:Biology;   ROC,   Receiver   Operating   Characteristic;   R s ,   Spearman’s  
rho;   SWI,   Solubility-Weighted   Index;   s,   seconds.  
 
 

 
 
Fig   5.   Runtime   of   protein   solubility   prediction   tools   per   sequence.    All   the   tools   were   run  
three   times   using   10   sequences   selected   from   the   PSI:Biology   and   eSOL   datasets.   A  
pseudocount   of   0.001   s   was   used   because   the   runtime   of   our   SWI   C   program   is   0.00   s   per  
sequence,   which   is   determined   by   machine   precision.   Related   data   is   available   as  
Supplementary   Table   S7.   SWI,   Solubility-Weighted   Index;   s,   seconds.  
 
 
To   demonstrate   a   use   case   for   SWI,   we   developed   the   Soluble   Domain   for   Protein  
Expression   (SoDoPE)   web   server   (see   Methods   and    https://tisigner.com/sodope ).   Upon  
sequence   submission,   the   SoDoPE   web   server   enables   users   to   navigate   the   protein  
sequence   and   its   domains   for   predicting   and   maximising   protein   expression   and   solubility.  
 
 

 
DISCUSSION  
The   B-factor   or   temperature   factor   of   the   atoms   in   a   crystalline   structure   is   the   measure   of  
vibration   around   their   mean   position   that   reflects   the   uncertainty   in   X-ray   scattering u)(  

structure   determination    (Schlessinger   and   Rost   2005,   Bramer   and   Wei   2018,   Carugo   2018) .  
 

                                                                                                              (2)  8π  uB =  2  

 
The   profile   of   normalised   B-factors   along   a   protein   sequence   can   be   used   to   infer   the  
flexibility   and   dynamics   of   the   protein   structure    (Karplus   and   Schulz   1985,   Vihinen    et   al.  
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1994) .   Protein   structural   flexibility   has   been   associated   with   conformal   variations,   functions,  
thermal   stability,   ligand   binding   and   disordered   regions    (Vihinen   1987,   Teague   2003,  
Radivojac   2004,   Ma   2005,   Schlessinger   and   Rost   2005,   Yuan    et   al.    2005,   Yin    et   al.    2011) .  
However,   the   use   of   flexibility   in   solubility   prediction   has   been   overlooked   although   their  
relationship   has   previously   been   proposed    (Tsumoto    et   al.    2003) .   In   this   study,   we   have  
shown   that   flexibility   strongly   correlates   with   solubility   (Fig   3).   Based   on   the   normalised  
B-factors   used   to   compute   flexibility,   we   have   derived   a   new   position   and   length   independent  
weights   to   score   the   solubility   of   a   given   protein   sequence.   We   call   this   protein   solubility  
score   as   SWI.  
 
Upon   further   inspection,   we   observe   some   interesting   properties   in   SWI.   SWI   anti-correlates  
with helix propensity, GRAVY, aromaticity and isoelectric point (Fig 2C and 3). Amino acid
residues   with   a   lower   aromaticity   or   hydrophilic   are   known   to   improve   protein   solubility    (Han  
et   al.    n.d.,   Wilkinson   and   Harrison   1991,   Trevino    et   al.    2007,   Niwa    et   al.    2009,   Kramer    et   al.  
2012,   Warwicker    et   al.    2014) .   Consistent   with   previous   studies,   the   charged   residues  
aspartate   (D),   glutamate   (E)   and   lysine   (K)   are   associated   with   high   solubility,   whereas   the  
aromatic   residues   phenylalanine   (F),   tryptophan   (W)   and   tyrosine   (Y)   are   associated   with   low  
solubility   (Fig   2C   and   4A).   Interestingly,   histidine   residue   (H)   appears   as   one   of   the   heavily  
weighted   residues   in   scoring   solubility,   which   might   be   due   to   its   positive   charge.   In   contrast,  
cysteine   residue   (C)   has   been   strongly   downweighted,   probably   because   disulfide   bonds  
couldn’t   be   properly   formed   in   the    E.   coli    expression   hosts    (Stewart    et   al.    1998,   Aslund   and  
Beckwith   1999,   Rosano   and   Ceccarelli   2014,   Jia   and   Jeon   2016) .   The   weights   are   likely  
different   if   the   solubility   analysis   was   done   using   the   reductase-deficient,    E.   coli    Origami   host  
strains,   or   eukaryotic   hosts.   
 
Higher   helix   propensity   has   been   reported   to   increase   solubility    (Idicula-Thomas   and   Balaji  
2005,   Huang    et   al.    2012) .   However,   our   analysis   has   shown   that   helical   and   turn  
propensities   anti-correlate   with   solubility,   whereas  sheet   propensity   lacks   correlation   with  
solubility,   suggesting   that   disordered   regions   may   tend   to   be   more   soluble   (Fig   3).   In  
accordance   with   these,   SWI   has   stronger   negative   correlations   with   helix   and   turn  
propensities.   These   findings   also   suggest   that   protein   solubility   can   be   largely  explained   by  
overall   amino   acid   composition,   not   just   the   surface   amino   acid   residues.   This   idea   aligns  
with   our   understanding   that   protein   solubility   and   folding   are   closely   linked,   and   folding  
occurs   cotranscriptionally,   a   complex   process   that   is   driven   various   intrinsic   and   extrinsic  
factors    (Wilkinson   and   Harrison   1991,   Chiti    et   al.    2003,   Tartaglia    et   al.    2004,   Diaz    et   al.  
2010) .   However,   it   is   unclear   why   sheet   propensity   has   little   contribution   to   solubility   because  
β-sheets   have   been   shown   to   link   closely   with   protein   aggregation    (Idicula-Thomas   and  
Balaji   2005) .  
 
We   conclude   that   SWI   is   a   well-balanced   index   that   is   relatively   simple   and   easy   to   use.   To  
demonstrate   the   usefulness   of   SWI,   we   developed   the   SoDoPE   web   server   for   predicting  
solubility   and   designing   protein   sequences   (see   Methods   and    https://tisigner.com/sodope ).   In  
addition,   SoDoPE   is   integrated   with   TIsigner,   our   gene   optimisation   web   server   for   protein  
expression.   This   pipeline   provides   a   holistic   approach   to   improve   the   outcome   of 
recombinant   protein   expression.  
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METHODS  
Protein   sequence   properties  
The   standard   protein   sequence   properties   were   calculated   using   the   Bio.SeqUtils.ProtParam  
module   of   Biopython   v1.73    (Cock    et   al.    2009) .   All   miscellaneous   protein   sequence   properties  
were   computed   using   the   R   package   protr   v1.6-2    (Xiao    et   al.    2015) .   
 
 
Protein   solubility   prediction  
We   used   the   standard   and   miscellaneous   protein   sequence   properties   to   predict   the  
solubility   of   the   PSI:Biology   and   eSOL   targets   (N=12,216   and   3,198,   respectively)    (Niwa    et  
al.    2009,   Seiler    et   al.    2014) .   For   method   comparison,   we   chose   the   protein   solubility  
prediction   tools   that   are   scalable   (Table   1).   Default   configurations   were   used   for   running   the  
command   line   tools.  
 
To   benchmark   the   runtime   of   these   solubility   prediction  tools,   we   selected   10   sequences   with  
a   large   range   of   lengths   from   the   PSI:Biology   and   eSOL   datasets   (from   36   to   2389   residues).  
All   the   tools   were   run   and   timed   using   a   single   process   without   using   GPU   on   a   high  
performance   computer   [/usr/bin/time   <command>;   CentOS   Linux   7   (Core)   operating   system,  
72   cores   in   2×   Broadwell   nodes   (E5-2695v4,   2.1   GHz,   dual   socket   18   cores   per   socket),   528  
GiB   memory].   Single  sequence   fasta   files   were   used   as   input   files.  
 
 
SWI  
To   improve   protein   solubility   prediction,   we   optimised   the   most   recently   published   set   of  
normalised   B-factors   using   the   PSI:Biology   dataset    (Smith    et   al.    2003)    (Fig   2).   To   avoid   bias  
due   to   protein   sequence   homology,   we   first   clustered   the   PSI:Biology   targets   using  
USEARCH   v11.0.667,   32-bit    (Edgar   2010) .   His   tag   sequences   were   removed   from   all  
sequences   before   clustering   to   minimise   bias.   We   obtained   4,368   clusters   using   the  
parameters:   -cluster_fast   <input_file>    -id   0.1   -msaout   <output_file>   -threads   4.   These  
clusters   were   divided   into   10   groups   with   approximately   1,200   sequences   per   group.   The  
subsequent   steps   were   done   with   or   without   His   tag   sequences.   We   used   the   normalised  
B-factors   as   the   initial   weights   to   maximise   AUC   using   these   10   groups   with   a  10-fold  
cross-validation.   Since   AUC   is   non-differentiable,   we   used   the   Nelder-Mead   optimisation  
method  (implemented   in   SciPy   v1.2.0),   which   is   a   derivative-free,   heuristic,   simplex-based  
optimisation    (Nelder   and   Mead   1965,   Oliphant   2007,   Millman   and   Aivazis   2011) .   For   each  
step   in   cross-validation,   we   did   bootstrap   resampling   for   1,000   times   with   each   sample  
containing   1,000   soluble   and   1,000   insoluble   proteins.   Optimisation   was   done   for   each  
sample,   giving   1,000   sets   of   weights.   The   arithmetic   mean   of   these   weights  was   used   to  
determine   the   training   and   test   AUC   for   the   cross-validation   step   (Fig   2A).   
 
 
Bit   score  
To   compute   the   bit   scores   for   each   amino   acid   residue   in   the   PSI:Biology   soluble   and  
insoluble   groups   (Fig   4A),   we   normalised   the   count   of   each   residue     in   each   group   by   the x)(  
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total   number   of   residues   in   that   group.   We   used   the   normalised   count   of   amino   acid   residues  
using   the   eSOL   sequences   as   the   background.   The   bit   score   of   residue     for   soluble   or x)(  

insoluble   group   is   then   given   by   the   following   equation:   
 

                                       (3) it score (x)  log i soluble, insoluble]  b i =  2 ( f  (x)i
f  (x)eSOL

) ,  = [   

 
where     is   the   normalised   count   of   residue     in   the   PSI:Biology   soluble   or   insoluble  (x)f i x)(  

group   and      is   the   normalised   count   in   the   eSOL   sequences.  (x)f eSOL  

 
For   control,   random   protein   sequences   were   generated   by   incrementing   the   length   of  
sequence,   starting   from   a   length   of   50   residues   to   6,000   residues   with   a   step   size   of   50  
residues.   A   hundred   of   random   sequences   were   generated   for   each   length,   giving   a   total   of  
12,000   unique   random   sequences.  
 
 
The   SoDoPE   web   server  
To   estimate   the   probability   of  solubility   using   SWI,   we   fitted   the   following   logistic   regression  
to   the   PSI:Biology   dataset:  
 
                                               (4) robability of  solubility 1/(1 exp( ax b)))p =  +  − ( +   

 
where,     is   the   SWI   of   a   given   protein   sequence,     and    .   The x  81.1496a =   2.8379b =  − 6  

P-value   of   log-likelihood   ratio   test  was   less   than   machine   precision.   Equation   4   can   be   used  
to   predict   the   solubility   of   a   protein   sequence   given   that   the   protein   is   successfully   expressed  
in    E.   coli .  
 
On   this   basis,   we   developed   a   solubility   prediction   webservice   called   the   Soluble   Domain   for  
Protein   Expression   (SoDoPE).   Our   web   server   accepts   either   a   nucleotide   or   amino   acid  
sequence.   Upon   sequence   submission,   a  query   is   sent   to   the   HMMER   web   server   to  
annotate   protein   domains   ( https://www.ebi.ac.uk/Tools/hmmer/ )    (Potter    et   al.    2018) .   Once  
the   protein   domains   are   identified,   users   can   choose   a   domain   or   any   custom   region  
(including   full-length   sequence)   to   examine   the   probability   of   solubility,   flexibility   and   GRAVY.  
This   functionality   enables   protein   biochemists   to   plan   their   experiments   and   opt   for   the  
domains   or   regions   with   high  probability   of   solubility.   Furthermore,   we   implemented   a  
simulated   annealing   algorithm   that   maximised   the   probability   of   solubility   for   a   given   region  
by   generating   a   list   of   regions   with   extended   boundaries.   Users   can   also   predict   the  
improvement   in   solubility   by   selecting   a   commonly   used   solubility   tag   or   a   custom   tag.  
 
We   linked   SoDoPE   with   TIsigner,   which   is   our   existing   web   server   for   maximising   the  
accessibility   of   translation   initiation   site    (Bhandari    et   al.    2019) .   This   pipeline   allows   users   to  
predict   and   optimise   both   protein   expression   and   solubility   for   a   gene   of   interest.   The  
SoDoPE   web   server   is   freely   available   at    https://tisigner.com/sodope .  
 
 
Statistical   analysis  
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Data   analysis   was   done   using   Pandas   v0.25.3    (McKinney   2010) ,   scikit-learn   v0.20.2  
(Pedregosa    et   al.    2011) ,   numpy   v1.16.2    (van   der   Walt    et   al.    2011)    and   statsmodel  
v0.10.1 (Seabold   and   Perktold   2010) .   Plots   were   generated   using   Matplotlib   v3.0.2    (Caswell  
et   al.    2018)    and   Seaborn   v0.9.0    (Waskom   et   al.    2014) .  
 
 
Code   and   data   availability  
Jupyter   notebook   of   our   analysis   can   be   found   at  
https://github.com/Gardner-BinfLab/SoDoPE_paper_2019 .   The   source   code   for   our   solubility  
prediction   server   (SoDoPE)   can   be   found   at    https://github.com/Gardner-BinfLab/TIsigner .  
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