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Abstract

We develop a computational model of human aging that generates individual health
trajectories using a set of observed health attributes. Our model consists of a network
of interacting health attributes that stochastically damage with age to form health
deficits, leading to eventual mortality. We train and test the model for two different
cross-sectional observational aging studies that include simple clinical indicators of
health. In both studies, we find that the individuals generated from the model resemble
the observed data in both health characteristics and mortality. Predicted average health
trajectories and survival probabilities also agree with the observed data.

Author summary

Human aging is characterized by the individual accumulation of damage. In later life
this damage often presents as laboratory abnormalities, diseases, or an impaired ability
to carry out daily tasks and activities. This accumulated damage is also connected with
an increased risk of mortality. We develop a model to generate realistic and detailed
trajectories of health for aging individuals. Given individual health status at a given
age, these predicted trajectories describe the likely conditions or disabilities the
individual will have in the future. This provides a computational model of human aging
that includes observable health features.

Introduction

Human aging is a complex process of stochastic accumulation of damage [1] that occurs
at many organismal scales ranging from the cellular [2] to the functional. Individual
health trajectories are heterogeneous, but typically worsen with age as damage
accumulates. Heterogeneity of aging trajectories arises even in studies of clonal
organisms in controlled laboratory conditions [3, 4], and is an intrinsic part of aging.

Heterogeneity in health as individuals age has been measured with a variety of
methods, although here we focus on binary “health deficits” determined from routine
clinical assessment and self-reported surveys [5–8]. Health deficits are indicators of an
aging phenotype, indicating disease, laboratory abnormalities, cognitive impairment,
disability, or difficulty performing everyday tasks. While any single deficit may not be a
good measure of overall health, or a very informative predictor of mortality, combining
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many binary deficits to evaluate overall health provides measures that are strongly
associated with both adverse health outcomes and mortality [5–8].

Many recent attempts to generate or forecast individual trajectories of disease
progression use longitudinal data. Current models can generate and forecast individual
trajectories of disease progression [9–11], or jointly forecast both disease progression and
survival [12,13]. Modeling aging more generally is less common.

There are many limitations due to data availability when modeling aging. Typically
large observational studies (104+ individuals) with linked mortality are cross-sectional
(measuring variables only at study entry, with only irregular follow ups), have short
censored survival outcomes, and have a lot of missing data. This complicates generating
realistic health trajectories during aging. While a model forecasting general health
trajectories during aging using cross-sectional data has been developed recently [14], it
did not consider individual survival. Recent work used longitudinal data to build a
model that describes the aging of mice with a single state variable, although doesn’t
incorporate survival or predictions of health trajectories [15]. Here, we present a model
that can deal with the data limitations of cross-sectional data with censored survival
information to generate individual aging trajectories that includes both health and
survival.

Our model is adapted from previous work modeling human aging with stochastic
dynamics on a complex network [16–18], which was shown to capture population level
aging phenomena, such as Gompertz’ law of mortality [19]. This model is based on the
intuitive assumption that having one health deficit increases the risk of acquiring
another one, and so deficits can be thought of as interacting in a network, in which
connections establish pairwise associations [20]. Nodes in this older model represented
generic/abstract deficits and corresponded to no specific physiological systems in
particular. Nevertheless, their collective behaviour captured key aspects of aging. This
“generic” network model (GNM) used many nodes (N = 104) to abstractly represent the
many interacting physiological systems in the human body, had simple interactions
between nodes, and involving no age-dependent programming of damage.

In this work, we consider a coarse-grained adaptation of this previous generic
network model, but with far fewer nodes. Our new “weighted” network model (WNM)
is parameterized so that each node represents an actual health attribute (potential
health deficit) corresponding to observational aging data. We recognize that we will
never be able to incorporate all possible health attributes as nodes in our network or to
describe exact biological mechanisms. For this reason, we use more complex weighted
interactions between observed nodes that can capture the effective behaviour of
underlying and/or unobserved biological mechanisms.

We parameterize our model with cross-sectional observational data from the
Canadian Study of Health and Aging (CSHA) [21] and the National Health and
Nutrition Examination Survey (NHANES) [22]. These human aging studies consist of
8547 and 9504 individuals, age ranges of 65− 99 and 20− 85 years, in which mortality
data are available for at most 6 or 10 years past study entry, respectively. Deficits in
these datasets are binary indicators of health issues and integrate information across
physiological systems, such as difficulty performing activities of daily living (ADLs) or
more complex instrumental activities of daily living (IADLs). We estimate parameters
by maximizing the penalized log-likelihood for our model to recover the observations,
where the likelihood is estimated from simulations of the stochastic model. By
validating our model on a separate test set, we demonstrate that our model is
representing real aspects of aging, and is not overfitting to the training data.

We find that our model is generally predictive of health outcomes and survival with
a number of different measures. Rather than focusing on achieving state-of-the-art
performance on any one particular task, the goal of our model is to generate realistic
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Fig 1. Average predicted trajectories of ten deficit prevalences (as indicated by the
subplot titles, numbered 0 to 9) vs. age for individuals from the test data aged 65− 70
surviving past 70 (solid blue lines) and aged 75− 80 surviving past 80 (dashed green
lines). Observed CSHA prevalence is shown in red squares; standard errors are smaller
than the point size.

trajectories of individual aging phenotypes from their initial baseline health status.

Results

Health trajectories

Starting from an individual at a baseline age t0 with deficits {di(t0)}Ni=1, our model (see
Model section below) generates deficit trajectories {di(t)} describing health for
synthetic individuals for each age t > t0 until mortality. We want to test whether these
synthetic individuals age with the same properties as do real individuals in the observed
data. Without longitudinal data, we cannot test these individual trajectories directly.
However, we can use the population average of the observed cross-sectional data and
compare with the average population trajectory predicted from our model. If the study
population was randomly sampled with no biases, we expect these average trajectories
to agree.

Given baseline age and ten selected deficits for individuals from the test data aged
65 - 70 that survive past age 70, and individuals aged 75 - 80 that survive past age 80,
we forecast health trajectories. We compare the average of these individual trajectories
until death to the deficit prevalence from the observed cross-sectional CSHA data for
ages 70+ and 80+. In Fig. 1 we show health trajectories with deficit prevalence
p̂(di = 1|t) for the model (blue solid lines for 65 - 70 and green dashed lines for 75 - 80)
together with the observed CSHA prevalence (red squares). We see excellent agreement
for nearly 30 years for most deficits. This shows that the model is able to project a
population forward in time while correctly identifying changes in deficit prevalence. We
also show the average predicted trajectories with an alternative set of 10 deficits in
Supplemental Fig. S4 and with the NHANES data in Supplemental Fig. S5.

A similar prediction is done for the prevalence of pair combinations of deficits, i.e.
comorbidities. We predict the probability of having two specific deficits
p̂(di = 1, dj = 1|t) vs age in our model, and compare with the observed data. This is
shown in Fig. 2 and in Supplemental Fig. S6, and shows excellent agreement between
the model and the CSHA data for over 30 years. This indicates that our model is
accurately capturing the association between pairs of deficits through network

February 14, 2020 3/15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.14.949560doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.949560
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.5

1.0 (1, 3) (1, 5) (1, 7) (1, 9) (3, 5)

70 80 90 100
0.0

0.5

1.0 (3, 7)

70 80 90 100

(3, 9)

70 80 90 100

(5, 7)

70 80 90 100

(5, 9)

70 80 90 100

(7, 9)

0.0 0.2 0.4 0.6 0.8 1.0
Age, t

0.0

0.2

0.4

0.6

0.8

1.0

p
(d
i
=

1,
d
j
=

1|
t)

Fig 2. Average predicted trajectories of pairwise deficit prevalence vs. age for
individuals from the test data aged 65− 70 surviving past 70 (blue solid lines) and aged
75− 80 surviving past 80 (dashed green lines). Subplot titles indicate the two deficits
included in the pairwise prevalence, with numbers corresponding to titles in Fig. 1. Only
odd pairs are shown here; other pairs are shown in Supplemental Fig. S6. CSHA data is
shown by red squares; errorbars represent standard errors of the pairwise prevalence.

interactions. Notably, pairwise correlations in the model often perform better than
corresponding prevalences – see for example (1, 7) in Fig. 2 – confirming that pairwise
correlations (together with higher order correlations, not shown here) are non-trivial
predictions of the model.

We can represent overall individual health with the well-established “Frailty Index”
(FI), F =

∑N
i=1 di/N [5, 8], an index that uses the proportion of deficits as a predictor

of health and mortality. In Supplemental Fig. S7 we show that the heterogeneity in
health as individuals age, as characterized by distributions of FI at different ages, is
similar to the observed CSHA data.

We are not limited to modelling known individuals. In Supplemental Fig. S8 we
show that the population prevalences of synthetic individuals starting from birth with
zero damage also agree with the observed CSHA prevalences. Indeed, we can generate
trajectories and survival curves for any baseline age and individual set of deficits,
including partially observed sets of deficits with missing values.

Fig. 3 shows FI trajectories starting from the known baseline data (red circle) for 6
synthetic individuals with specific deficits. Horizontally, we vary baseline age with 65,
75, and 85 along the columns. Vertically, we vary baseline deficits, with bottom
individuals having a higher initial FI by having two additional deficits. Individual
trajectories are conditioned on dying at their median survival probability (dashed black
lines), seen from the individual black survival curves. Shaded regions show a
distribution of FI trajectories. The trajectories behave reasonably. Individuals with
more baseline deficits accumulate additional deficits faster and die sooner. Individuals
starting at older ages also have a more rapid increase in number of deficits and have a
shorter time to death.

Individual deficit predictions

Since our training and test data sets have similar prevalences, the good test
performances in Figs. 1 and 2 do not rule out overfitting. To assess overfitting, we need
to look at predictions at an individual level in the test set. We first check that there is
only a small overlap between training and test data sets, see Supplemental Fig. S9.
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Fig 3. The purple shading indicates the distribution of Frailty Index trajectories vs age
for simulated individuals starting from the red circle at a specific age, with the
indicated starting set of deficits. Individual survival curves are shown as black lines, and
trajectories are conditioned on dying at the median death age (indicated with dashed
lines). The scale-bar at right indicates the magnitudes of the trajectory distributions.

We test the model’s ability to capture the age-dependent joint distribution of deficits
p({xi}|t) by evaluating its performance in predicting “left out” deficits from individuals
in the test set at the same age, i.e. performing missing data imputation by estimating
p({xj}missing|{xi}observed, t). Given a known age tm and known deficits {di}m for an
individual m from the test set, we simulate from zero damage at birth and sample from
the simulated individuals at age tm that have the deficits {di 6=j} to estimate the
probability of having the left out deficit, p̂(dj |{di 6=j}m, tm). We compare this
probability with the actual value of the left out deficit dmj for this individual at the
same age. This is a binary classification, and can be quantified by the area under a
ROC curve – the AUC.

Fig. 4 shows the AUC for each left-out deficit. This is equal to the probability that
given two individuals with and without the deficit, the model correctly predicts a higher
probability of having the deficit for the individual with the deficit than without. The
full test set is shown as a solid blue line, while blue circles show the AUC stratified by
age. For all deficits, we see AUC values well above 0.5 for the test data, meaning that
our model is making informative predictions and not just overfitting the training data.
Orange squares and lines show similar values for the AUC of the training data, which is
further confirmation that any overfitting is minimal.

Obtaining essentially the same AUC when stratifying by age in Fig. 4 demonstrates
that the model is predicting as well even when we eliminate age as a factor. This
indicates that the model is utilizing the network interactions between observed deficits
to make non-trivial individual predictions, and not just using e.g. increasing prevalence
with age.

Survival

We can also model individual mortality. We take baseline data from the test set for an
individual m at age tm and damage {di}m, and simulate from this age until mortality.
This allows us to estimate their survival function Ŝ(a|tm, {di}m), i.e. the individual’s
probability of surviving to an age a > tm. We average these to get a population average
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the unstratified line show 95% confidence intervals.

survival function over M individuals, 〈Ŝ(a|tm, {di}m)〉M = 1
M

∑
m Ŝ(a|tm, {di}m). We

show the comparison of this to a Kaplan-Meier estimate [23] of the population survival
function from the observed CSHA test data in Fig. 5A, with our model shown in blue
and the observational test data in red. We observe good agreement, and also find that
model predictions correctly drop to zero survival around age 120.

Since the training and test distributions are similar, a population measure of
mortality does not tell us whether the model is overfitting – only whether the model is
able to capture the population trends in mortality. Accordingly, we validate individual
survival on the test set with a C-index [24] to measure how well the model discriminates
individuals in terms of risk of mortality. Since our model includes potentially complex
time-dependent effects, where survival curves can potentially cross, we use a more
general age-dependent C-index [25]. We obtain this by comparing the rank ordering
between survival probability and known survival age while including censoring, so
Ctd = Pr(Ŝm1

(am1 |tm1 , {di}m1) < Ŝm2
(am1 |tm2 , {di}m2)|am1 < am2 , cm1 = 0) [25].

Fig. 5B shows this age-dependent C-index for both on the full test set (solid blue
line) and stratified by age (blue circles). The C-index shows that the model
discriminates well on the full test when the difference in ages between individuals can
be used in the discrimination. When we stratify by age to eliminate this effect, we
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nevertheless see that the model still discriminates well based on just these 10 deficits
alone, showing that the model captures the increased risk of mortality from specific
deficits. We note that stratified values are noisy due to the small number of individuals
per age bin, especially at higher ages.

In Supplemental Fig. S10A we show similar results for the C-Index for both training
and test sets, which also indicates a lack of overfitting. Similarly, Fig. S10B shows an
R2 measure constructed from Brier Scores [26], a measure of how well predicted and
observed survival curves match, that behaves similarly for training and test data.
Furthermore, Fig. S10C shows the ROC AUC for predicting binary dead/alive on the
train/test sets within a specific window of time, finding a similar AUC of approximately
for 1-5 year mortality windows. For all of these, we find similar behavior between the
training and test sets, indicating a lack of overfitting. This is also seen for survival
predictions for the alternative set of deficits used in Fig. S4, as shown in Supplemental
Fig. S11 and for survival predictions for the NHANES dataset, as shown in
Supplemental Fig. S12.

Summary and Discussion

Our weighted network model (WNM) is trained with cross-sectional data, generates
synthetic individuals that resemble the observational data, and can forecast the future
health and survival of real individuals from their baseline health and age. We have
validated the WNM model through a variety of measures. Synthetic individuals age
with trajectories that have approximately the same prevalence of deficits and
comorbidities as in the observed data. The trajectories predicted by the model agree
very well for nearly 30 years. Given a set of known deficits, the model can predict the
probability of having a missing or unknown deficit at the same age, demonstrating the
models ability to capture the age-dependent joint distribution of the deficits. Estimated
survival curves also agree with observed population survival, are predictive of mortality,
and discriminate between individuals.

Our model has a large number of parameters, with 188 parameters for N = 10
binary attributes. A concern with such discrete (binary) health states is that there
could be significant overlap between the test and training sets since there are only 2N

possible states. Nevertheless, as we show in Supplemental Fig. S9, a significant fraction
of the health states from the test set are not in the training set. Furthermore, from this
non-overlapping test set we have shown that our model does not substantially overfit
and can make predictions on unseen test individuals.

Our model also generates accurate projections of the average health trajectories of
groups of individuals. Taking a group of individuals and simulating them to their
deaths, we find the average trajectory generally agrees with the average population data,
which shows that model averaged trajectories are quite accurate and are consistent with
the assumption that the study population is a random (representative) sample.

However, we find that when we predict health trajectories until very old ages (80 -
90 years old), our model tends to estimate slightly higher prevalences than are observed
in cross-sectional data, particularly in the NHANES data where baseline measurements
are taken further away from the actual age of death than in the CSHA data. One
possible explanation of this overestimate is that only N = 10 binary deficits are not
capturing enough information to predict mortality, so that our maximum likelihood
method imposes a middle ground between accurate mortality prediction and accurate
health decline by including an artificially rapid health decline in order to induce
observed death ages. This effect may be stronger in the NHANES data since health
trajectories agree rather poorly, see Supplemental Fig. S5, while survival in
Supplemental Fig. S12 is still predictive.
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Alternatively, our model could be describing a real acceleration of health decline
before death that is not captured in the observational cross-sectional data due the lack
of health measurements near death. This would suggest that these cross-sectional
studies could be biased by excluding subjects near death. Indeed, in longitudinal studies
a rapidly rising FI has been shown to identify individuals with a high risk of death
within 1 year [27] – this is called “terminal decline” [28]. Using such longitudinal data
would allow us to better predict and to better test generated health trajectories for
specific individuals, including health near death. This should also improve mortality
predictions.

The choice of which deficits to use in our model is arbitrary, the only assumptions
we have made are that they are binary and permanent. However, the quality of survival
or prevalence predictions (Figs. 4 and 5) does depend on the deficits chosen. The only
health variables we have included are health deficits that accumulate through damage.
Other static or non damage-accumulation variables are often considered in aging studies
as well, such as sex [29–31], and environmental variables like socioeconomic status [32],
or lifestyle. Variables that don’t change by damage accumulation but still interact with
health deficits can be easily added to the model as network nodes with static values. In
this way they can naturally interact with the damage-accumulation health attributes.
Similarly, individual non-damage variables that could be deliberately modified – such as
physical activity levels [33,34] – could be added as nodes with explicit time-dependent
values that depend on the individual.

Our previous generic network model (GNM) captured population level aging
behaviour like Gompertz’ law of mortality and the average increase in the Frailty Index
(health decline) vs age [17,18], however the nodes did not correspond to any particular
health attribute (i.e. they were generic). Adding more complexity to damage/mortality
rates with more flexible functional forms, node-dependent fitting parameters, and a
weighted interaction network, we have here been able to represent individual health
attributes from observational aging data with specific nodes in our WNM. This has
allowed us to model individual health trajectories, including individual survival.

There has been significant work inferring biological networks, both at different
scales [35] and using a variety of approaches [36–39]. In the context of human frailty,
previous work has created a network representation of health attributes with measures
of association or correlation [18,40,41]. Different methods result in different networks,
and thus it has not been clear what underlying association between the deficits a given
network represents. Equivalently, it has not been clear how to test a given network
representation. In the Supplemental section on Parameter Robustness, we explore the
“robustness” of the network parameters and predictions by sampling an ensemble of
parameters around the maximum likelihood estimate [42]. Supplemental Fig. S1 shows
that significant deviations from the maximum likelihood parameters still leads to
relatively accurate fits of the data – i.e. we obtain robust predictions. However, when
we optimized the model several times with different random seeds we show in
Supplemental Fig. S2 that we find significantly different network parameterizations
each time. This indicates that while the model behavior is robust, the network
structures themselves are not robustly predicted by the available data.

This lack of robustness for model parameters is not surprising. Due to the complex
interactions between many parameters in our model, we expect that many network
parameters are “sloppy” [43]. This would lead to robust collective behavior of the
system with many different combinations of parameters – i.e. many different networks
that are consistent with the observed data. Nevertheless, we show in Supplemental Fig.
S3 that how damage propagates from node to node of the network does have some
degree of robustness. We show average damage rates
Γi←j(t) = 〈Γ+

i (t, di = 0, dj = 1, {dl})〉p({dl}|t,di=0,dj=1) of the ith node conditional on
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prior damage of the jth node. This robustness indicates that the behavior of our
weighted network model (WNM) has robust behavior despite some sloppiness of
individual parameters. We believe that is why it behaves so well in terms of predicting
deficit prevalence and mortality.

Our model differs significantly from other models of disease progression or
aging [9–14]. The most important difference is that our model generates trajectories for
specific synthetic individuals and directly models stochastic changes to their health
state as they age until death – rather than capturing the dynamics with unobserved
latent states. We offer a computational model of aging that generates synthetic tracked
health trajectories or forecasts the future trajectories of individuals from specified
health states. This means that our model can generate many different stochastic
realizations for the same individual after baseline, and can show how differences in
possible health trajectories lead to differences in mortality.

A potential advantage of our computational approach is that model individuals
could be manipulated to perform “health interventions” on specific observed nodes or
sets of nodes. We could then observe the affect of general interventions on health
trajectories and mortality. These predictions could then be tested with longitudinal
data. This is left for future work.

Model

Model structure

We consider of network of N nodes representing binary health attributes. Each node
can be in state di = 0 for undamaged (healthy) and di = 1 damaged (deficit). In
previous work using a generic network model (GNM) [17,18], we measured the local
damage around a specific node as the proportion of damaged neighbours,
fi = 1

ki

∑N
j=1 aijdj , where aij is the binary-valued adjacency matrix of an undirected

network and ki =
∑

j aij is the node degree. Damage transitions (0→ 1) between states
occurred with rates that depend exponentially on the proportion of damaged
neighbours, Γ+

0 exp (γ+fi). Repair transitions were also included, but found to be
negligible. The parameters γ+ and Γ+

0 were identical for each node and chosen to fit
population mortality rates (Gompertz’ law) and overall health decline (average Frailty
Index). For the GNM studies we used N = 104 nodes [17,18].

In this work, we generalize the GNM network to a weighted and directed network,
described by a continuous-valued adjacency matrix of weights, wij . We call this a
weighted network model (WNM). We use far fewer nodes in this WNM network, but
account for the contribution of these missing nodes by introducing a time-dependent
function µi(t) to the local damage of each node, fi. This function µi(t) represents the
average contribution to the local damage by the dynamics of the unobserved nodes.
This average local damage contribution µi(t) is implemented as a generic power series,
and so our new measure of local damage for the ith node is,

fi(t, {dj}) = φ
( N∑

j=1

wijdj + µi(t)
)
, (1)

where µi(t) =

nf∑
k=0

µikt
k.

φ(x) = max (x, 0) is a function that clips negative rates to zero, allowing the model to
effectively “turn on” rates at older ages rather than zero. This allows for strong
non-linear behaviour even with a low-order power series. {wij , µik} are fitting
parameters of the model while nf is a hyperparameter for µi(t).
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The exponential damage rates of the GNM have been replaced by more general
power-series with node-dependent coefficients to allow specific nodes to capture distinct
behaviour for specific deficits in the observed data. The new damage rate for node i is
given by,

Γ+
i (t, {dj}) = φ

( n+∑
k=0

γ+ikf
k
i (t)

)
. (2)

{γ+ik} are fitting parameters of the model and n+ is a hyperparameter for the power
series.

Mortality occurs as a separate process with a single rate of death,

ΓD(t, {dj}) = φ
( nD1∑

k=0

αkx
k
)
, (3)

x(t, {dj}) = φ
( N∑

j=1

βjdj +

nD2∑
l=0

ηlt
l
)
. (4)

This rate is equivalent to having a single node that corresponds to mortality, and death
occurs when it damages (in contrast to the two nodes that were used in the
GNM [16,17]). The intermediate damage x depends on each deficit linearly with an
age-dependent deficit-independent component represented as a power series. This
mortality rate uses fitting parameters {αk, βj , ηl} and nD1

, nD2
as hyperparameters

determining the number of terms in the power series.
In total the model has Ntot = N(N + nf + n+ + 1) + nD1 + nD2 + 2 fitting

parameters. We restrict parameter values to ensure that fi, Γ+
i , and ΓD are all

monotonically increasing functions of age. Details of the requisite parameter bounds are
in the Supplemental. Despite the large number of parameters, we have many more
individual observations. We also carefully test predictions for a test population that has
small overlap of observed states with our training population (see Supplemental Fig.
S9). We find no evidence of overfitting.

The model is stochastically simulated by assuming the transition rates describe
exponentially distributed waiting times between transitions, and then using an exact
event-driven stochastic simulation algorithm (SSA/Kinetic Monte Carlo) [44]. Details of
the stochastic simulation are in the Supplemental. For one run of the model until death,
i.e. for each synthetic individual, the model outputs death age tD and all node
trajectories, {di(t)}tD,i=N

t=0,i=1. Due to the exact nature of the SSA, all transition times are
precisely resolved in our model data.

Likelihood

We calculate our likelihood using cross-sectional data. First, we consider observed

cross-sectional data of the form
{
tm, {di}m, am, cm

}M
m=1

. For the mth of M individuals,
we have measurements of health attributes {di}m at age tm. Instead of death age, we
have an observed survival age am due to right censoring. This is the oldest age that an
individual is known to be alive, which can be written am ≡ min (tmD , t

m
c ) , where tmD is

actual death age and tmc is the censoring age i.e., the age of the individual when they
are known to be still alive due to observed health state(s) but after which their
mortality is not recorded. We indicate censoring with a binary variable cm = 1, and
uncensored with cm = 0.

By simulating synthetic individuals from the model, we sample and estimate the
probability p({di}m, tmD |tm; ~θ) for each individual m in the data. We denote all
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parameters by the vector ~θ. For simplicity we split this probability into two separate
parts, representing mortality and health respectively:

log p({di}m, tmD |tm; ~θ) = log p(tmD |{di}m, tm; ~θ) + log p({di}m|tm; ~θ). (5)

For uncensored individuals, we can calculate their likelihood by using their known
death age using Eqn. 5. For censored individuals, we also need to integrate the
mortality term over all possible death ages above the censoring age,

S(am|tm, {di}m; ~θ) =

∫ ∞
am

p(a′|tm, {di}m; ~θ)da′, (6)

which is the probability of surviving to at least age a. Then we can calculate the full
log-likelihood,

L(~θ) = Luncensored
mortality + Lhealth + Lcensored

mortality (7)

=
∑

m|cm=0

log p(am|{di}m, tm; ~θ)

+
∑
m

log p({di}m|tm; ~θ)

+
∑

m|cm=1

logS(am|tm, {di}m; ~θ),

where the last term is added for censored individuals.
For an individual with missing data that does not have the full N health attributes

measured, we marginalize over the missing variables implicitly by sampling all possible
combinations of the missing variables. Additional details of the likelihood estimation
from simulations are in the Supplemental.

Observed data

We use data from the Canadian Study of Health and Aging (CSHA) [21] to develop and
test our model. The CSHA sample has 8547 individuals that range from ages 65− 99
with death ages that are available within a 6 year censoring window. The 10 default
deficits used are shown in Fig. 1, alternate deficits are shown in the Supplemental.

We split the data into a training set of 1020 individuals and a test set of 7527
individuals. We do this such that dividing the training set into 5 year age bins has an
approximately uniform age distribution, and the remaining individuals are put into the
test set. This balances the training set and ensures no age is “prioritized” in the
optimization by having a much larger number of individuals.

We validate our conclusions on the National Health And Nutrition Examination
Survey (NHANES) [22]. The NHANES sample has 9504 individuals that range from
ages 20− 85 with death ages that are available within a 10 year censoring window. In
the same way this data is split into 2352 training individuals and 7151 test individuals.

Parameter optimization

We maximize the log-likelihood in Eqn. 7 using particle swarm optimization [45] in

order to train the model and estimate the parameters θ̂. Details of the parameter
optimization procedure are in the Supplemental. We use parameter bounds shown in
the Supplemental to impose monotonic dependence of damage rates on existing damage.
We regularize the fitting as detailed in the Supplemental. We choose hyperparameters
n+ = 4 and nf = nD1 = nD2 = 3. These are the number of terms in our power-series
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expansions used in damage and mortality functions. The hyperparameters are hand
chosen for simplicity. These hyperparameters result in a model with N(N + 8) + 8
parameters, where N is the number of binary health attributed modelled for each
individual. Due to computational demands, this practically limits the size of N – here
we take N = 10.

Supporting information

Appendix S1. Supplemental details

Fig. S1 Prediction robustness.

Fig. S2 Network sloppiness.

Fig. S3 Damage rate robustness.

Fig. S4 Alternate deficit predicted trajectories.

Fig. S5 NHANES predicted trajectories.

Fig. S6 Full pair trajectories.

Fig. S7 Population Frailty Index distributions.

Fig. S8 Simulated population trajectories from birth.

Fig. S9 CSHA state overlap

Fig. S10 Training set mortality predictions.

Fig. S11 Alternate deficits mortality predictions

Fig. S12 NHANES survival predictions
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